
Formal Techniques for
Hardware/Software Co-Verification
Daniel Kroening, Mandayam Srivas

26th International Conference on VLSI
January 2013
Pune, India

Acknowledgements: Madukar Kumar Singh, TRDC
Nassim Seghir, Oxford

Speaker Introduction: Daniel Kroening

Professor of Computer Science, University of Oxford

2007–2010 University of Oxford
2004–2007 Assistant professor, ETH Zürich
2001–2004 Post-doc at CMU
2001 PhD. Computer Engineering Saarland University

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 2

Speaker Introduction: Mandayam Srivas

Professor, Computer Science, Chennai Mathematical Institute, India
Research Scientist, Oxford University

2006–2012 General Manager, Texas Instruments
2003–2006 Director, Nulife Semiconductor
2001–2003 Verification Technologist, RealChip
1990–2001 Research Scientist, SRI International, Menlo Park, CA
1984–1990 CS Department, SUNY Stony Brook
1982 PhD, Computer Science, MIT, USA

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 3

Motivation

Software most complex component of critical systems

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 4

Motivation

I Manual inspection is error-prone and costly
⇒ Tool support needed

I Tools that rely on test-vectors
I require human expertise;
I may miss bugs.
I are too labour-intensive for most projects

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 5

More detail here:

Vijay D’Silva, Daniel Kroening, Georg
Weissenbacher,
“A Survey of Automated Techniques for Formal
Software Verification”,
IEEE Transactions on Computer Aided Design

http://www.kroening.com/papers/tcad-sw-2008.pdf

http://www.kroening.com/papers/tcad-sw-2008.pdf

IEEE TCAD? Isn’t that a hardware journal?

I Tool-market in HW-design is well established
(∼ 4 Bn. US$/year)

I It’s normal to buy tools to improve design productivity

I Trend towards HW/SW co-verification

I EDA vendors are getting interested in this market!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 7

Some History

Mathematical reasoning about programs is the oldest thing in computer
science!

70s:
I Hoare, Dijkstra, ...: prove programs correct!
I Idea: prove your program correct wrt a specification
I Or: write a specification, and refine it into a program

I Typically considered too expensive for most programs!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 8

Context: The Verifying Compiler

Tony Hoare

The Verifying Compiler:
a Grand Challenge for
Computing Research

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 9

What Kind of Software?

State { int created = 0; }

IoCreateDevice.exit {
if ($return==STATUS SUCCESS)
created = 1;

}

IoDeleteDevice.exit { created = 0; }

fun AddDevice.exit {
if (created && (pdevobj->Flags &

DO DEVICE INITIALIZING) != 0) {
abort "AddDevice routine failed to set "

"˜DO DEVICE INITIALIZING flag";
}

}

�
�	

Bit-wise AND

An Invariant of Microsoft Windows Device Drivers

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 10

Example of a Program Verifier

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 11

What?

I Research on software quality is very broad

I We focus on techniques that:

1. prove a guarantee, in theory and practice.
2. are highly automated and scale reasonably

well.

I We do not aim at a full specification

→ Do ‘absence of specific bugs’

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 12

What?

Therefore won’t talk about:

8 random testing and automatic test vector generation
(usually not complete)

8 Unit testing (not automatic)

8 Refinement techniques

8 Tools that require annotation (ESC/Java etc.)

8 State enumeration (incomplete)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 13

What?

“Things like even software verification, this has been the
Holy Grail of computer science for many decades, but now

in some very key areas, for example, driver verification
we’re building tools that can do actual proof about the

software and how it works in order to guarantee the
reliability.”

Bill Gates, April 18, 2002
Keynote address at WinHec 2002

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 14

What?

“One of the least visible ways that Microsoft Research contributed
to Vista, but something I like to talk about, is the work we did on
what’s called the Static Driver Verifier. People who develop device
drivers for Vista can verify the properties of their drivers before

they ever even attempt to test that. What’s great about this
technology is there is no testing involved. For the properties that

it is proving, they are either true or false.
You don’t have to ask yourself

“Did I come up with a good test case or not?”

Rick Rashid, Microsoft Research chief
father of CMU’s Mach Operating System (Mac OS X)

news.cnet.com interview, 2008

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 15

What?

