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Motivation

Software most complex component of critical systems

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 4



Motivation

I Manual inspection is error-prone and costly
⇒ Tool support needed

I Tools that rely on test-vectors
I require human expertise;
I may miss bugs.
I are too labour-intensive for most projects
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More detail here:

Vijay D’Silva, Daniel Kroening, Georg
Weissenbacher,
“A Survey of Automated Techniques for Formal
Software Verification”,
IEEE Transactions on Computer Aided Design

http://www.kroening.com/papers/tcad-sw-2008.pdf

http://www.kroening.com/papers/tcad-sw-2008.pdf


IEEE TCAD? Isn’t that a hardware journal?

I Tool-market in HW-design is well established
(∼ 4 Bn. US$/year)

I It’s normal to buy tools to improve design productivity

I Trend towards HW/SW co-verification

I EDA vendors are getting interested in this market!
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Some History

Mathematical reasoning about programs is the oldest thing in computer
science!

70s:
I Hoare, Dijkstra, ...: prove programs correct!
I Idea: prove your program correct wrt a specification
I Or: write a specification, and refine it into a program

I Typically considered too expensive for most programs!
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Context: The Verifying Compiler

Tony Hoare

The Verifying Compiler:
a Grand Challenge for
Computing Research
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What Kind of Software?

State { int created = 0; }

IoCreateDevice.exit {
if ($return==STATUS SUCCESS)
created = 1;

}

IoDeleteDevice.exit { created = 0; }

fun AddDevice.exit {
if (created && (pdevobj->Flags &

DO DEVICE INITIALIZING) != 0) {
abort "AddDevice routine failed to set "

"˜DO DEVICE INITIALIZING flag";
}

}

�
�	

Bit-wise AND

An Invariant of Microsoft Windows Device Drivers
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Example of a Program Verifier

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 11



What?

I Research on software quality is very broad

I We focus on techniques that:

1. prove a guarantee, in theory and practice.
2. are highly automated and scale reasonably

well.

I We do not aim at a full specification

→ Do ‘absence of specific bugs’
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What?

Therefore won’t talk about:

8 random testing and automatic test vector generation
(usually not complete)

8 Unit testing (not automatic)

8 Refinement techniques

8 Tools that require annotation (ESC/Java etc.)

8 State enumeration (incomplete)
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What?

“Things like even software verification, this has been the
Holy Grail of computer science for many decades, but now

in some very key areas, for example, driver verification
we’re building tools that can do actual proof about the

software and how it works in order to guarantee the
reliability.”

Bill Gates, April 18, 2002
Keynote address at WinHec 2002
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What?

“One of the least visible ways that Microsoft Research contributed
to Vista, but something I like to talk about, is the work we did on
what’s called the Static Driver Verifier. People who develop device
drivers for Vista can verify the properties of their drivers before

they ever even attempt to test that. What’s great about this
technology is there is no testing involved. For the properties that

it is proving, they are either true or false.
You don’t have to ask yourself

“Did I come up with a good test case or not?”

Rick Rashid, Microsoft Research chief
father of CMU’s Mach Operating System (Mac OS X)

news.cnet.com interview, 2008
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What?

“This change is going to have dramatic impact over the next
five to 10 years, as we begin to bring these proof tools to bear on
larger and larger problems in the software space. We are already
doing research on saying, “How would you create an operating

system environment from scratch, knowing that you have this kind
of proof technology available?”

Rick Rashid
news.cnet.com interview, 2008
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Static Analysis

Basic Idea

Efficiently compute approximate but sound
answers.

I Found in compilers for decades
I “Approximate but sound”: e.g., compute superset of values
I Problem becomes decidable
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Reading

Model Checking
Clarke/Peled/Grumberg

Decision Procedures
Kroening/Strichman
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Part I: Basic principles

1. Propositional SAT
2. Bit-level circuit verification with SAT

3. Word-level modelling (Verilog, VHDL, SystemC, C/C++)
4. Word-level reasoning with SMT-AUFBV
5. Word-level verification: BMC, k-induction, interpolation

6. Outlook
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Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level
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Part II: Verification methodologies for application in practice

1. Requirements Analysis Case-Study
I automotive
I state charts

2. Verifying an RTL HW IP block against a C specification

3. Microprocessor case-study
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SAT

SAT (Satisfiability) the classical NP-complete problem:

Given a propositional formula f over n propositional variables
V = {x, y, . . .}.

Is there are an assignment σ : V → {0, 1} with σ(f) = 1 ?
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Motivation
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Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1 ∧ C2 ∧ . . . ∧ Cn

each clause C is a disjunction of literals

C = L1 ∨ . . . ∨ Lm

and each literal is either a plain variable x or a negated variable x.

Example (a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)
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Tseitin Transformation: Circuit to CNF

c

b

a

w

u
o

w

v

y

x

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∨ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

o ∧ (x→ a) ∧ (x→ c) ∧ (x← a ∧ c) ∧ . . .

o ∧ (x ∨ a) ∧ (x ∨ c) ∧ (x ∨ a ∨ c) ∧ . . .
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Algorithmic Description of Tseitin Transformation

Tseitin Transformation

1. For each non-input signal s: generate a new variable xs
2. For each gate: produce input / output constraints as clauses
3. Collect all constraints in a big conjunction
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Algorithmic Description of Tseitin Transformation

I The transformation is satisfiability-preserving:
the result is satisfiable iff and only the original formula is satisfiable

I You an get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables

I Not equivalent in the classical sense to original formula:
it has new variables
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Tseitin Transformation: Input / Output Constraints

Negation: x↔ y⇔ (x→ y) ∧ (y → x)
⇔ (x ∨ y) ∧ (y ∨ x)

Disjunction: x↔ (y ∨ z)⇔ (y → x) ∧ (z → x) ∧ (x→ (y ∨ z))
⇔ (y ∨ x) ∧ (z ∨ x) ∧ (x ∨ y ∨ z)

Conjunction: x↔ (y ∧ z)⇔ (x→ y) ∧ (x→ z) ∧ ((y ∧ z)→ x)

⇔ (x ∨ y) ∧ (x ∨ z) ∧ ((y ∧ z) ∨ x)
⇔ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z ∨ x)

Equivalence: x↔ (y ↔ z)⇔ (x→ (y ↔ z)) ∧ ((y ↔ z)→ x)
⇔ (x→ ((y → z) ∧ (z → y)) ∧ ((y ↔ z)→ x)
⇔ (x→ (y → z)) ∧ (x→ (z → y)) ∧ ((y ↔ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ ((y ↔ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ (((y ∧ z) ∨ (y ∧ z))→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ ((y ∧ z)→ x) ∧ ((y ∧ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ (y ∨ z ∨ x) ∧ (y ∨ z ∨ x)
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Optimizations for the Tseitin Transformation

I Goal is smaller CNF (less variables, less clauses)

I Extract multi argument operands
(removes variables for intermediate nodes)

I NNF: half of AND, OR node constraints may be removed due to
monotonicity

I use sharing
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Example SAT: Circuit Equivalence

formula:

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∨ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

number assignment:

variable number
o 1
a 2
c 3
x 4
b 5
y 6
u 7
v 8
w 9

Simply in order of
occurrence.
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Example SAT: Circuit Equivalence

formula clauses DIMACS
o o 1 0
x↔ a ∧ c a ∨ x 2 -4 0

c ∨ x 3 -4 0
a ∨ c ∨ x -2 -3 4 0

y ↔ b ∨ x x ∨ y -4 6 0
b ∨ y -5 6 0
x ∨ b ∨ y 4 5 -6 0

u↔ a ∨ b a ∨ u -2 7 0
b ∨ u -5 7 0
a ∨ b ∨ u 2 5 -7 0

v ↔ b ∨ c b ∨ v -5 8 0
c ∨ v -3 8 0
b ∨ c ∨ v 5 3 -8 0

w ↔ u ∧ v u ∨ w 7 -9 0
...
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Example SAT: Circuit Equivalence

Let’s change the circuit!

a

b

c

w

v

w

u
o

x

y

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∧ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

Is the CNF satisfiable?
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Example SAT: Circuit Equivalence

I Output of the SAT solver:
SATISFIABLE
1 2 3 4 -5 -6 7 8 9

I Values of the variables:

variable number value
o 1 1
a 2 1
c 3 1
x 4 1
b 5 0
y 6 0
u 7 1
v 8 1
w 9 1

I Caveat: there is more than one solution
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Example SAT: Circuit Equivalence

Satisfying assignment mapped to the circuit:

c=1

a=1

b=0

o=1

v=1

u=1

w=1
w

x=1

y=0
variable value

o 1
a 1
c 1
x 1
b 0
y 0
u 1
v 1
w 1
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Binary Search
Formula:

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

xDecision

(y) ∧ (¬y ∨ z) ∧ (¬y ∨ ¬z)

