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Abstract. Unmanned aerial vehicles (UAV) are becoming increasingly
popular for both recreational as well as industrial applications, leading to
concerns about safety. Autonomous systems, such as UAVs, are typically
hybrid systems consisting of a low-level continuous control part and a
high-level discrete decision making part. In this paper, we discuss using
the agent programming language AgentSpeak to model the high-level
decision making. We present a translation from AgentSpeak to C that
bridges the gap between high-level decision making and low-level con-
trol code for safety-critical systems. This allows code to be written in a
more natural high-level language, thereby reducing its overall complexity
and making it easier to maintain, while still conforming to safety guide-
lines. As an exemplar, we present the code for an autopilot for a UAV.
The generated code is evaluated on a simulator and a Parrot AR.Drone,
demonstrating the flexibility and expressiveness of AgentSpeak as a mod-
eling language for UAVs.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have become an area of significant interest
in the robotic community. This is mainly due to their capability to operate not
only in open outdoor spaces, but also in confined indoor spaces, thus catering
to a wide range of applications [27].

Current UAVs are usually remotely controlled by human pilots but partial
or even full autonomy is a likely scenario in the foreseeable future, leading to
various regulatory questions [21]. An autonomous UAV can be seen as a hybrid
system consisting of a low-level continuous control part and a high-level decision
making part [9, 15]. While, arguably, the low-level control enables autonomy, it is
the high-level decision processes that make the system truly autonomous. Owing
to their unrestricted movement and usage of non-segregated airspace, safety is
a primary concern for UAV use. As outlined in [9, 15], questions and procedures
relating to the safety of the low-level control are well-established. In this paper,
we thus address the issue of the safety of autonomous decision making in UAVs.

Safety certification for aerial vehicles is guided by DO-178C [34]. One partic-
ular requirement is coding standards such as MISRA C [23], which are routinely
applied to low-level control code. While it is possible to implement the high-level



decision making directly in C, such code would, arguably, be hard to maintain
as the language does not provide an adequate level of abstraction, which in turn
also complicates establishing the various traceability requirements by DO-178C.

Agent-programming languages [39, 2, 44], such as AgentSpeak [29], were pro-
posed as a solution for modeling high-level decision making. However, such lan-
guages often require an interpreter or similar run-time environment [2], for ex-
ample Jason [5] in the case of AgentSpeak. Using a setup like [17] allows the
high-level decision making to be interfaced with the low-level control code, how-
ever, it raises various concerns with regards to safety. The additional complexity
of the system not only increases the number of potential sources of failure and
required resources, but can also make traceability requirements infeasible, as not
only actual agent code is affected, but also the run-time environment.

In order to mitigate these problems, we propose to instead translate the
high-level decision making code from the agent-programming language into the
language of the low-level control code. This reduces the complexity of the re-
sulting system and enables the reuse of already existing tools and processes for
validation of the low-level control code. Furthermore, the traceability of require-
ments is guaranteed due to the systematic nature of the code translation. This
allows the actual development to take place in the more natural setting of the
agent-programming language, thus improving code maintainability.

To the best of our knowledge, no such approach has been proposed for
AgentSpeak so far. Related work includes the automated code generation from
behavior-based agent programming with the aim of facilitating development and
code reuse [43], the translation of AgentSpeak to Promela proposed in [3] for
the purpose of model checking AgentSpeak, and the translation of AgentSpeak
to Erlang in order to improve concurrent performance [11]. In a wider context,
the usage and translation of statecharts (e.g. [18, 22]) and Stateflow (e.g. [38, 1])
for modelling and the relation between statecharts and agent-oriented program-
ming [16] provides further background and inspiration to this work.

This paper makes the following contributions.
– We present an automated translation from AgentSpeak into a fragment of

C akin to MISRA C for implementing high-level decision making in UAVs.
– As an exemplar, we present a re-implementation of the autopilot of the

tum ardrone package [13] in AgentSpeak and show how the translated code
can be used on a Parrot AR.Drone.