“This change is going to have dramatic impact over the next
five to 10 years, as we begin to bring these proof tools to bear on
larger and larger problems in the software space. We are already
doing research on saying, “How would you create an operating

system environment from scratch, knowing that you have this kind
of proof technology available?”

Rick Rashid
news.cnet.com interview, 2008

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 16

Static Analysis

Basic Idea

Efficiently compute approximate but sound
answers.

I Found in compilers for decades
I “Approximate but sound”: e.g., compute superset of values
I Problem becomes decidable

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 17

Reading

Model Checking
Clarke/Peled/Grumberg

Decision Procedures
Kroening/Strichman

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 18

Part I: Basic principles

1. Propositional SAT
2. Bit-level circuit verification with SAT

3. Word-level modelling (Verilog, VHDL, SystemC, C/C++)
4. Word-level reasoning with SMT-AUFBV
5. Word-level verification: BMC, k-induction, interpolation

6. Outlook

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 19

Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 20

Part II: Verification methodologies for application in practice

1. Requirements Analysis Case-Study
I automotive
I state charts

2. Verifying an RTL HW IP block against a C specification

3. Microprocessor case-study

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 21

Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 22

SAT

SAT (Satisfiability) the classical NP-complete problem:

Given a propositional formula f over n propositional variables
V = {x, y, . . .}.

Is there are an assignment σ : V → {0, 1} with σ(f) = 1 ?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 23

Motivation

Year

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

V
a
ri

a
b
le

s

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 24

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1 ∧ C2 ∧ . . . ∧ Cn

each clause C is a disjunction of literals

C = L1 ∨ . . . ∨ Lm

and each literal is either a plain variable x or a negated variable x.

Example (a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 25

Tseitin Transformation: Circuit to CNF

c

b

a

w

u
o

w

v

y

x

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∨ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

o ∧ (x→ a) ∧ (x→ c) ∧ (x← a ∧ c) ∧ . . .

o ∧ (x ∨ a) ∧ (x ∨ c) ∧ (x ∨ a ∨ c) ∧ . . .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 26

Algorithmic Description of Tseitin Transformation

Tseitin Transformation

1. For each non-input signal s: generate a new variable xs
2. For each gate: produce input / output constraints as clauses
3. Collect all constraints in a big conjunction

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 27

Algorithmic Description of Tseitin Transformation

I The transformation is satisfiability-preserving:
the result is satisfiable iff and only the original formula is satisfiable

I You an get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables

I Not equivalent in the classical sense to original formula:
it has new variables

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 28

Tseitin Transformation: Input / Output Constraints

Negation: x↔ y⇔ (x→ y) ∧ (y → x)
⇔ (x ∨ y) ∧ (y ∨ x)

Disjunction: x↔ (y ∨ z)⇔ (y → x) ∧ (z → x) ∧ (x→ (y ∨ z))
⇔ (y ∨ x) ∧ (z ∨ x) ∧ (x ∨ y ∨ z)

Conjunction: x↔ (y ∧ z)⇔ (x→ y) ∧ (x→ z) ∧ ((y ∧ z)→ x)

⇔ (x ∨ y) ∧ (x ∨ z) ∧ ((y ∧ z) ∨ x)
⇔ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z ∨ x)

Equivalence: x↔ (y ↔ z)⇔ (x→ (y ↔ z)) ∧ ((y ↔ z)→ x)
⇔ (x→ ((y → z) ∧ (z → y)) ∧ ((y ↔ z)→ x)
⇔ (x→ (y → z)) ∧ (x→ (z → y)) ∧ ((y ↔ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ ((y ↔ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ (((y ∧ z) ∨ (y ∧ z))→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ ((y ∧ z)→ x) ∧ ((y ∧ z)→ x)
⇔ (x ∨ y ∨ z) ∧ (x ∨ z ∨ y) ∧ (y ∨ z ∨ x) ∧ (y ∨ z ∨ x)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 29

Optimizations for the Tseitin Transformation

I Goal is smaller CNF (less variables, less clauses)

I Extract multi argument operands
(removes variables for intermediate nodes)

I NNF: half of AND, OR node constraints may be removed due to
monotonicity

I use sharing

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 30

Example SAT: Circuit Equivalence

formula:

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∨ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

number assignment:

variable number
o 1
a 2
c 3
x 4
b 5
y 6
u 7
v 8
w 9

Simply in order of
occurrence.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 31