Impli-
cation

y

(z) ∧ (¬z)

z

FE

1

¬z

F

Backtrack¬y

F

¬x

(y ∨ z) ∧ (¬y ∨ z)

Decision z

X

{x 7→ 0, z 7→ 1}
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Notation

Given the partial assignment

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

(x1 ∨ x3 ∨ ¬x4) is satisfied
(¬x1 ∨ x2) is conflicting
(¬x1 ∨ ¬x4 ∨ x3) is unit
(¬x1 ∨ x3 ∨ x5) is unresolved.
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Basic DPLL

1: function DPLL
2: if BCP() = ‘conflict’ then return ‘Unsatisfiable’;
3: while (TRUE) do
4: if ¬DECIDE() then return ‘Satisfiable’;
5: else
6: while (BCP() = ‘conflict’) do
7: backtrack-level := ANALYZE-CONFLICT();
8: if backtrack-level < 0 then
9: return ‘Unsatisfiable’;

10: else
11: BACKTRACK(backtrack-level);

I DECIDE: Choose next variable and value
I BCP: Propagate implications of unit clauses
I ANALYZE-CONFLICT: Determine backtracking level
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Basic DPLL

full

conflict

SAT

UNSAT

dl ≥ 0

BackTrack

Analyze-
Conflict

BCP
conflict
no

partial
assignment

Decide

assignment
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Notation

I We organize the search in form of a decision tree
I Each node corresponds to a decision

(no implied assignments in the tree)

I Def.: the depth of the node is the decision level
I x@d means that x is set to 1 at level d
I ¬x@d means that x is set to 0 at level d
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Example I

Formula
ω1 : (x2 ∨ x3)
ω2 : (¬x1 ∨ ¬x4)
ω3 : (¬x2 ∨ x4)�

�
�
�
�
�

yix1
¬x1@1

�
�
�
�
�
�

yix2
¬x2@2

(BCP) x3@2

{x1 = 0, x2 = 0, x3 = 1}

A
A
A
A
A
A
A
A
A
A
A

yix1
x1@1
(BCP) ¬x4@1, ¬x2@1, x3@1

{x1 = 1, x2 = 0, x3 = 1}

No backtracking needed for this example,
regardless of the decision!
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Example II

Formula
ω1 : (x2 ∨ x3)
ω2 : (¬x1 ∨ ¬x4)
ω3 : (¬x2 ∨ x4)
ω4 : (¬x1 ∨ x2 ∨ ¬x3)

�
�
�
�
�
�
�
�
�
�
�

yix1
x1@1

(BCP) ¬x4@1
(BCP) ¬x2@1

(BCP) x3@1

ConflictE

1

A
A
A
A
A
A

yix1
¬x1@1

A
A
A
A
A
A

yix2
¬x2@2
(BCP) x3@2

{x1 = 0, x2 = 0, x3 = 1}
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Decision Heuristics: DLIS

DLIS (Dynamic Largest Individual Sum)
choose the assignment that increases the number of satisfied clauses
the most

I For every literal l, compute the number of unresolved clauses C(l)
that contain l

I This is the same as
C(l) =

∑
l∈ω,ω∈ϕ

1

I Make decision l that maximizes C(l)
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Decision Heuristics: JW

Jeroslow-Wang method
For every literal l, compute:

J(l) =
∑

l∈ω,ω∈ϕ

2−|ω|

I |ω| is the length of the clause (count the literals)
I Make decision l that maximizes J(l)

I This gives exponentially higher weight to literals in shorter clauses
I Can be dynamic (only for unresolved clauses) or static (J(l)

computed upfront)
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I We will see other (more advanced) decision heuristics soon.
I These heuristics are integrated with a mechanism called

learning with conflict clauses, which we discuss next.
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Implication Graphs

The implication graph tracks how assignments are implied.

Definition (Implication graph)

An implication graph is a labeled directed acyclic graph G = (V,E) where

I V : literals of the current partial assignment.
Labeled with the literal and the decision level.

I E: labeled with the clause that caused the implication.

I Can also contain a single conflict node labeled with κ and incoming
edges labeled with some conflicting clause.
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A Small Implication Graph Example

Current truth assignment: {¬x1@1}

Decision: x2@2

Clauses
ω1 =( ¬x2 ∨ x3 )
ω2 =(x1 ∨ ¬x3 ∨x4)

¬x1@1
t����3ω2

x2@2

t -ω1

Q
Q
QQs

ω2

x4@2

tdx3@2

td
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Implication Graphs and Learning

Current truth assignment: {¬x9@1, ¬x10@3, ¬x11@3, x12@2, x13@2}

Decision: x1@6

Clauses
ω1 = (¬x1 ∨ x2 )
ω2 = (¬x1 ∨ x3 ∨ x9)
ω3 = (¬x2 ∨¬x3 ∨ x4)
ω4 = (¬x4 ∨ x5 ∨ x10)
ω5 = (¬x4 ∨ x6 ∨ x11)
ω6 = (¬x5 ∨¬x6 )
ω7 = ( x1 ∨ x7 ∨¬x12)
ω8 = ( x1 ∨ x8 )
ω9 = (¬x7 ∨¬x8 ∨¬x13)
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)

¬x9@1
t����3ω2

x1@6

t����3ω1

Q
Q
QQsω2

ω5�
�
��3

¬x11@3
t

ω4

�
�
��3

ω5

Q
Q
QQs

x4@6td
ω4Q
Q
QQs

¬x10@3t
tdκ

Conflictω3�
�
��3

x3@6

td
ω3Q
Q
QQs

x2@6td
ω6�
�
��3

x6@6

td
ω6Q
Q
QQs

x5@6td

We learn the conflict clause
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)
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Backtracking
What now?
⇒ Flip the decision, i.e., ¬x1@6

Clauses
ω1 =(¬x1 ∨ x2 )
ω2 =(¬x1 ∨ x3 ∨ x9)
ω3 =(¬x2 ∨¬x3 ∨ x4)
ω4 =(¬x4 ∨ x5 ∨ x10)
ω5 =(¬x4 ∨ x6 ∨ x11)
ω6 =(¬x5 ∨¬x6 )
ω7 =( x1 ∨ x7 ∨¬x12)
ω8 =( x1 ∨ x8 )
ω9 =(¬x7 ∨¬x8 ∨¬x13)
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)

x12@2
t����3ω7

¬x1@6

t����3ω8

Q
Q
QQsω7

tdκ′
Conflict

ω4

?

x13@2t

ω9�
�
��3

x7@6

td
ω9Q
Q
QQs

x8@6td

Another conflict clause:
ω11 = (¬x13 ∨ ¬x12 ∨ x1)

But where should we backtrack now? 5?
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Non-Chronological Backtracking

I So the rule is:

backtrack to the largest decision level in the conflict
clause.

I This works for both the initial conflict and
any conflict after the flip.
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More Conflict Clauses

I Def.: A conflict clause is any clause implied by the formula

¬x9@1
t����3ω2

x1@6

t����3ω1

Q
Q
QQsω2

ω5�
�
��3

¬x11@3
t

ω4

�
�
��3

ω5

Q
Q
QQs

x4@6td
ω4Q
Q
QQs

¬x10@3t
tdκ

Conflictω3�
�
��3

x3@6

td
ω3Q
Q
QQs

x2@6td
ω6�
�
��3

x6@6

td
ω6Q
Q
QQs

x5@6td ¬x1 ∨ x9 ∨ x10 ∨ x11

¬x2 ∨ ¬x3 ∨ x10 ∨ x11

¬x4 ∨ x10 ∨ x11

I Let L be a set of literals labeling nodes that form a cut in the
implication graph, separating the conflict node from the roots

I Claim:
∨
l∈L l is a conflict clause
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More Conflict Clauses

I How many clauses should we add?

I If not all, then which ones?
I The shorter ones?
I Check their influence on the backtracking level ?
I The “most influental”?

I Common answer:
I Asserting clauses
I Unique implication points (UIPs)
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Conflict Clauses and Resolution

I Binary Resolution is a sound inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)
(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

We say that we resolve on β

I Example:

(x1 ∨ x2) (¬x1 ∨ x3 ∨ x4)
(x2 ∨ x3 ∨ x4)

I Also complete
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Decision Heuristics: VSIDS

VSIDS (Variable State Independent Decaying Sum)

1. Each variable in each polarity has a counter initialized to 0.

2. When a clause is added, the counters are updated.

3. The unassigned variable with the highest counter is chosen.

4. Periodically, all the counters are divided by a constant.

⇒ variables appearing in recent conflicts
get higher priority
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Decision Heuristics: VSIDS

I Keep a list of variables/polarities

I Updates only needed when adding a conflict clause

I Decisions are made in constant time (how?)
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Decision Heuristics: VSIDS

VSIDS is a ‘quasi-static’ strategy:

I static as it does not depend on the current assignment
I dynamic as the weights change over time

VSIDS is called a conflict-driven decision strategy.