2 The Autopilot

Automatic flight control systems are used to maintain given flight dynamic pa-
rameters and to augment stability [24].1 In order to achieve these goals, typi-
cally some form of feedback control loop mechanism is employed, e.g., a PID
(Proportional-Integral-Derivative) controller. While such a mechanism is clearly
a low-level control aspect, one can also discern high-level decision making aspects

1 While these requirements were originally applied to fixed-wing aircrafts, these high-
level aspects translate directly to rotary-wing aircrafts.



in an autopilot, in particular the breaking down of the commands and coordi-
nating their execution. One might also imagine a more sophisticated version of
an autopilot implementing collision avoidance, or an emergency landing upon
low battery status, as even more prominent high-level aspects.

In the following, we will consider a simple autopilot for an unmanned quadro-
tor system. This autopilot, which we use as an exemplar, is based on the au-
topilot provided with the tum ardrone package [13], however, our version only
includes essential aspects (see also Section 5). The autopilot supports three ba-
sic commands, namely takeoff, goto, and land. The takeoff command engages
the rotors and brings the aircraft to a pre-defined altitude before handling any
further commands. The goto command allows the specification of a target (in x,
y, z and yaw coordinates) and the autopilot then moves the aircraft towards the
target until it is reached. The land command lowers the aircraft to the ground
and then disengages the rotors. Furthermore, if no commands are given by the
user, the autopilot is required to maintain the aircraft’s current position.

In the following, we will show how we model the high-level aspects (specifi-
cally, the part called the “KI procedures” in the original tum ardrone package)
of this autopilot in AgentSpeak, and how we translate this code in a way that
ensures software considerations for safety critical systems.

3 AgentSpeak

AgentSpeak [29] is an agent-oriented programming language [39] based on the
BDI (Belief–Desire–Intention) model [30, 31]. Thus, in AgentSpeak, the central
notion is that of an agent consisting of beliefs and plans. Agents react to events by
selecting a plan, and plan selection is guided by the type of event and the current
belief state of the agent. Once a plan is selected, it is executed, which can in turn
create new events, change an agent’s beliefs, or execute basic actions available
to the agent. Events can stem from external sources, i.e., the environment, or
internal sources, i.e., the agent itself.

In order to illustrate these concepts, let us consider the example given in
Figure 1, which gives a (simplified) fragment of an autopilot implemented in
AgentSpeak. It gives the plans for an event corresponding to an instruction to
go to a given position.

A typical sequence of execution would look as follows, assuming the UAV
has already taken off and is airborne. An external source, for example the user,
creates a +!goto event with a given target. In this case the first plan is selected,
which subsequently updates the agent’s beliefs about the last set target and
then the agent tries to achieve the goal completeGoto, which in turn creates the
(internal) event +!completeGoto.

For this new event, the latter two plans are relevant. If the UAV’s current
position is close enough to the given target, the third plan is applicable, in
which case a notification to the user is issued (using a basic action provided by
the environment) and nothing else remains to be done, thus leaving the autopilot
ready for handling further events.



+!goto(Target) : takenOff

<- sendHover(); +lastTarget(Target);

!completeGoto.

+!completeGoto : takenOff & myPosition(Pos) & lastTarget(Target)

& not closeEnough(Pos, Target)

<- Movement = calculateMovement(Pos, Target);

sendControl(Movement);

!completeGoto.

+!completeGoto : takenOff & myPosition(Pos) & lastTarget(Target)

& closeEnough(Pos, Target)

<- sendHover(); notifyUser("target reached").

Fig. 1. Plans for the goto case of the autopilot in AgentSpeak.

+!waitForCommand : takenOff & lastTarget(Target)

<- ?myPosition(Pos);

Movement = calculateMovement(Pos, Target);

sendControl(Movement);

!!waitForCommand. // new focus!

Fig. 2. One plan for the waitForCommand case for the autopilot in AgentSpeak.

If the current position is not close enough to the target, the second plan
is applicable. Here, the agent uses two basic actions in order to calculate the
necessary control command and send it to the UAV. Finally, it tries to achieve
the goal completeGoto again, which in turn creates a corresponding event and
leads to the execution of either of the two plans until the target is reached.

Syntactically, we use a variant similar to AgentSpeak(F) as presented in [3].
For convenience, we add assignments as possible formulae. Another addition is
“new focus” goals !!literal, which prove to be useful with the adopted semantics
as explained below. The complete grammar is given in Table 1, where atoms are
predicates or names of basic actions.