Example SAT: Circuit Equivalence

formula clauses DIMACS
o o 1 0
x↔ a ∧ c a ∨ x 2 -4 0

c ∨ x 3 -4 0
a ∨ c ∨ x -2 -3 4 0

y ↔ b ∨ x x ∨ y -4 6 0
b ∨ y -5 6 0
x ∨ b ∨ y 4 5 -6 0

u↔ a ∨ b a ∨ u -2 7 0
b ∨ u -5 7 0
a ∨ b ∨ u 2 5 -7 0

v ↔ b ∨ c b ∨ v -5 8 0
c ∨ v -3 8 0
b ∨ c ∨ v 5 3 -8 0

w ↔ u ∧ v u ∨ w 7 -9 0
...

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 32

Example SAT: Circuit Equivalence

Let’s change the circuit!

a

b

c

w

v

w

u
o

x

y

o ∧
(x ↔ a ∧ c) ∧
(y ↔ b ∧ x) ∧
(u ↔ a ∨ b) ∧
(v ↔ b ∨ c) ∧
(w ↔ u ∧ v) ∧
(o ↔ y ⊕ w)

Is the CNF satisfiable?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 33

Example SAT: Circuit Equivalence

I Output of the SAT solver:
SATISFIABLE
1 2 3 4 -5 -6 7 8 9

I Values of the variables:

variable number value
o 1 1
a 2 1
c 3 1
x 4 1
b 5 0
y 6 0
u 7 1
v 8 1
w 9 1

I Caveat: there is more than one solution

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 34

Example SAT: Circuit Equivalence

Satisfying assignment mapped to the circuit:

c=1

a=1

b=0

o=1

v=1

u=1

w=1
w

x=1

y=0
variable value

o 1
a 1
c 1
x 1
b 0
y 0
u 1
v 1
w 1

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 35

Binary Search
Formula:

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

xDecision

(y) ∧ (¬y ∨ z) ∧ (¬y ∨ ¬z)

Impli-
cation

y

(z) ∧ (¬z)

z

FE

1

¬z

F

Backtrack¬y

F

¬x

(y ∨ z) ∧ (¬y ∨ z)

Decision z

X

{x 7→ 0, z 7→ 1}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 36

Notation

Given the partial assignment

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

(x1 ∨ x3 ∨ ¬x4) is satisfied
(¬x1 ∨ x2) is conflicting
(¬x1 ∨ ¬x4 ∨ x3) is unit
(¬x1 ∨ x3 ∨ x5) is unresolved.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 37

Basic DPLL

1: function DPLL
2: if BCP() = ‘conflict’ then return ‘Unsatisfiable’;
3: while (TRUE) do
4: if ¬DECIDE() then return ‘Satisfiable’;
5: else
6: while (BCP() = ‘conflict’) do
7: backtrack-level := ANALYZE-CONFLICT();
8: if backtrack-level < 0 then
9: return ‘Unsatisfiable’;

10: else
11: BACKTRACK(backtrack-level);

I DECIDE: Choose next variable and value
I BCP: Propagate implications of unit clauses
I ANALYZE-CONFLICT: Determine backtracking level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 38

Basic DPLL

full

conflict

SAT

UNSAT

dl ≥ 0

BackTrack

Analyze-
Conflict

BCP
conflict
no

partial
assignment

Decide

assignment

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 39

Notation

I We organize the search in form of a decision tree
I Each node corresponds to a decision

(no implied assignments in the tree)

I Def.: the depth of the node is the decision level
I x@d means that x is set to 1 at level d
I ¬x@d means that x is set to 0 at level d

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 40

Example I

Formula
ω1 : (x2 ∨ x3)
ω2 : (¬x1 ∨ ¬x4)
ω3 : (¬x2 ∨ x4)�

�
�
�
�
�

yix1
¬x1@1

�
�
�
�
�
�

yix2
¬x2@2

(BCP) x3@2

{x1 = 0, x2 = 0, x3 = 1}

A
A
A
A
A
A
A
A
A
A
A

yix1
x1@1
(BCP) ¬x4@1, ¬x2@1, x3@1

{x1 = 1, x2 = 0, x3 = 1}

No backtracking needed for this example,
regardless of the decision!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 41

Example II

Formula
ω1 : (x2 ∨ x3)
ω2 : (¬x1 ∨ ¬x4)
ω3 : (¬x2 ∨ x4)
ω4 : (¬x1 ∨ x2 ∨ ¬x3)