”...this strategy dramatically (i.e., an order of
magnitude) improved performance...”
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Decision Heuristics: Berkmin

I Keep conflict clauses in a stack

I Choose the first unresolved clause in the stack
If the stack is empty, use VSIDS

I Choose a variable + value from this clause
according to some scoring (e.g., VSIDS)

I This gives absolute priority to conflicts.
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Propo-
sitional

SAT
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decision procedures verification engines

bit-level

word-level
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Bounded Model Checking

[BiereCimattiClarkeZhu99]

I Uses SAT for model checking
I Historically not the first symbolic model checking approach
I But scales better than original BDD-based techniques

I Mostly incomplete in practice
I Focus on counterexample generation
I Only counterexamples up to given length (the bound k) are searched
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Bounded Model Checking for Safety

Checking safety property Gp for a bound k as SAT problem:

∨∨ ∨ ∨¬p
sk. . .s2s1s0

¬p¬p¬p¬p

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧
k∨
i=0

¬p(si)

Check occurrence of ¬p in the first k states
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Time Frame Expansion in HW

inputs

observed signals
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Bounded Model Checking Safety in HW

!prop4

inputs

failed

!prop0 !prop1 !prop2 !prop3

find inputs for which failed becomes true
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Visualizing Bounded Model Checking

Nodes: variables,
edges: clauses
(binary clauses are red)

k = 12,
bounded cone-of-influence
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Bounded Model Checking for Liveness

Generic counterexample trace of length k for liveness Fp

sl

¬p ¬p ¬p ¬p ¬p

s0 s1 . . . sl+1 sk

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk, sk+1) ∧
k∨
l=0

sl = sk+1 ∧
k∧
i=0

¬p(si)
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Bounded Model Checking Liveness in HW

CMP

!prop4

inputs

failed
sel

!prop2!prop1!prop0 !prop3

find inputs for which failed becomes true
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Completeness in Bounded Model Checking

I Find bounds on the maximal length of counterexamples
I also called completeness threshold
I exact bounds are hard to find⇒ approximations

I Induction
I use inductive invariants

I Use SAT for quantifier elimination as with BDDs
I then model checking becomes fixpoint calculation
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Measuring Distances

Distance: length of shortest path between two states

δ(s, t) ≡ min{n | ∃s0, . . . , sn[s = s0, t = sn and
n−1∧
i=0

T (si, si+1)]}

(distance can be infinite if s and t are not connected)
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Measuring Distances

Diameter: maximal distance between two connected states

d(T ) ≡ max{δ(s, t) | T ∗(s, t)}

(recall that T ∗ is the transitive reflexive closure of T ).
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Measuring Distances

Reachable Diameter: maximal distance between two reachable states
(R)

d(T ) ≡ max{δ(s, t) | T ∗(s, t) ∧R(s) ∧R(t)}

Initialized Diameter: the maximal distance from an initial state to a
reachable state

r(T, I) ≡ max{δ(s, t) | T ∗(s, t) and I(s) and
δ(s, t) ≤ δ(s′, t) for all s′ with I(s′)}

(minimal number of steps to reach an arbitrary state in BFS;
sometimes called radius)
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Diameters Illustrated

unreachable states

single state with distance 2 from initial states

initial states

states with distance 1 from initial states

8

1

2 3

4

5 6

9

7

0

diameter 4, initialized diameter 2,
reachable diameter 3
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Completeness Thresholds for Safety

I A bad state is reached in at most dI steps from the initial states

I Thus, the (initialized/reachable) diameter is a completeness
threshold for Gp

I Thus, for Gp, the max. k req. for BMC is the diameter

I If no counterexample of this length can be found the property holds
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How to Determine the Diameter?

Reformulation:
The initialized diameter is the max. length d of a path leading from an
initial state to a state t, such there is no other path from an initial state to
t with length less than d.
Thus d is the minimal number that makes the following formula valid:

∀s0, . . . , sd+1[ (I(s0)∧
d∧
i=0

T (si, si+1))⇒

∃ n ≤ d [ ∃t0, . . . , tn[ I(t0) ∧
n−1∧
i=0

T (ti, ti+1) ∧ tn = sd+1 ] ] ]

After replacing ∃ n ≤ d . . . by
∨d
n=0 . . . we get a Quantified Boolean

Formula (QBF), which is hard to decide (PSPACE complete).
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Visualization of Reformulation

∃

∀

td−1

initial states

s0

t0

s1 sdsd−1

(td = sd+1)

t1

sd+1

(we allow ti+1 to be identical to ti in the lower path)
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Reoccurrence Radius/Diameter

I We cannot compute the diameter with SAT efficiently

I Overapproximation idea:
I drop requirement that there is no shorter path
I enforce different (no reoccurring) states on single path instead

Reoccurrence diameter:
length of the longest path without reoccurring states
(sometimes called circumfence)

Initialized reoccurrence diameter:
length of the longest initialized path without reoccurring states
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Computing the Reoccurrence Diameter

Reformulation:
The reoccurrence diameter is the length of the longest path from initial
states without reoccurring states (one may further assume that only the
first state is an initial state)

This is the minimal d that makes the following formula valid:

∀s0, . . . , sd+1[ (I(s0) ∧
d∧
i=0

T (si, si+1)) ⇒
∨

0≤i<j≤d+1

si = sj ]

This is a propositional formula and can be checked by SAT!

(exercise: reoccurrence diameter is an upper bound for diameter)
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Bad Example for Reoccurrence Radius

1

0

2 n

Initialized diameter 1,
initialized reoccurrence diameter n
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Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level
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SMT-BVAUF

What is SMT?
What is SMT-BVAUF?

SMT = Satisfiability modulo theories

BVAUF = Bit-vectors and arrays and uninterpreted functions

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 78



Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

State { int created = 0; }

IoCreateDevice.exit {
if ($return==STATUS SUCCESS)
created = 1;

}

IoDeleteDevice.exit { created = 0; }

fun AddDevice.exit {
if (created && (pdevobj->Flags & DO DEVICE INITIALIZING) != 0)

{
abort "AddDevice routine failed to set "

"˜DO DEVICE INITIALIZING flag";
}

}

�
�	

Bit-wise AND

An Invariant of Microsoft Windows Device Drivers
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Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

I We need bit-vector logic – with bit-wise operators, arithmetic
overflow

I We want to scale to large programs – must verify large formulas
I Examples of program analysis tools that generate bit-vector

formulas:
I CBMC
I SATABS
I F-Soft (NEC)
I SATURN (Stanford, Alex Aiken)
I EXE (Stanford, Dawson Engler, David Dill)
I Variants of those developed at IBM, Microsoft
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Bit-Vector Logic: Syntax

formula : formula ∨ formula | ¬formula | atom

atom : term rel term | Boolean-Identifier | term[ constant ]

rel : = | <
term : term op term | identifier | ∼ term | constant |

atom?term:term |
term[ constant : constant ] | ext( term )

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

I ∼ x: bit-wise negation of x
I ext(x): sign- or zero-extension of x
I x << d: left shift with distance d
I x ◦ y: concatenation of x and y
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Semantics

Danger!

(x− y > 0) ⇐⇒ (x > y)

Valid over R/N, but not over the bit-vectors.
(Many compilers have this sort of bug)
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Width and Encoding

I The meaning depends on the width and encoding of the variables.
I Typical encodings:

I Binary encoding

〈x〉U :=

l−1∑
i=0

ai · 2i

I Two’s complement

〈x〉S := −2n−1 · an−1 +

l−2∑
i=0

ai · 2i

I But maybe also fixed-point, floating-point, . . .
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Examples

〈11001000〉U = 200

〈11001000〉S = −128 + 64 + 8 = −56

〈01100100〉S = 100
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Width and Encoding

Notation to clarify width and encoding:

x[32]S

�
��

Width in bits
@
@I

U: unsigned binary
S: signed two’s complement
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Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length l:

b : {0, . . . , l − 1} −→ {0, 1}

The value of bit number i of x is x(i).

︸ ︷︷ ︸
l bits

b0b1b2bl−1 bl−2

We also write xi for x(i).
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Lambda-Notation for Bit-Vectors

λ expressions are functions without a name

Examples:

I The vector of length l that consists of zeros:

λi ∈ {0, . . . , l − 1}.0

I A function that inverts (flips all bits in) a bit-vector:

bv -invert(x) := λi ∈ {0, . . . , l − 1}.¬xi

I A bit-wise OR:

bv -or(x, y) := λi ∈ {0, . . . , l − 1}.(xi ∨ yi)

=⇒ we now have semantics for the bit-wise operators.
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Example

(x[10] ◦ y[5])[14] ⇐⇒ x[9]

I This is translated as follows:

x[9] = x9

(x ◦ y) = λi.(i < 5)?yi : xi−5

(x ◦ y)[14] = (λi.(i < 5)?yi : xi−5)(14)

I Final result:
(λi.(i < 5)?yi : xi−5)(14) ⇐⇒ x9
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Semantics for Arithmetic Expressions

What is the output of the following program?

unsigned char number = 200;
number = number + 100;
printf("Sum: %d\n", number);

On most architectures, this is 44!