We impose one additional restriction that will become clear in view of the
translation target (see Section 4). Roughly speaking, we only allow a restricted
form of “recursion”. In order to explain this, we briefly need to introduce the
following notions. Similar to a call graph, we can create a trigger graph of a
given set of plans indicating which plans may trigger the execution of which
further plans. Note that as in the case of call graphs, this trigger graph is an
overapproximation. We call an atom recursively triggering, if it occurs as the
atom of the triggering event of a plan from which a cycle is reachable in the
trigger graph. In the body of a plan, we allow goals and percepts based on
recursively triggering atoms only to occur as the last formula; any other goal or
percept has to be based on a non-recursively triggering atom.

For an overview of the semantics of AgentSpeak, see [42, 4]. The reasoning
cycle of an AgentSpeak agent works as follows. First, an event to be handled



〈agent〉 ::= 〈beliefs〉 〈initial goal〉 〈plans〉
〈beliefs〉 ::= 〈literal〉. . . . 〈literal〉.
〈initial goal〉 ::= !〈literal〉 .
〈plans〉 ::= 〈plan〉 . . . 〈plan〉
〈plan〉 ::= 〈triggering event〉 : 〈context〉 <- 〈body〉.
〈triggering event〉 ::= 〈percept〉 | +〈goal〉 | -〈goal〉
〈context〉 ::= 〈condition〉 & . . . & 〈condition〉
〈condition〉 ::= true | 〈literal〉 | not( 〈literal〉 )
〈body〉 ::= true | 〈formula〉; . . . ; 〈formula〉
〈formula〉 ::= 〈action〉 | 〈percept〉 | 〈goal〉 | 〈assignment〉
〈action〉 ::= 〈literal〉
〈percept〉 ::= +〈literal〉 | -〈literal〉
〈goal〉 ::= !〈literal〉 | !!〈literal〉 | ?〈literal〉
〈assignment〉 ::= 〈variable〉 = 〈literal〉
〈literal〉 ::= atom( 〈term〉, . . . , 〈term〉 )
〈term〉 ::= variable | unnamed variable | number | string

Table 1. AgentSpeak syntax.

is selected. For this event, all plans that are relevant, i.e., those plans whose
triggering event unifies with the selected event, are found. This selection is then
narrowed down to applicable plans, i.e., those plans whose context evaluates to
true given the agent’s current beliefs. From these applicable plans one plan2 is
selected to be actually executed, creating a so-called intention. Then, from all the
intentions an agent currently has, one is selected to be executed, which means
executing the next formula in the plan body and storing the updated intention
accordingly.

The AgentSpeak architecture allows various customization options, see [42].
In particular, belief revision, event selection, and intention selection can all be
customized. In view of the translation target, we use the following options.

First, events are handled in “run-to-completion” style, i.e., once a plan for
a given event is selected, this plan is run until completed, which also involves
any sub-plans triggered. This behavior can be achieved by using customized
event and intention selection functions. Note that new focus goals !!literal can
be used in order to generate deferred events, i.e., events that do not need to
be handled immediately. Consider for example Figure 2, where this is used to
implement a default behavior in case no user commands are given.

Second, the belief base of an agent can store at most one instance of a literal,
i.e., if an agent holds the belief speed(3), after percept +speed(5), the belief base
is updated to speed(5), and will not contain an additional speed(3). This can
be achieved using an appropriate belief revision function.

2 The default behavior is to select the first applicable plan in textual order.



void next_step(void) {

updateBeliefs();

eventt event = get_next_event();

switch (event.trigger) {

/* ... */

case ADD_ACHIEVE_GOTO:

add_achieve_goto(event.goto_param0); break;

case ADD_ACHIEVE_COMPLETEGOTO:

add_achieve_completeGoto(); break;

/* ... */

}

}

Fig. 3. Selection of relevant plans for the autopilot, translated to C.

void add_achieve_completeTakeOff(int param0) {

if (add_achieve_completeTakeOff_plan0(param0)) { return; }

if (add_achieve_completeTakeOff_plan1(param0)) { return; }

/* ... handle the case where no plan is applicable ... */

return;

}

Fig. 4. Selection of applicable plans, for the completeTakeOff case.

The purpose of these restrictions will be further illuminated in the following
section. Note that even though we are only considering a fragment of Agent-
Speak, it already suffices to model interesting processes, such as the autopilot.