�
�
�
�
�
�
�
�
�
�
�

yix1
x1@1

(BCP) ¬x4@1
(BCP) ¬x2@1

(BCP) x3@1

ConflictE

1

A
A
A
A
A
A

yix1
¬x1@1

A
A
A
A
A
A

yix2
¬x2@2
(BCP) x3@2

{x1 = 0, x2 = 0, x3 = 1}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 42

Decision Heuristics: DLIS

DLIS (Dynamic Largest Individual Sum)
choose the assignment that increases the number of satisfied clauses
the most

I For every literal l, compute the number of unresolved clauses C(l)
that contain l

I This is the same as
C(l) =

∑
l∈ω,ω∈ϕ

1

I Make decision l that maximizes C(l)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 43

Decision Heuristics: JW

Jeroslow-Wang method
For every literal l, compute:

J(l) =
∑

l∈ω,ω∈ϕ

2−|ω|

I |ω| is the length of the clause (count the literals)
I Make decision l that maximizes J(l)

I This gives exponentially higher weight to literals in shorter clauses
I Can be dynamic (only for unresolved clauses) or static (J(l)

computed upfront)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 44

I We will see other (more advanced) decision heuristics soon.
I These heuristics are integrated with a mechanism called

learning with conflict clauses, which we discuss next.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 45

Implication Graphs

The implication graph tracks how assignments are implied.

Definition (Implication graph)

An implication graph is a labeled directed acyclic graph G = (V,E) where

I V : literals of the current partial assignment.
Labeled with the literal and the decision level.

I E: labeled with the clause that caused the implication.

I Can also contain a single conflict node labeled with κ and incoming
edges labeled with some conflicting clause.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 46

A Small Implication Graph Example

Current truth assignment: {¬x1@1}

Decision: x2@2

Clauses
ω1 =(¬x2 ∨ x3)
ω2 =(x1 ∨ ¬x3 ∨x4)

¬x1@1
t����3ω2

x2@2

t -ω1

Q
Q
QQs

ω2

x4@2

tdx3@2

td

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 47

Implication Graphs and Learning

Current truth assignment: {¬x9@1, ¬x10@3, ¬x11@3, x12@2, x13@2}

Decision: x1@6

Clauses
ω1 = (¬x1 ∨ x2)
ω2 = (¬x1 ∨ x3 ∨ x9)
ω3 = (¬x2 ∨¬x3 ∨ x4)
ω4 = (¬x4 ∨ x5 ∨ x10)
ω5 = (¬x4 ∨ x6 ∨ x11)
ω6 = (¬x5 ∨¬x6)
ω7 = (x1 ∨ x7 ∨¬x12)
ω8 = (x1 ∨ x8)
ω9 = (¬x7 ∨¬x8 ∨¬x13)
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)

¬x9@1
t����3ω2

x1@6

t����3ω1

Q
Q
QQsω2

ω5�
�
��3

¬x11@3
t

ω4

�
�
��3

ω5

Q
Q
QQs

x4@6td
ω4Q
Q
QQs

¬x10@3t
tdκ

Conflictω3�
�
��3

x3@6

td
ω3Q
Q
QQs

x2@6td
ω6�
�
��3

x6@6

td
ω6Q
Q
QQs

x5@6td

We learn the conflict clause
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 48

Backtracking
What now?
⇒ Flip the decision, i.e., ¬x1@6

Clauses
ω1 =(¬x1 ∨ x2)
ω2 =(¬x1 ∨ x3 ∨ x9)
ω3 =(¬x2 ∨¬x3 ∨ x4)
ω4 =(¬x4 ∨ x5 ∨ x10)
ω5 =(¬x4 ∨ x6 ∨ x11)
ω6 =(¬x5 ∨¬x6)
ω7 =(x1 ∨ x7 ∨¬x12)
ω8 =(x1 ∨ x8)
ω9 =(¬x7 ∨¬x8 ∨¬x13)
ω10 = (¬x1 ∨ x9 ∨ x11 ∨ x10)

x12@2
t����3ω7

¬x1@6

t����3ω8

Q
Q
QQsω7

tdκ′
Conflict

ω4

?

x13@2t

ω9�
�
��3

x7@6

td
ω9Q
Q
QQs

x8@6td

Another conflict clause:
ω11 = (¬x13 ∨ ¬x12 ∨ x1)

But where should we backtrack now? 5?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 49

Non-Chronological Backtracking

I So the rule is:

backtrack to the largest decision level in the conflict
clause.

