
2LS for Program Analysis

(Competition Contribution)

Peter Schrammel and Daniel Kroening

University of Oxford

Abstract 2LS is a program analysis tool for C programs built upon the
CPROVER infrastructure. 2LS is bit-precise and it can verify and refute
program assertions. 2LS implements invariant generation techniques, in-
cremental bounded model checking and incremental k-induction. The
competition submission uses an algorithm combining all three techniques,
called kIkI (k-invariants and k-induction). As a back end, the competi-
tion submission of 2LS uses Glucose 4.0.

1 Overview

2LS is a static analysis and verification tool for C programs that can perform
interprocedural abstract interpretation, verification and refutation of assertions
and termination analysis [3]. The competition version is configured for mono-
lithic verification and refutation of assertions using an algorithm called kIkI
(k-invariants and k-induction) [2], which elegantly combines bounded model
checking, k-induction and invariant generation. The algorithm discharges these
analyses to a sequence of incremental calls to a SAT or an SMT solver.

2 Architecture

2LS performs the following main steps, which are outlined in Figure 1, and are
explained below.

Front end. The command-line front end first configures 2LS according to user-
supplied parameters, such as the bit-width. The C parser utilises an off-the-shelf
C preprocessor (such as gcc -E) and builds a parse tree from the preprocessed
source. Source file and line information is maintained in annotations. Being built
upon the CPROVER infrastructure [4], 2LS uses GOTO programs as an inter-
mediate representation. In this language, all non-linear control flow, such as if
or switch-statements, loops and jumps, is translated to equivalent guarded goto
statements. Similar to CBMC, 2LS performs a light-weight static analysis to
resolve function pointers to a case split over all candidate functions, resulting
in a static call graph. Furthermore, assertions guarding against invalid pointer
operations or memory leaks are inserted.



Command Line
Front End

C Parser Type Checking GOTO Conversion
Static Analysis &
Instrumentation

SSA form

SAT Solver

Counterexample

Proof

Invariant Generator UnwinderProperty Checker

Figure 1. 2LS architecture (using kIkI)

Middle end. 2LS performs a static analysis to derive the data flow equations
for each function of the GOTO program. The result is a static single assign-
ment (SSA) form in which loops have been cut at the back edges to the loop
head. The effect of these cuts is a havocking of the variables modified in the
loop at the loop head. This SSA is hence an over-approximation of the GOTO
program. Subsequently, 2LS refines this over-approximation by computing in-
variants. 2LS performs local constant propagation and expression simplification
to increase efficiency.

Back end. 2LS requires incremental back end solvers. Since support for incre-
mental solving in SMT solvers is still lagging behind in comparison to SAT
solvers, we use Glucose 4.01. Consequently, as in CBMC, the SSA equation is
translated into a CNF formula by bit-precise modelling of all expressions plus
the Boolean guards. This formula is incrementally extended to perform invari-
ant generation using template-based synthesis (see [2]; the competition version
simply uses interval templates over numerical variables), to add further loop
unwindings, and to the assertions for property checks. All this happens using
a single solver instance so that information learned by the solver is never dis-
carded. If a property check is satisfiable and model computed by the SAT solver
does not take a path through an invariant (where over-approximation is used),
then it corresponds to a path violating at least one of the assertions in the pro-
gram under scrutiny. Subsequently, the model is translated back to a sequence
of assignments to provide a human-readable counterexample. Conversely, if the
property check is unsatisfiable, we have proven the assertions.

3 Strengths and Weaknesses

kIkI can provide both proofs as well as refutations using bit-precise algorithms.
Refutations are essentially obtained via loop unwinding, whereas proofs are
achieved by invariant generation as well as k-induction. This combination is
quite powerful – 2LS won the gold medal in the Floats category, and is ranked

1 http://www.labri.fr/perso/lsimon/glucose/#glucose-4.0



2nd for the Loops benchmarks [1]. However, some benchmarks, e.g. those requir-
ing reasoning about arrays contents or linked data structures, demand stronger
invariants than we are currently able to infer. The monolithic analysis of the com-
petition version does not support recursion, and there are limitations regarding
irreducible control flow. Moreover, we observed issues with the counterexample
witness GraphML output.

4 Tool Setup

The competition submission is based on 2LS version 0.3.2 The full source code
of the competition version is available at

http://www.cprover.org/svn/deltacheck/releases/2ls-0.3-sv-comp-2016.

Installation instructions are given in the file COMPILING. The executable 2ls

is in the directory src/summarizer. The competition version must be given
the options --k-induction and --competition-mode. For all categories with
a 32-bit memory model, use --32; for those with a 64-bit memory, use --64.
There is no distinction between simple and precise memory model. In order to
write the counterexample to file CEX.graphml add the option --graphml-cex

CEX.graphml.3

Participation / Opt Out. 2LS competes in the following categories: Bit Vectors -
BitVectorsReach, Floats, Integers and Control Flow, Overall, and Falsification.

5 Software Project

2LS is maintained by Peter Schrammel with patches supplied by the community.
It is publicly available under a BSD-style license. The source code is available
at http://www.cprover.org/2LS.

References

1. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on sv-comp 2016). In: TACAS. Springer (2016)

2. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety Verification and Refutation
by k-Invariants and k-Induction. In: Static Analysis Symposium (SAS). LNCS, vol.
9291, pp. 145–161. Springer (2015)

3. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising
interprocedural bit-precise termination proofs. In: Automated Software Engineering
(ASE). ACM (2015)

4. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. pp. 168–176. Springer (2004)

2 All relevant information for reproducing the results (including an archive containing
the executable) can be found at http://sv-comp.sosy-lab.org/2016/systems.php.

3 See BenchExec wrapper script two ls.py and the benchmark definition file 2ls.xml.