4 Translation

We generally follow the ideas from [3], which present a translation from Agent-
Speak to Promela [19] for the purposes of model checking AgentSpeak. As our
intention is to run the generated code directly on the platform without any
intermediate interpreters, our target language is C. As previously mentioned,
software considerations for airborne systems are regulated by DO-178C [34].
While DO-178C does not prescribe the usage of any particular set of coding
guidelines, MISRA C [23], or very similar rulesets, has become de-facto standard
for safety-critical embedded software. We thus aim for our generated code to
comply with the rules imposed by this standard, which prohibits recursion and
dynamically allocated memory.

The syntactic restrictions and semantic customizations as introduced in the
previous section directly relate to these restrictions. The restriction on “recur-
sion” and the “run-to-completion” semantics give us a limit on the depth of the
call stack, eliminate the need for handling and storing multiple intentions, and,
furthermore, also limit the number of events generated internally to at most one
per deliberation cycle. Thus, we only need to store at most two events, one event



bool add_achieve_goto_plan0(positiont param0) {

positiont Target = param0;

if (!takenOff_set) { return false; }

sendHover();

lastTarget_set = true;

lastTarget_param0 = Target;

internal_achieve_completeGoto();

return true;

}

Fig. 5. Translation of the goto plan from Figure 1 into C.

bool add_achieve_waitForCommand_plan1(void) {

if (!takenOff_set) { return false; }

if (!lastTarget_set) { return false; }

positiont Target = lastTarget_param0;

if (!myPosition_set) {

/* ... achieve test goal or handle plan failure ... */

}

positiont Pos = myPosition_param0;

control_commandt Movement = calculateMovement(Pos, Target);

sendControl(Movement);

internal_achieve_new_focus_waitForCommand();

return true;

}

Fig. 6. Translation of the waitForCommand plan from Figure 2 into C.

that needs to be run to completion,3 and, possibly, a deferred event. Our custom
belief revision allows us to model the belief base using one single variable per
literal (plus an additional flag that indicates whether it is set or not), again not
requiring dynamic memory. Note also that the restriction on “recursion” gives
natural break points to segment long runs to completion into smaller parts, thus
ensuring the reactivity of the translated program.

The translation proceeds in three main stages. First of all, the AgentSpeak
program and an accompanying configuration file are parsed. Then, the parsed
program is analyzed, e.g., determining the recursively triggering atoms. Finally,
the actual translation takes place, which we will outline below.

Due to space limitations it is not possible to give all details,4 but the following
examples should provide all relevant ideas. At the core of the translated code
lies the next_step() function corresponding to one step in the agent’s reasoning
cycle. First of all, the hook updateBeliefs() allows the environment to update
the agent’s belief state, if required. Then, the next event is selected. Here, the
rtc event is given preference over the deferred event. Then a relevant plan is
selected, as illustrated in Figure 3. Subsequently, the first applicable plan (in

3 We will call this the rtc event in the following.
4 The full code is available at [6].
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Fig. 7. Experimental setup.

order of textual appearance) is selected and executed, see Figure 4 for a concrete
instance. Note that this would also allow for the inclusion of error handling in
case no plan is applicable (cf. [4]).

The translation of the plans themselves is illustrated in Figures 5 and 6.
First, a plan tests for its own applicability, instantiating variables along the
way, if necessary. Basic actions and assignments translate directly to their C
counterparts. Percepts set or unset the corresponding variables in the belief
base, and test goals read the corresponding variable on belief bases.

Achievement goals require a more elaborate handling, distinguishing three
different cases. Non-recursively triggering achievement goals call their relevant
plan selection method directly. Recursively triggering achievement goals create a
new rtc event, thus guaranteeing it will be handled next. New focus achievement
goals create a deferred event, thus allowing for rtc events to be handled before
them. Note that external events are created as rtc events and can only be created
if there is currently no rtc event set. Otherwise, the creation of the external event
has to wait until the current rtc event has finished. However, one might image
more elaborate versions where certain external events can pre-empt internal rtc
events.