I This works for both the initial conflict and
any conflict after the flip.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 50

More Conflict Clauses

I Def.: A conflict clause is any clause implied by the formula

¬x9@1
t����3ω2

x1@6

t����3ω1

Q
Q
QQsω2

ω5�
�
��3

¬x11@3
t

ω4

�
�
��3

ω5

Q
Q
QQs

x4@6td
ω4Q
Q
QQs

¬x10@3t
tdκ

Conflictω3�
�
��3

x3@6

td
ω3Q
Q
QQs

x2@6td
ω6�
�
��3

x6@6

td
ω6Q
Q
QQs

x5@6td ¬x1 ∨ x9 ∨ x10 ∨ x11

¬x2 ∨ ¬x3 ∨ x10 ∨ x11

¬x4 ∨ x10 ∨ x11

I Let L be a set of literals labeling nodes that form a cut in the
implication graph, separating the conflict node from the roots

I Claim:
∨
l∈L l is a conflict clause

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 51

More Conflict Clauses

I How many clauses should we add?

I If not all, then which ones?
I The shorter ones?
I Check their influence on the backtracking level ?
I The “most influental”?

I Common answer:
I Asserting clauses
I Unique implication points (UIPs)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 52

Conflict Clauses and Resolution

I Binary Resolution is a sound inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)
(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

We say that we resolve on β

I Example:

(x1 ∨ x2) (¬x1 ∨ x3 ∨ x4)
(x2 ∨ x3 ∨ x4)

I Also complete

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 53

Decision Heuristics: VSIDS

VSIDS (Variable State Independent Decaying Sum)

1. Each variable in each polarity has a counter initialized to 0.

2. When a clause is added, the counters are updated.

3. The unassigned variable with the highest counter is chosen.

4. Periodically, all the counters are divided by a constant.

⇒ variables appearing in recent conflicts
get higher priority

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 54

Decision Heuristics: VSIDS

I Keep a list of variables/polarities

I Updates only needed when adding a conflict clause

I Decisions are made in constant time (how?)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 55

Decision Heuristics: VSIDS

VSIDS is a ‘quasi-static’ strategy:

I static as it does not depend on the current assignment
I dynamic as the weights change over time

VSIDS is called a conflict-driven decision strategy.

”...this strategy dramatically (i.e., an order of
magnitude) improved performance...”

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 56

Decision Heuristics: Berkmin

I Keep conflict clauses in a stack

I Choose the first unresolved clause in the stack
If the stack is empty, use VSIDS

I Choose a variable + value from this clause
according to some scoring (e.g., VSIDS)

I This gives absolute priority to conflicts.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 57

Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 58

Bounded Model Checking

[BiereCimattiClarkeZhu99]

I Uses SAT for model checking
I Historically not the first symbolic model checking approach
I But scales better than original BDD-based techniques

I Mostly incomplete in practice
I Focus on counterexample generation
I Only counterexamples up to given length (the bound k) are searched

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 59

Bounded Model Checking for Safety

Checking safety property Gp for a bound k as SAT problem:

∨∨ ∨ ∨¬p
sk. . .s2s1s0

¬p¬p¬p¬p

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧
k∨
i=0

¬p(si)

Check occurrence of ¬p in the first k states

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 60

Time Frame Expansion in HW

inputs

observed signals

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 61

Bounded Model Checking Safety in HW

!prop4

inputs

failed

!prop0 !prop1 !prop2 !prop3

find inputs for which failed becomes true

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 62

Visualizing Bounded Model Checking

Nodes: variables,
edges: clauses
(binary clauses are red)

k = 12,
bounded cone-of-influence

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 63

Bounded Model Checking for Liveness

Generic counterexample trace of length k for liveness Fp

sl

¬p ¬p ¬p ¬p ¬p

s0 s1 . . . sl+1 sk

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk, sk+1) ∧
k∨
l=0

sl = sk+1 ∧
k∧
i=0

¬p(si)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 64

Bounded Model Checking Liveness in HW

CMP

!prop4

inputs

failed
sel

!prop2!prop1!prop0 !prop3

find inputs for which failed becomes true

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 65

Completeness in Bounded Model Checking

I Find bounds on the maximal length of counterexamples
I also called completeness threshold
I exact bounds are hard to find⇒ approximations