11001000 = 200
+ 01100100 = 100
= 00101100 = 44

=⇒ Bit-vector arithmetic uses modular arithmetic!
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Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

a[l] +U b[l] = c[l] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l

a[l] −U b[l] = c[l] ⇐⇒ 〈a〉U − 〈b〉U = 〈c〉U mod 2l

a[l] +S b[l] = c[l] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l

a[l] −S b[l] = c[l] ⇐⇒ 〈a〉S − 〈b〉S = 〈c〉S mod 2l

We can even mix the encodings:

a[l]U +U b[l]S = c[l]U ⇐⇒ 〈a〉U + 〈b〉S = 〈c〉U mod 2l
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Semantics for Relational Operators

Semantics for <, ≤, ≥, and so on:

a[l]U < b[l]U ⇐⇒ 〈a〉U < 〈b〉U
a[l]S < b[l]S ⇐⇒ 〈a〉S < 〈b〉S

Mixed encodings:

a[l]U < b[l]S ⇐⇒ 〈a〉U < 〈b〉S
a[l]S < b[l]U ⇐⇒ 〈a〉S < 〈b〉U

Note that most compilers don’t support comparisons with mixed
encodings.
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Complexity

I Satisfiability is undecidable for an unbounded width, even without
arithmetic.

I It is NP-complete otherwise.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 92



A Simple Decision Procedure

I Transform Bit-Vector Logic to Propositional Logic
I Most commonly used decision procedure
I Also called ’bit-blasting’

Bit-Vector Flattening

1. Convert propositional part as before
2. Add a Boolean variable for each bit of each sub-expression (term)
3. Add constraint for each sub-expression

We denote the new Boolean variable for bit i of term t by µ(t)i.
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Bit-vector Flattening

What constraints do we generate for a given term?

I This is easy for the bit-wise operators.

I Example for a|[l]b:
l−1∧
i=0

(µ(t)i = (ai ∨ bi))

(read x = y over bits as x ⇐⇒ y)

I We can transform this into CNF using Tseitin’s method.
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Flattening Bit-Vector Arithmetic

How to flatten a+ b?

−→ we can build a circuit that adds them!

FA

iba

so

Full Adder
s ≡ (a+ b+ i ) mod 2 ≡ a⊕ b⊕ i

o ≡ (a+ b+ i ) div 2 ≡ a · b+ a · i+ b · i

The full adder in CNF:

(a ∨ b ∨ ¬o) ∧ (a ∨ ¬b ∨ i ∨ ¬o) ∧ (a ∨ ¬b ∨ ¬i ∨ o)∧
(¬a ∨ b ∨ i ∨ ¬o) ∧ (¬a ∨ b ∨ ¬i ∨ o) ∧ (¬a ∨ ¬b ∨ o)
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Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

i

FA FA FA FA FA FA FA FA

a7b7 a6b6 a5b5 a4b4 a3b3 a2b2 a1b1 a0b0

o
s7 s6 s5 s4 s3 s2 s1 s0

I Also called carry chain adder
I Adds l variables
I Adds 6 · l clauses
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Multipliers

I Multipliers result in very hard formulas

I Example:
a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y

CNF: About 11000 variables, unsolvable for current SAT solvers

I Similar problems with division, modulo

I Q: Why is this hard?
I Q: How do we fix this?
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Incremental Flattening

?

ϕf := ϕsk , F := ∅

?

Is ϕf SAT?

?
No!

UNSAT

-Yes! compute I

?
I = ∅

SAT

6I 6= ∅

Pick F ′ ⊆ (I \ F )
F := F ∪ F ′

ϕf := ϕf ∧ CONSTRAINT(F )

�

ϕsk : Boolean part of ϕ
F : set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment
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Incremental Flattening

I Idea: add ’easy’ parts of the formula first

I Only add hard parts when needed

I ϕf only gets stronger – use an incremental SAT solver
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Motivation

Arrays are an important data structure:

I “Native” implementation in most processor architectures

I Offered by most programming languages

I O(1) index operation
E.g., all data structures in Minisat are based on arrays

I Hardware: memories
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Formalization

I Mapping from an index type to an element type

I TI : index type
I TE : element type
I TA = (TI −→ TE): array type

I Assumption: there are relations

=I⊆ (TI × TI) and =E⊆ (TE × TE)

The subscript is omitted if the type of the operands is clear.

I The theories used to reason about the indices and the elements are
called index theory and element theory, respectively.
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Basic Operations

Let a ∈ TA denote an array.

There are two basic operations on arrays:

1. Reading: a[i] is the value of the element that has index i

2. Writing: the array a where element i has been replaced by e is
denoted by a{i←− e}
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More About the Index Theory

What theory is suitable for the indices?

I Index logic should permit existential and universal quantification:
I “there exists an array element that is zero”
I “all elements of the array are greater than zero”

I Example: Presburger arithmetic, i.e., linear arithmetic over integers
with quantification

n-dimensional arrays:
For n ≥ 2, add TA(n− 1) to the element type of TA(n).
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A Very General Definition of Array Logic

Syntax defined by extending the syntactic rules for the index logic and
the element logic

I atomI : atom in the index logic
I atomE : atom in the element logic
I termI : term in the index logic
I termE : term in the element logic

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 104



Syntax

atom : atomI | atomE | ¬atom | atom ∧ atom |
∀array-identifier . atom

termA : array-identifier | termA{termI ←− termE}
termE : termA [ termI ]

Equality between arrays a1 and a2: write as ∀i. a1[i] = a2[i]
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Semantics

Main axiom:

Axiom (Read-over-write Axiom)

∀a ∈ TA. ∀e ∈ TE . ∀i, j ∈ TI .

a{i←− e}[j] =
{
e : i = j
a[j] : otherwise .
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Program Verification Example I

1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do
5 /* ∀x ∈ N0. x < i⇒ a[x] = 0 */
6 a[i]:=0;
7 /* ∀x ∈ N0. x ≤ i⇒ a[x] = 0 */
8 done;
9 /* ∀x ∈ N0. x ≤ 99⇒ a[x] = 0 */
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Program Verification Example II

Main step of the correctness argument:
invariant in line 7 is maintained by the assignment in line 6

Verification condition:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
⇒ (∀x ∈ N0. x ≤ i⇒ a′[x] = 0)
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Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element logic is
decidable
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Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!
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Example

(i = j ∧ a[j] = ’z’)⇒ a[i] = ’z’

’z’: read as an integer number

Fa: uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’)⇒ Fa(i) = ’z’
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Example

(i = j ∧ Fa(j) = ’z’)⇒ Fa(i) = ’z’

Apply Bryant’s reduction:

(i = j ∧ F ∗1 = ’z’)⇒ F ∗2 = ’z’

where

F ∗1 = f1 and F ∗2 =

{
f1 : i = j
f2 : otherwise

Prove this using a decision procedure for equality logic.
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Array Updates

What about a{i←− e}?

1. Replace a{i←− e} by a fresh variable a′ of array type

2. Add two constraints:
a) a′[i] = e for the value that is written,
b) ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 113



Array Updates: Example I

Transform
a{i←− e}[i] ≥ e

into:
a′[i] = e⇒ a′[i] ≥ e
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Array Updates: Example II

Transform
a[0] = 10⇒ a{1←− 20}[0] = 10

into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j]))⇒ a′[0] = 10

and then replace a, a′:

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j 6= 1. Fa′(j) = Fa(j)))⇒ Fa′(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?
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Array Properties

Now: restricted class of array logic formulas in order to obtain
decidability.
We consider formulas that are Boolean combinations of array
properties.

Definition (array property)

A formula is an array property iff if it is of the form

∀i1, . . . , ik ∈ TI . φI(i1, . . . , ik)⇒ φV (i1, . . . , ik) ,

and satisfies the following conditions:
1. The predicate φI must be an index guard.
2. The index variables i1, . . . , ik can only be used in array read

expressions of the form a[ij ].
The predicate φV is called the value constraint.
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Index Guards

Definition (Index Guard)

A formula is an index guard iff if follows the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard |
iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer-constant |
integer-constant · index-identifier |
term + term

The “index-identifier” used in “term” must not be one of i1, . . . , ik.
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Array Properties: Example

The extensionality rule defines the equality of two arrays a1 and a2 as
element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i]

How about the array update?

a′ = a{i←− 0}

Is this an array property as well?
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Array Properties: Array Update

An array update expression can be replaced by adding two constraints:

a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

∀j. (j ≤ i− 1 ∨ i+ 1 ≤ j)⇒ a′[j] = a[j]
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Algorithm

Input: Array property formula φA in NNF
Output: Formula φUF

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by
P (j), where j is a fresh variable.