5 Experimental Setup

We evaluated the generated code on the tum simulator package [20] and a
Parrot AR.Drone 2.0 using the Robot Operating System (ROS) [28, 33] version
Hydro Medusa with the tum ardrone package [13, 14]. The availability of the



tum simulator facilitated rapid prototyping and development of the transla-
tor, as translated code could be easily tested without the need of an extensive
experimental setup. Due to the modular nature of ROS, switching to the actual
platform was a straightforward operation.

It is important to note that the generated code is not specific to ROS.5

Thus, it is necessary to provide wrapper code acting as an interface between
ROS and the generated code, translating user commands into AgentSpeak events
and providing the basic actions required by the AgentSpeak code. The original
tum ardrone package already uses a similar arrangement, consisting of three
components, namely the autopilot node, a PID controller for low-level control,
and so-called “KI procedures” for the high-level control. For our experiments,
we replaced these KI procedures with our generated code and we modified the
autopilot node accordingly. The complete setup is illustrated in Figure 7. In
addition to the autopilot node, a simple user interface for the input of flight
plans is provided. Furthermore, a state estimation node is used to track the
current position of the UAV based on navigation data and the video feed.

We have tested various flight plans composed of the three basic commands
takeoff, goto and land. We compared our autopilot to the original tum ardrone

autopilot and have confirmed analogue behavior.

On the technical side, the AgentSpeak code for the autopilot uses about
70 lines of code and generates about 700 lines of C code compared to the about
300 lines of C++ code of the original KI procedures. This shows that Agent-
Speak allows a much more compact representation of the high-level behavior
of the autopilot, making the code easier to maintain and extend. The modified
tum ardrone package is available online [7], where detailed instructions regard-
ing installation are also provided.

6 Conclusions and Future Work

We discuss using AgentSpeak as a modeling language for the high-level deci-
sion making of UAVs. This model can then be automatically translated into
C, thus bridging the gap between the high-level decision making and the low-
level control code. The abstract model in AgentSpeak reduces the complexity of
the code and is flexible for maintenance and further extensions. The automatic
translation removes possible errors that can be introduced when mixing these
high-level aspects directly into the low-level control code and complies with the
safety regulations for UAVs. As an example, we show how the autopilot of the
tum ardrone package can be easily modeled in AgentSpeak and how the gen-
erated C code can be directly used in real world platforms, such as a Parrot
AR.Drone. We also remark that this approach is not restricted solely to UAVs,
but can be adapted to various other autonomous systems.

5 While it would be possible to generate ROS code directly, we chose a more general
solution, such that the generated code can also be used in settings that are not based
on ROS.



Future research includes identifying fragments of AgentSpeak that are more
expressive while still allowing translation with the given restrictions (cf. [38]).
This also includes adequate methods for static analysis and testing, as typically
required for safety certification, an essential criteria for the practical usage of
UAVs. Formal methods (cf. [35]) complement these approaches and we plan to
verify safety properties of the AgentSpeak model by implementing the opera-
tional semantics in term rewrite systems like [32, 12]. We also plan to validate
the translation from AgentSpeak to C code with the assistance of CBMC [8], a
bounded model checker for C. Translation validation [26, 37, 40, 36] is a common
approach to guarantee that the semantics of the high-level model are preserved
in the translated code. Overall, this will guarantee that the safety properties
established for the AgentSpeak model can be transferred to the translated code,
thereby guaranteeing the required traceability of requirements.

For example, consider [25] stating “[. . . ] satisfying control of the AR.Drone 2.0
is reached by sending the AT-commands every 30 ms [. . . ]”.6 Using [41], one
could establish the worst-case execution time of the translated code. On the
other hand, the statement that in every deliberation cycle one of the aforemen-
tioned basic actions is executed can be easily formalized in linear temporal logic
using BDI primitives. This property could then be checked on the AgentSpeak
code using the approach mentioned above. Using the translation validation would
then allow us to combine these facts, thus establishing the given requirement.

As a final note, the separation of high-level and low-level concerns allows
reusing results on both ends of the translation. For example, one might use
Jason [5] (with appropriate custom semantics) as a simulation environment for
prototyping. Also, the formal verification on the AgentSpeak is not restricted to
BDI properties, but, as outlined in [10] various other options, e.g., probabilistic
properties can also be considered, thus allowing even more flexibility.
Acknowledgments: This work was supported by Engineering and Physical
Sciences Research Council (EPSRC) grant EP/J012564/1.
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