I Induction
I use inductive invariants

I Use SAT for quantifier elimination as with BDDs
I then model checking becomes fixpoint calculation

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 66

Measuring Distances

Distance: length of shortest path between two states

δ(s, t) ≡ min{n | ∃s0, . . . , sn[s = s0, t = sn and
n−1∧
i=0

T (si, si+1)]}

(distance can be infinite if s and t are not connected)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 67

Measuring Distances

Diameter: maximal distance between two connected states

d(T) ≡ max{δ(s, t) | T ∗(s, t)}

(recall that T ∗ is the transitive reflexive closure of T).

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 68

Measuring Distances

Reachable Diameter: maximal distance between two reachable states
(R)

d(T) ≡ max{δ(s, t) | T ∗(s, t) ∧R(s) ∧R(t)}

Initialized Diameter: the maximal distance from an initial state to a
reachable state

r(T, I) ≡ max{δ(s, t) | T ∗(s, t) and I(s) and
δ(s, t) ≤ δ(s′, t) for all s′ with I(s′)}

(minimal number of steps to reach an arbitrary state in BFS;
sometimes called radius)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 69

Diameters Illustrated

unreachable states

single state with distance 2 from initial states

initial states

states with distance 1 from initial states

8

1

2 3

4

5 6

9

7

0

diameter 4, initialized diameter 2,
reachable diameter 3

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 70

Completeness Thresholds for Safety

I A bad state is reached in at most dI steps from the initial states

I Thus, the (initialized/reachable) diameter is a completeness
threshold for Gp

I Thus, for Gp, the max. k req. for BMC is the diameter

I If no counterexample of this length can be found the property holds

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 71

How to Determine the Diameter?

Reformulation:
The initialized diameter is the max. length d of a path leading from an
initial state to a state t, such there is no other path from an initial state to
t with length less than d.
Thus d is the minimal number that makes the following formula valid:

∀s0, . . . , sd+1[(I(s0)∧
d∧
i=0

T (si, si+1))⇒

∃ n ≤ d [∃t0, . . . , tn[I(t0) ∧
n−1∧
i=0

T (ti, ti+1) ∧ tn = sd+1]]]

After replacing ∃ n ≤ d . . . by
∨d
n=0 . . . we get a Quantified Boolean

Formula (QBF), which is hard to decide (PSPACE complete).

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 72

Visualization of Reformulation

∃

∀

td−1

initial states

s0

t0

s1 sdsd−1

(td = sd+1)

t1

sd+1

(we allow ti+1 to be identical to ti in the lower path)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 73

Reoccurrence Radius/Diameter

I We cannot compute the diameter with SAT efficiently

I Overapproximation idea:
I drop requirement that there is no shorter path
I enforce different (no reoccurring) states on single path instead

Reoccurrence diameter:
length of the longest path without reoccurring states
(sometimes called circumfence)

Initialized reoccurrence diameter:
length of the longest initialized path without reoccurring states

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 74

Computing the Reoccurrence Diameter

Reformulation:
The reoccurrence diameter is the length of the longest path from initial
states without reoccurring states (one may further assume that only the
first state is an initial state)

This is the minimal d that makes the following formula valid:

∀s0, . . . , sd+1[(I(s0) ∧
d∧
i=0

T (si, si+1)) ⇒
∨

0≤i<j≤d+1

si = sj]

This is a propositional formula and can be checked by SAT!

(exercise: reoccurrence diameter is an upper bound for diameter)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 75

Bad Example for Reoccurrence Radius

1

0

2 n

Initialized diameter 1,
initialized reoccurrence diameter n

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 76

Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 77

SMT-BVAUF

What is SMT?
What is SMT-BVAUF?