3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by∧
i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and
obtain φUF ;

5. return φUF ;
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The Set I

I(φ) denotes the index expressions that i might possibly be equal to.

Theorem: This set contains the following elements:
1. All expressions used as an array index in φ that are not quantified

variables.
2. All expressions used inside index guards in φ that are not quantified

variables.
3. If φ contains none of the above, I(φ) is {0} in order to obtain a

nonempty set of index expressions.
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Example

We prove validity of

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
⇒ (∀x ∈ N0. x ≤ i⇒ a′[x] = 0) .

That is, we check satisfiability of

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .
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Example

Apply write rule:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

Instantiate existential quantifier with a new variable z ∈ N0:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] 6= 0 .
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Example

The set I for our example is {i, z}.
Replace the two universal quantifications as follows:

(i < i⇒ a[i] = 0) ∧ (z < i⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (i 6= i⇒ a′[i] = a[i]) ∧ (z 6= i⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

Remove the trivially satisfied conjuncts to obtain

(z < i⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (z 6= i⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .
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Example

Replace the arrays by uninterpreted functions:

(z < i⇒ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z 6= i⇒ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) 6= 0 .

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see
that this formula is unsatisfiable.
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Outlook SMT-BVAUF

I The instantiations of the array axioms and the function
conconsistency rule are typically done incrementally
→ this is over-approximation

I Usually combined with constraints on hard bit-vector operators
→ this is under-approximation

I Yes, both in the same instance!

I The rule instantiation extends to (incomplete) treatment for
quantifiers (Z3 is good at this)
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Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level
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Bounded Program Analysis

Goal: check properties of the form Gp,
say assertions.

Idea: follow paths through the CFG to an assertion
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Example

if ( (0 <= t) && (t <= 79) )
switch ( t / 20 )
{
case 0:

TEMP2 = ( (B AND C) OR (˜B AND D) );
TEMP3 = ( K 1 );
break;

case 1:
TEMP2 = ( (B XOR C XOR D) );
TEMP3 = ( K 2 );
break;

case 2:
TEMP2 = ( (B AND C) OR (B AND D) OR (C AND D) );
TEMP3 = ( K 3 );
break;

case 3:
TEMP2 = ( B XOR C XOR D );
TEMP3 = ( K 4 );
break;

default:

assert(0);

}

(from an implementation of SHS)

if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3
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Example
if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 = 1
∧ TEMP2 = B ⊕ C ⊕D
∧ TEMP3 = K 2
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Example

We pass

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 = 1
∧ TEMP2 = B ⊕ C ⊕D
∧ TEMP3 = K 2

to a decision procedure, and obtain a satisfying assignment,
say:

t 7→ 21, B 7→ 0, C 7→ 0, D 7→ 0, K 2 7→ 10,
TEMP2 7→ 0, TEMP3 7→ 10

4 It provides the values of any inputs on the path.
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Another Example
if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 6= 1
∧ t/20 6= 2
∧ t/20 6= 3

That is UNSAT, so the assertion is
unreachable.
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What If a Variable is Assigned Twice?

x=0;

if (y>=0)
x++;

Rename appropriately:

x1 = 0
∧ y0 ≥ 0
∧ x1 = x0 + 1

This is a special case of SSA
(static single assignment)
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Pointers

How do we handle dereferencing in the program?

int ∗p;
p=malloc(sizeof(int)∗5);
...

p[1]=100;

p1 = &DO1
∧ DO1 1 = (λi.

i = 1?100 : DO1 0[i])

Track a ‘may-point-to’ abstract state while unwinding!
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Scalability of Path Search

L1

L2 L3

L4

This is a loop with an if inside.

Q: how many paths for n iterations?
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Bounded Model Checking

I Bounded Model Checking (BMC) is the most successful formal
validation technique in the hardware industry

I Advantages:
4 Fully automatic
4 Robust
4 Lots of subtle bugs found

I Idea: only look for bugs up to specific depth

I Good for many applications, e.g., embedded systems
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Transition Systems

Reminder: A transition system has a
I set of states S,
I a set of initial states S0 ⊂ S, and
I a transition relation T ⊂ (S × S).

The set S0 and the relation T can be written as their characteristic
functions.

The graph with nodes S and edges T is called the Kripke structure.
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Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just ”concatenate” the transition relation T :

tS0 -∧ T t∧ T
- t . . .
∧ t -T∧ t

s0 s1 s2 sk−1 sk
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Unwinding a Transition System

As formula:

S0(s0) ∧
k−1∧
i=0

T (si, si+1)

Satisfying assignments for this formula are traces through the Kripke
structure
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Example

T ⊆ N0 ×N0

T (s, s′) ⇐⇒ s′.x = s.x+ 1

. . . and let S0(s) ⇐⇒ s.x = 0 ∨ s.x = 1

An unwinding for depth 4:

(s0.x = 0 ∨ s0.x = 1)
∧ s1.x = s0.x+ 1
∧ s2.x = s1.x+ 1
∧ s3.x = s2.x+ 1
∧ s4.x = s3.x+ 1
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Unwinding a Transition System

Suppose we want to check a property of the form Gp.

We then want at least one state si to satisfy ¬p:

S0(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨
i=0

¬p(si)
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Unwinding Software

We can do exactly that for our transition relation for software.

E.g., for a program with 5 locations, 6 unwindings:

L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0
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Unwinding Software

Problem: obviously, most of the formula is never ’used’,
as only few sequences of PCs correspond to a path.
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Unwinding Software

Example:

L1

L2

L3

L4

L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

CFG unrolling
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Unwinding Software

Optimization:
don’t generate the parts of the formula that are not ’reachable’

L1

L2

L3

L4

L5 L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

L3
L5

CFG unrolling
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Unwinding Software

Another problem:

L1

L2

L3

L4

L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

L1

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L2

L3L2

CFG unrolling
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Unrolling Loops

Idea: do exactly one location in each timeframe:

L1

L2

L3

L4

L5 #6

#5

#4

#3

#2

#1

#0 L1

L2

L3

L2

L3

L4

L5

CFG unrolling
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Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body ;
if (cond) {

Body ;
if (cond) {

Body ;
while(cond)

Body ;
}

}
}
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Unrolling Loops

Problem: bad performance on some shallow bugs.

Solution: build multiple instances, in a BFS fashion
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Solving the Decision Problem

Suppose we have used some unwinding, and have built the formula.

For bit-vector arithmetic, the standard way of deciding satisfiability of the
formula is flattening,
followed by a call to a propositional SAT solver.

In the SMT context: SMT-BV
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Completeness

BMC, as discussed so far, is incomplete.
It only refutes, and does not prove.

How can we fix this?
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Completeness: Summary

1. Unwinding assertions

2. Completeness thresholds

3. k-induction
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Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body ;
if (cond) {

Body ;
if (cond) {

Body ;
while(cond)

Body ;
}

}
}
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Unwinding Assertions

I This allows us to prove that we have done enough unwinding.

I This is a proof of a high-level worst-case execution time (WCET).

I Appropriate for embedded software.
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Completeness Thresholds

I Let’s write
M |=k φ

for “φ holds on paths of M up to length k”.

I Idea: for finite state models, there is obviously some d with

M |=d φ ⇐⇒ M |= φ

I Such a d is called completeness threshold or cutoff.

I Getting smallest such d is as hard as deciding M |= φ.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 155



Completeness Thresholds

I Completeness thresholds are therefore overapproximated.

I Can be done in a property-specific way.

I Often yields a bound that is small enough.
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Using the Completeness Threshold

Unroll
transition function

k times

Check for
counterexample

Compare k to
completeness

threshold

Increase
k by one

[error found]
report

[reached]

OK

C program
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Induction

In many cases, we can use inductive reasoning to show that assertions
hold for an unbounded number of loop iterations:

int array[n ];
...
for(unsigned i=0;

i!=n;
i++)

{
assert ( i<n);
...

}

i′ = i+ 1 ∧ i < n ∧ i 6= n
⇒ i′ < n

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 158



Induction

for(unsigned i=0;
i!=10;
i++)

{
assert ( i!=100);
...

