From AgentSpeak to C for Unmanned Aerial Vehicles

Samuel Bucheli^a

Department of Computer Science University of Oxford

May 28, 2015

^ajoint work with Daniel, Ruben, and Ashutosh

In this Talk

- autonomous agents as hybrid systems,
- safety considerations: DO-178C and MISRA C,
- AgentSpeak as a modeling language for high-level behavior,
- from AgentSpeak to C: examples and experiments,
- further work: translation validation.

Autonomous Agents

hybrid system

Autonomous Agents

hybrid system

Autonomous Agents

hybrid system

DO-178C

Software Considerations in Airborne Systems and Equipment Certification

image based on http://en.wikipedia.org/wiki/DO-178C

MISRA C

. . .

. . .

. . .

Motor Industry Software Reliability Association

16.2 (req) Functions shall not call themselves, either directly or indirectly.

20.4 (req) Dynamic heap memory allocation shall not be used.

The Autopilot

image from http://fly.historicwings.com/2012/08/george-the-autopilot/

takeoff goto 0 0 1 0 goto 1 0 1 0 goto 1 1 1 0 goto 0 1 1 0 goto 0 0 1 0

land

engage rotors, bring aircraft to altitude

goto0010goto10110goto01110goto0010

land

land

AgentSpeak

event

- : condition & condition & ... & condition
- <- formula;
 - formula;
 - •••
 - formula.

event

: condition & condition & ... & condition

Plans, concretely

+!goto(Target) : takenOff

```
<- sendHover();
+lastTarget(Target);
!completeGoto.
```

+!completeGoto

- : takenOff & myPosition(Pos)
 - & lastTarget(Target) & not closeEnough(Pos, Target)
- <- Movement = calculateMovement(Pos, Target); sendControl(Movement); !completeGoto.

+!completeGoto

- : takenOff & myPosition(Pos)
 & lastTarget(Target) & closeEnough(Pos, Target)
 retifulger("target reached")
- <- notifyUser("target reached").

Our Customization

- "run-to-completion" style scheduling,
- only "tail recursion" allowed,
- belief base holds at most one instance of a literal

Translation

Relevant Plans Selection

```
void next_step(void) {
 updateBeliefs();
 eventt event = get next event();
 switch (event.trigger) {
   /* ... */
   case ADD ACHIEVE GOTO:
     add achieve goto(event.goto param0);
     break:
   case ADD_ACHIEVE_COMPLETEGOTO:
     add_achieve_completeGoto();
     break;
   /* ... */
```

Translation

Applicable Plan Selection

```
void add_achieve_goto(positiont param0) {
   /* try first plan */
   if (add_achieve_completeGoto_plan0()) {
    return;
   }
   /* try second plan */
   if (add_achieve_completeGoto_plan1()) {
    return;
   }
}
```

/* ... handle the case where no plan is applicable ... */

return;

}

Translation

Plans

Experimental Setup

autopilot

😣 🗇 🗇 tum_ardrone GUI		S 😑 🗉 PTAM Drone Map View
Autopilot takeOf geto 0 0 0 goto 1 1 0 goto 0 1 0 goto 0 1 0 goto 0 0 1 0 land	Node Communication Status Drone Kavida: 202 H2 Drone Control: 0 H2 Pose Estimates: 31 H2 Pings (PTI: 999 (SOOB), 999 (20kB) Motors: 0.000000 0.000000 0.0000000 1 Autopliot Status:	
Load File: test.txt : [Clear and Send] Clear Send Manual Land Takeoff Togglestate FlatTrim ToggleCa Massane	Stateestimation Status: PTAN-tidle Map:- Scale: 1000 (1 in, 0 out), acc 0.51 ScaleFixobin: FXX Drow Status: Landed (100 Battery) Control Source: Autopilot @ None m @ Ping Drone (every 1s)	Dree Baei 192-(6.06, 822, 0.4), 192-(6.22) 523, -6.09
r Pfah has been reset. Video resultuine (da x 160 Load File /home/ros/catkin_ws/src/turm_ardrone/flightPlans/test.txt		

Future Work

A Simple Translation Validation

Conclusions

- translation from agent-oriented programming language to low-level language + translation validation = traceability
- what is the sweet spot for agent-oriented programming languages: expressivity vs. translatability?
- translation validation?