}

i′ = i+ 1 ∧ i 6= 100 ∧ i 6= 10
⇒ i′ 6= 100
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k-induction

Idea:
I Induction step assumes that k iterations are successful

I Often elininates the need for invariant strengthening

I Useful loops that have “bounded memory”

For formalization, see TACAS 2010 paper.
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The Cell Broadband Engine Processor

I Used in Sony’s
PlayStation 3

I Also in the top
supercomputer
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The Cell Broadband Engine Processor

I EIB: element interface bus
I Four sixteen-byte data rings

with 64-bit tags
I Transfers 96 bytes/cycle
I Handles over 100 outstanding

requests
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DMA on the Cell BE

I put(l, h, s, t)

issues a transfer of s bytes from local store address l to host
address h, identified by tag t

I get(l, h, s, t)

issues a transfer of s bytes from host address h to local store
address l, identified by tag t

I wait(t)

blocks until completion of all pending DMA operations identified by
tag t
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Example

float buffers [3][ CHUNK/sizeof(float)]; // Triple−buffering requires 3 buffers

void triple buffer (char∗ in, char∗ out, int num chunks) {
unsigned int tags[3] = { 0, 1, 2 }, tmp, put buf, get buf, process buf;

(1) get(buffers [0], in, CHUNK, tags[0]); // Get triple−buffer scheme rolling
in += CHUNK;

(2) get(buffers [1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags [0]); process data(buffers [0]); // Wait for and process first buffer
put buf = 0; process buf = 1; get buf = 2;
for(int i = 2; i < num chunks; i++) {

(4) put(buffers [put buf], out, CHUNK, tags[put buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers [get buf ], in, CHUNK, tags[get buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process buf ]); // Wait for and process data
process data(buffers [process buf ]); // requested last iteration

tmp = put buf; put buf = process buf; // Cycle the buffers
process buf = get buf; get buf = tmp;
}
... // Handle data processed / fetched on final loop iteration

}
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DMA Races

Definition

Let op1(l1, h1, s1, t1) and op2(l2, h2, s2, t2) be a pair of simultaneously
pending DMA operations, where op1, op2 ∈ {put, get}.

The pair is said to be race free if the following holds:
((op1 = put ∧ op2 = put) ∨ (l1 + s1 ≤ l2) ∨ (l2 + s2 ≤ l1))∧
((op1 = get ∧ op2 = get) ∨ (h1 + s1 ≤ h2) ∨ (h2 + s2 ≤ h1)).
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Experiments

I Implementation on top of CBMC

I 22 benchmarks from IBM Cell SDK

I Runtime for most < 1 s

I Found previously unknown bug in SDK example
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Experiments

Correct
Benchmark iterations time speedup
1-buf 15 9.49 23.14 ×
2-buf >100 >1352.43 >417.78 ×
3-buf >100 >4344.98 >120.9 ×

Buggy
Benchmark iterations time speedup
1-buf 3 1.25 2.91 ×
2-buf 20 33.62 59.97 ×
3-buf 69 4969.03 6641.47 ×

Speedup in comparison to SATABS
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Outlook

There is more. Ask me about

I Concurrency (including weak consistency)

I Automated abstraction refinment (SLAM and the like)

I Floating-point arithmetic

I Automated test-suite generation

I Combinations of SAT and abstract interpretation
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Step-1: Convert C-code into Control-Flow-Graph 

3 

if ( (0 <= t) && (t <= 79) ) 

  switch (t/20) 

   { case  0: 

        TEMP2 = ( (B AND C) OR (!B AND D) ); 

        TEMP3 = ( K_1 ); 

         break; 

      case  1: 

        TEMP2 = ( (B XOR C XOR D) ); 

        TEMP3 = ( K_2 ); 

         break; 

      case  2: 

        TEMP2 = ( (B AND C) OR (B AND D) OR (C AND D) ); 

        TEMP3 = ( K_3 ); 

         break; 

      case  3: 

        TEMP2 = ( B XOR C XOR D ); 

        TEMP3 = ( K_4 ); 

         break; 

      default: assert(0); 

     } 

default 

if 

switch 

case-0 

case-1 

case-2 

case-3 

0 ≤ t ≤ 79 

t/20 ≠ 0 

t/20 ≠ 1 

t/20 ≠ 2 

t/20 ≠ 3 
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Step-2: Generate Formula for Path 

default 

if 

switch 

case-0 

case-1 

case-2 

case-3 

0 ≤ t ≤ 79 

t/20 ≠ 0 

t/20 ≠ 1 

t/20 ≠ 2 

t/20 ≠ 3 

           0 ≤ t ≤ 79 

     Λ    t/20 ≠ 0 

     Λ    t/20 ≠ 1 

     Λ    TEMP2 = B xor C xor D 

     Λ    TEMP3 = K_2 
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Step-3: Pass formulas to SAT Solver 

Pass 

                                            0 ≤ t ≤ 79 

                                        Λ  t/20 ≠ 0 

                                        Λ  t/20 ≠ 1 

                                        Λ  TEMP2 = B xor C xor D 

                                        Λ  TEMP3 = K_2 

 

to a SAT solver to obtain a satisfying assignment of values  

 

                    t → 21, B → 0, C → 0, D → 0, K_2 → 10,  

                                TEMP2 → 0, TEMP3 → 10 

 

Denotes a set of possible values that any inputs can take on the path 

Can be used to check if user-defined assertions hold at program locations 
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Putting It All Together: Step-1+Ste-2+Step3 

default 

if 

switch 

case-0 

case-1 

case-2 

case-3 

0 ≤ t ≤ 79 

t/20 ≠ 0 

t/20 ≠ 1 

t/20 ≠ 2 

t/20 ≠ 3 

assert (condn) 

SAT Solver 

Unsatisfiable 

 Verified  
Bug 

Counter-ex 

Satisfiable 

(Path1 || Path2 || Path3 || Path4 || Path5)   !(condn) 
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Bounded Model Chekcing (BMC): Verification Flow-
chart 

Unwind C/Verilog model and assertions 

To Specified or Auto bound 

Transform unwound program and assertions into 

Boolean formulas (C and P) 

over bit-vector equations 

Check (C  !P) 

Using SAT Solver 

BMC threshold  

     reached? 

Unsatisfiable 
Bug! 

Satisfiable  Counter example 

Verified Yes 

No 

Enhance bound 

 Use induction or  

assume/guar methods 

to scale verification 

SAT “running out of steam” 
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Outline 

1. BMC-based FV methodology overview 

2. Introduction to CBMC (Binsearch) 

3. RTL (Verilog) verification 

4. Multi-media IP verification 

– K-induction 

5. Model-based verification of automotive SW 

6. Microprocessor verification 

– Sequential circuit equivalence 

– C Vs RTL 
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CBMC Features to Hi-light 
• Assumptions: constrained non-determinism 

• Assertions:  

– Implicitly generated 

– Getting effect of Quantification 

• Basic CBMC commands 

– show-claims, show-loops 

– Checking assertions 

– Controlling unwinding depth 

• Analyzing error traces 
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Outline 

1. BMC-based FV methodology overview 

2. Introduction to CBMC (Binsearch) 

3. RTL (Verilog) verification 

4. Multi-media IP verification 

– K-induction 

5. Model-based verification of automotive SW 

6. Microprocessor verification 

– Sequential circuit equivalence 

– C Vs RTL 
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Objectives of the Exercise 

• Verilog module verification 

– 3 designs implement same function with 
different timing and resource usage                                        

– Verify them against same C-specification 

• How do you handle timing/clock issues? 

• How do you monitor and drive verilog signals? 

• How do you analyze verilog error traces? 
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Courtesy: Calypto Design 
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Courtesy: Calypto Design 
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Courtesy: Calypto Design 
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Verilog Model C-Model 

C-Assertions 
(=?) 

Inputs 

C-Out Verilog-Out 

What is Verified? 
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CBMC Infrastructure for RTL verification 

• “Import” a verilog module into a C-Wrapper: 

• Synthesize verilog into a transition system 
– pin-accurate and clock-cycle-accurate 

– next_timeframe()  effect of once clock-cycle transition 

• All verilog signals can be accessed  
– Verilog input signals can be forced/constrained from the C-wrapper via 

__CPROVER_assume/set_inputs() 

– Output and any intermediate signals can be 
monitored and check 

• C Vs. RTL consistency check can be done by 
importing C-model and verified assertions on 
C-model into the C-wrapper 

16 

M.K.Srivas:  Formal Techniques for Hardware/Software  Co-Verification 



Steps for performing C Vs. RTL FV 

1. Construct C-wrapper  

2. Specify required reset/input signal protocols 

3. Define and check C- behavioral assertions 
a. Map C vars used in C-assertions to corresponding Verilog signals 

b. Specify trigger events each C-assertions need to be triggered 

c. This depends on the latency and timing or RTL behavior 

d. Steps 1&2 will yield mapped trigger-event qualified assertions for RTL 

4. Specify unwind depth for verilog module 

5. Fire FV run 

17 
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Outline 

1. BMC-based FV methodology overview 

2. Introduction to CBMC (Binsearch) 

3. RTL (Verilog) verification 

4. Multi-media IP verification 

– K-induction 

5. Model-based verification of automotive SW 

6. Microprocessor verification 

– Sequential circuit equivalence 

– C Vs RTL 
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C/C++ Models in SoC Design Flow 

Control proc + Mems + Comm Fabric 

Chip-Level 

Video Subsystem Image Subsystem Display Subsystem 

Use-case scenarios as C program sequences

Algorithmic description of Codecs in C/C++

                           (10-50K lines) 

C-models of IP blocks 

      (<= 5-10K lines) 
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Typical Multi-media IP blocks 

• Large (8K X 8K) array processing: 2-3 deep nested loops 

 

• Arrays consist of "macro blocks" of pixel clusters 
– Mostly similar computation for each block with some history  

– Sometimes, computation is cumulative for the whole array 

 

• Data-oriented with lot of fixed-point arithmetic 
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ME5 – Bbox HWOD: Hybrid Window With Overlap Detection 

IP Control 

Growing Window 

Shared On-Chip 

Memory 

Sliding window 

Growing window 

Rectangular 

Search Area for 

macro-block MBn 

•FV Goals:  
•Define complete behavior of  algorithm as formal assertions on logical coordinates 

•  OD: “Every part of non-overlapping region and nothing else” is fetched 
• Formally verify the properties for both C-model and RTL 
• Verify  “physical address” generation by showing direct C Vs RTL code equivalence 

 

Actual BBox for MBn 

Non-overlapping 

Portion of BBox 

For MBn+1 

• Hybrid Window:  Uses part sliding and part growing window to efficiently utilize the 
   available DDR bandwidth and on chip memory 
• Overlap detection (OD): Only non overlapping regions of the bounding box  w.r.t. the 
previous macro-block are identified and fetched (DMA commands)from DDR 

•~1500 lines of C and ~3000 lines of verilog 
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Technical challenges 

• Unwinding  for whole array is not practical 

– Solution: Use induction 

• Challenges in employing induction: 

– May need to formulate “loop invariants” 

• To capture history recorded b/w iterations 

– K-induction may help [Donaldson,et.al., SAS2011] 

• Coding of HW-timing protocol 
– Solution: Automatic synthesis from timing diagrams 
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     i = 0; 

     savearr = myarr;                                                 INIT 
     history = myarr[N-1]; 

 
        

      assume  i<len ; 
      temp = myarr[j]; 

      myarr[j] = myarr[j]+history;                        BODY 
      history = temp; 
       i++; 

 

      assume  I >= len ; 
      assert     Forall   (k < N):                              (PROP[N]) 
                      myarr[k]==(savearr[k]+savearr[k-1 % N] 
 

L 

O 

O 

P 

 

P 

R 

O 

B 

L 

E 

M 
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INIT BLOCK 

       assert   loop_invariant  (inv) 
       i, temp, history =  “arbitrary value” 
       myarr[i]  =  “arbitrary value” 
       assume  loop_invariant  (inv) 

    LOOP BODY 

assume   i >= N; 
assert     inv     Prop[N] 

assert  inv 

L 

O 

O 

P 

 

I 

N 

V 

 

A 

P 

P 

R 

O 

A 

C 

H 
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INIT BLOCK 

 assume   i < N 
 assert   Prop[i] 
temp = myarr[j]; 
myarr[j] = myarr[j]+history; 
history = temp; 
 i++; 

L 

O 

O 

P 

 

K 

(2) 

 

 I 

N 

D 

U 

C 

T 

 I 

O 

N 

BODY   (WITH ASSERT) BODY-A  (WITH ASSUME ) 

BODY 

i, temp, history =  “arb val” 
myarr[i]  =  “arb val” 

 assume   i < N 
 assume  Prop[i] 
temp = myarr[j]; 
myarr[j] = myarr[j]+history; 
history = temp; 
 i++; 

BODY-A 

BODY  (WITH ASSERT) 
 assume   i >= N 
 assert   Prop[N] 
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Memory Access Merging – Problem and Properties 

Input example Output example 

Merged for Fetch 

Fetch 

Don’t Fetch 

Some example properties: 

• Functional  Property:  “Every blue box in input should be part of at-least one yellow box in output” 

• Performance property:   “Every blue box in input should be part of exactly one yellow box in output” 

 

 

 

 

• 2 power 36 input combinations 

• 4 times the input combinations considering 

arrival of 8x8 blocks (aligned or non-aligned) 

• Functional Bug: A bug where a required data is 

not fetched - will cause MC failure 

• Scheme Bug :  Implementation is not following 

expected scheme 

• Performance Bug: Non optimality - can cause 

potential functional failure due to increase in bw 

Verification problem 

Design problem: Optimize DMA access by increasing size of “block” fetches 

Implementation:  Scans a 2-dim array of “tiles” looking to merge adjacent “fetches” 

   into a single rectangular larger multi-fetch (~300 lines of C and  RTL (~400 lines verilog)  

•    Bigger block: 800 lines of C and 2500 lines of verilog 
 

8 

FV Goal: 

• Verify all assertions for C-model, first and verify the same on RTL 
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Technical challenges: 
Memory_access_merge 

• Doesn’t scale beyond 8X8 arrays at C-level 

– RTL verification scales much better 8X20 

– Parallelism inherent in RTL seems to help 

 

• Direct application of K-induction doesn’t work 

– Worst-case history-depth can be as large as array 
dimensions 

 

• Internal buffer needs to be exposed to define loop 
invariant 
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Some Useful General Techniques  

• Redefine Property using info in history buffers 

– Need to combine information in internal 
and output buffers 

• Instrument assertions to Force-Flush history 
information before checking assertions 

– Can reverse-engineer existing code 

• Both require design knowledge 

• Use loop-invariant generation techniques 

– An active research area 

28 M.K.Srivas:  Formal Techniques for Hardware/Software  Co-Verification 



Outline 

1. BMC-based FV methodology overview 

2. Introduction to CBMC (Binsearch) 

3. RTL (Verilog) verification 

4. Multi-media IP verification 

– K-induction 

5. Model-based verification of automotive SW 

6. Microprocessor verification 

– Sequential circuit equivalence 

– C Vs RTL 
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Earlier Verification is Better 

Courtesy: David N. Kleidermache, EE Times 
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Model-based System Development: 
 Formal Verification Value-Addition 

System  

       Testing   (HIL) 

Implementation (SIL) 

Automatic Test 

Generation 

Formal 

Verification 

Requirements 

Capture 

Specification 

Modeling (MIL) 

Formal 

Specification 

Automatic Test 

Execution 

Integration 

   Testing  PIL/HIL 

Design Model  MIL 
Unit Testing  SIL/PIL 

Formal 

Verification 

Formal Specification: 

• Ensures complete and consistent 

  requirements specification 

 

Formal Verification: 

• Ensures expected behavior 

• Excludes unintended behavior 

• Ensures full verification coverage 

• Leads to reliable models and code 

31 

Object 
of 

Demo 
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Model-Based SW Development 

• Some popular Spec-modeling languages 

– Statechart/Statemate [Harel&Politi98] 

– Matlab/Simulink 

• Verification on executable spec-models 

– Sanity, safety, and consistency checks 

• A good candidate for FV 

– Equivalence b/w spec-model and generated 
code 
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Spec-Model 
(Statechart) 

Safety & 
Sanity Checks 

FV Tool 
(CBMC) 

Automatic Translation C-Assertions 

YES BUG!! 
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E 
N 
V 
I 
R 
O 
N 

LOCK 

Shared Global 
START_A 

A_CS_START 

A_CS_END 
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Main Features of Statecharts 

• A hierarchy of finite-state machines (FSM) 

– OR-state: Regular FSM where a state can be 
refined into another statechart 

– AND-state: “Synchronous” composition of a set of 
OR-states 

• Transition: “Guard/Action” 

– Guards: boolean events/conditions 

– Actions: Modify events and variables 

– Enabled, if guard evaluates to true 

• Statecharts share global variables 
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Reactive System Semantics 

While (true) { //BigStep 

1. Environment: update external events 

2. While (Exists: Enabled Transitions) { //Step 

a. Evaluate guards of transitions 

b. Pick a “maximal set” of enabled transitions 

c. Compute results of  actions in enabled transitions 

d. Update results  in arbitrary total order of transitions 

e. }  //End of Step 

3. } //End of Bigstep 
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Reactive Semantics Special Notes 

• Pick one enabled transition from each OR-state 
in an AND-state 

–  if >1, pick one non-deterministically 

• All transitions are evaluated on old value 

• Update events/variables in some total order  

• External events change only once every BigStep 

• Repeat Step until  there are no enabled transitions 
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Some Properties of Interest 

• Safety: Bad states are never reachable 

– NOT(in(A_CS) && in(B_CS)) 

• Progress: “BigStep Convergence” 

– BigStep always terminates 

– i.e., must eventually reach an idle state 

• Determinism: 

– Behavior is invariant w.r.t. choice and order 
of transitions 
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Challenges in Statechart 
Analysis 

• Scaling to system with a few hundreds of 
charts and a dozen deep hierarchy 

•  A few techniques that can help 

–  Exploit determinism in || composition 

–Exploit Inherent structure in OR-state 

• Assume-Guarantee reasoning 

• Abstraction 
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Statechart Demo Objectives 

• Modeling statecharts in C 

– Transition systems in C 

– Statemate semantics of || composition 

• Efficiency gain of partial-order reduction 

• Safety property checking 

• BigStep convergence checking 

• Lasso-like-loop checking for more effective 
reachability property checking 
[BiereCyrilleSchuppan] 
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Outline 

1. BMC-based FV methodology overview 

2. Introduction to CBMC (Binsearch) 

3. RTL (Verilog) verification 

4. Multi-media IP verification 

– K-induction 

5. Model-based verification of automotive SW 

6. Microprocessor verification 

– Sequential circuit equivalence 

– C Vs RTL 
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Verilog Ckt-B Verilog Ckt-A 

Outputs Equivalence 
(at specified regular cycles) 

Inputs 

C-Out Verilog-Out 

What is Verified? 
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Seq. Circuit Equiv. Problem 

• Given: 2 RTL ckts (A,B) with identical I/O 

• Check: 

– For identical seq. of inputs (after reset),  

– A and B have equivalent outputs 

– In every cycle or (at specified regular points) 

• Infinite trace equivalence property 

– Q: How to convert into a finite-distance property 
for BMC? 

• Consider Avg4 circuits considered earlier 

– Are they output equivalent at every t+3, t>=0? 
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Courtesy: Calypto Design 
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Courtesy: Calypto Design 
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How to apply it to Avg4 equiv.? 

• Identify an invariant (Inv) condition expected 
to hold at equivalent checking points 

– Inv(Ckt) = (Ckt.fsm_cntrl_state == S0) 

• Properties to check: 

– Base: Inv and Output Equiv holds after reset 

– Induct: 

• Assume Inv holds for both ckts at time t 

• Check Inv and output equiv holds at (t+3) 

• Exercise: Can K-induction be used to generate Inv?  
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Can a similar 
approach be used 

to verify 
uProcessor? 
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A Simple DSP 

• Low-cost embedded DSP meant for processing 

• Dual memory multiplier-accumulator architecture 
– 32-bit data path, 2K instrn mem, two 1K data mems, 32  registers 

• 4-stage pipeline 

• 135 instructions: 
– MUL, MAC, SHIFT 

– Direct and indirect memory addressing 

– Special-purpose address generation logic 

– CALL, RET, REP (loop body) instructions 

– Interrupt instructions 

• RTL of DSP core: 2600 lines verilog (w/o mem & I/O) 
– ~30K gates (w/o memories) 

• C-Model: ISA and ISS 
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S-0 S-1 

Resetz==0 && 
core_en==1 

Resetz==1      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

• I-ref denotes a SET of RTL states 
• Captures result  of 6 valid instructions after a reset 
• Includes  ALL possible ways in which pipeline can be filled 
  with 4 possible  instructions 
•  Covers ALL possible variations of every instruction 
•  Covers ALL possible combinations of UNCONSTRAINED  
    input signals 
 

“How can we use result 
of symbolic simulation?” 
 
CHECK ASSERTIONS ON 
THEM 

 
 
Global Constraints: 
 
Forall addr: 
Assume  imem[addr] 
   isVALID &&  
    ( !(isOUT)|| isINT) 
 
No constraints on 
Xmem and ymem 

 
 

I-ref 

Symbolic sim RT L 

    for n cycles 

    n >=4 (say 6)  

Goal:  

    Fill pipeline with 

     all possible seq of 

     instrns 

I-ck1 I-ck2 I-ck3 

Resetz==1      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

Resetz==1      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 
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Microprocessor Verification: 
 Problem Statement 

Reset seq 
RTL Machine Trace 

Reset seq 

Spec (C-Model) Machine Trace 

•  Sequential Equivalence b/w RTL and ISA machines: [SrivasMiller] 
•For ALL identical sequences of instructions 

• Challenges: 
•ISA and RTL machines may complete instructions at different rates 

• RTL is pipelined but ISA may not be 
• ISA is Pipelined, but may not be cycle accurate 

• ISA state is an abstraction of RTL state                    
 

Assume: 
Mems are 
identical 

Check equiv of visible parts: 
Data mems, PC, registers, accs 

 Instruction completion points 
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Verifying Sequential Equivalence: 
Using “finite-distance” assertions 

Reset seq 

Check equiv of visible parts: 
Data mems, PC, registers, accs 

 Instruction completion points 
RTL Machine Trace 

Reset seq 
Spec (C-Model) Machine Trace (unpipelined) 

Assume: 
Mems are 
identical 

Pipeline-depth 

In general, enough to check  “pipeline-deep” assertions 

•  involving states that are separated  at most pipeline depth apart 

•  on traces originating from an arbitrary pipeline state 

•  with arbitrary sequence of instructions in flight 
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Finite-distance Inductive 
Assertions: What do they 
Assume? 

Reset seq 
RTL Machine Trace 

Pipeline-depth 

Start with an arbitrary but valid RTL machine state such that: 

•  pipeline is filled with arbitrary sequence of legal instructions 

•  F-stage, D-stage, M-stage, E-stage 

•  the instrns in the piepline satisfy all required pipeline restrictions 

I-state D-state M-state E-state 
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Finite-distance Inductive 
Assertions: What do they 
check on RTL? 

RTL Machine Trace 

Pipeline-depth 

Reset seq 

I-state D-state M-state E-state 

C-spec function 

(from Instrn-accurate  

C-model) 

Assert-1: The I-stage instrn (in I-state) will move to D-stage in (D-state) 

 

Assert-2: Expected NEW instrn will be the I-stage instrn (in D-state) 

 

Assert-3: Rest of visible state (mem, internal regs, ACC, etc.) in E-state will  

                correspond as per the C-spec function  

 D-stage instrn completes 
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Instruction behavior correctness: 
NOP  cc s2 
 
NOP-assert1: “The F-instrn in I-ref state will 
ALWAYS EVENTUALLY move to D-stage “ 

•   in I-ck1 state, if !isNOP(D-instrn) 
•   #wait-cycles later, if isNOP(D-instrn) 
 

•NOP-assert2: “Visible  state MUST not 
change  from Iref+2 to Iref+#wait-cycles 

 
 
 
 
 
 

S-0 S-1 I-ref I-ck1 I-ck2 I-ck3 

Resetz==0 && 
core_en==1 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

 
 
Global Constraints: 
 
Forall addr: 
Assume  imem[addr] 
   isVALID &&  
    ( !(isOUT)|| isINT) 
 
No constraints on 
Xmem and ymem 
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S-0 S-1 I-ref I-ck1 I-ck2 I-ck3 

Resetz==0 && 
core_en==1 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

Resetz==0      && 
core_en==1    && 
Idata== 
imem[prev_iaddr] 

 
 
Global Constraints: 
 
Forall addr: 
Assume  imem[addr] 
   isVALID &&  
    ( !(isOUT)|| isINT) 
 
No constraints on 
Xmem and ymem 

 
 

NOP-assert1 FV Revelations 

 

•  Requires Pipe-7 restrn as precondition 
•“A condtnl ST instrn cannot have  

  a non ST condtnl instrn in 2nd place after ST” 

•  ACC sign/zero condn  change during 

   NOP countdown, can change NOP cycles 
• #nop-cycles is also impacted by n-1 and n-2 instrns!! 

•  is this expected or a BUG? 

•   Doesn’t require any other pipe restrictions 
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FV Error Trace: Conditional ST 
Issue 



Advantages of FV for uProcessors 
• Coverage: A single symbolic FV run covers 

– All possible variations of instruction under test and external conditions 
• Eg., for NOP all variations of CC and #op cycles (up to a limit) 

• Eg., for CTL, all possible CC conditions, target values  

– All possible combinations of sequences of 4 instrns in flight in the 
pipeline  

• With and without pipeline restriction 

– All possible combinations of two instructions following instrn under test 

• Counter-example ( reduced debug time) 
– Generates an offending error trace (waveform), if assertion fails 

– Error trace has all information needed to reproduce in simulation 

• Large reduction in number of test-cases 
– Roughly one assertion per major class of instructions (15 – 20 classes) 

• Eg., all CTL instructions and their variations handled by a single assertion 

• Eg., all LD instrns should be possible to do  with a single assertion 

– Verif plan: 162 test cases with >= 14788 variations 
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The FV Flow  

Skeleton C-Wrapper/Driver 

Constraints on 
instrn and input 

sequences 
Instruction Spec 

(C-function) 

FV Tool 
(HW_CBMC) 

uProc  RTL 

Data 
Mems 

imem Inputs 

NCSIM 

Error  trace 
(waveform 

vcd) 

FAIL 

SUCCESS 

uDSP tb & sim env 
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