SMT = Satisfiability modulo theories

BVAUF = Bit-vectors and arrays and uninterpreted functions

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 78

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

State { int created = 0; }

IoCreateDevice.exit {
if ($return==STATUS SUCCESS)
created = 1;

}

IoDeleteDevice.exit { created = 0; }

fun AddDevice.exit {
if (created && (pdevobj->Flags & DO DEVICE INITIALIZING) != 0)

{
abort "AddDevice routine failed to set "

"˜DO DEVICE INITIALIZING flag";
}

}

�
�	

Bit-wise AND

An Invariant of Microsoft Windows Device Drivers

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 79

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

I We need bit-vector logic – with bit-wise operators, arithmetic
overflow

I We want to scale to large programs – must verify large formulas
I Examples of program analysis tools that generate bit-vector

formulas:
I CBMC
I SATABS
I F-Soft (NEC)
I SATURN (Stanford, Alex Aiken)
I EXE (Stanford, Dawson Engler, David Dill)
I Variants of those developed at IBM, Microsoft

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 80

Bit-Vector Logic: Syntax

formula : formula ∨ formula | ¬formula | atom

atom : term rel term | Boolean-Identifier | term[constant]

rel : = | <
term : term op term | identifier | ∼ term | constant |

atom?term:term |
term[constant : constant] | ext(term)

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

I ∼ x: bit-wise negation of x
I ext(x): sign- or zero-extension of x
I x << d: left shift with distance d
I x ◦ y: concatenation of x and y

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 81

Semantics

Danger!

(x− y > 0) ⇐⇒ (x > y)

Valid over R/N, but not over the bit-vectors.
(Many compilers have this sort of bug)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 82

Width and Encoding

I The meaning depends on the width and encoding of the variables.
I Typical encodings:

I Binary encoding

〈x〉U :=

l−1∑
i=0

ai · 2i

I Two’s complement

〈x〉S := −2n−1 · an−1 +

l−2∑
i=0

ai · 2i

I But maybe also fixed-point, floating-point, . . .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 83

Examples

〈11001000〉U = 200

〈11001000〉S = −128 + 64 + 8 = −56

〈01100100〉S = 100

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 84

Width and Encoding

Notation to clarify width and encoding:

x[32]S

�
��

Width in bits
@
@I

U: unsigned binary
S: signed two’s complement

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 85

Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length l:

b : {0, . . . , l − 1} −→ {0, 1}

The value of bit number i of x is x(i).

︸ ︷︷ ︸
l bits

b0b1b2bl−1 bl−2

We also write xi for x(i).

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 86

Lambda-Notation for Bit-Vectors

λ expressions are functions without a name

Examples:

I The vector of length l that consists of zeros:

λi ∈ {0, . . . , l − 1}.0

I A function that inverts (flips all bits in) a bit-vector:

bv -invert(x) := λi ∈ {0, . . . , l − 1}.¬xi

I A bit-wise OR:

bv -or(x, y) := λi ∈ {0, . . . , l − 1}.(xi ∨ yi)

=⇒ we now have semantics for the bit-wise operators.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 87

Example

(x[10] ◦ y[5])[14] ⇐⇒ x[9]

I This is translated as follows:

x[9] = x9

(x ◦ y) = λi.(i < 5)?yi : xi−5

(x ◦ y)[14] = (λi.(i < 5)?yi : xi−5)(14)

I Final result:
(λi.(i < 5)?yi : xi−5)(14) ⇐⇒ x9

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 88

Semantics for Arithmetic Expressions

What is the output of the following program?

unsigned char number = 200;
number = number + 100;
printf("Sum: %d\n", number);

On most architectures, this is 44!

11001000 = 200
+ 01100100 = 100
= 00101100 = 44

=⇒ Bit-vector arithmetic uses modular arithmetic!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 89

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

a[l] +U b[l] = c[l] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l

a[l] −U b[l] = c[l] ⇐⇒ 〈a〉U − 〈b〉U = 〈c〉U mod 2l

a[l] +S b[l] = c[l] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l

a[l] −S b[l] = c[l] ⇐⇒ 〈a〉S − 〈b〉S = 〈c〉S mod 2l

We can even mix the encodings:

a[l]U +U b[l]S = c[l]U ⇐⇒ 〈a〉U + 〈b〉S = 〈c〉U mod 2l

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 90

Semantics for Relational Operators

Semantics for <, ≤, ≥, and so on:

a[l]U < b[l]U ⇐⇒ 〈a〉U < 〈b〉U
a[l]S < b[l]S ⇐⇒ 〈a〉S < 〈b〉S

Mixed encodings:

a[l]U < b[l]S ⇐⇒ 〈a〉U < 〈b〉S
a[l]S < b[l]U ⇐⇒ 〈a〉S < 〈b〉U

Note that most compilers don’t support comparisons with mixed
encodings.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 91

Complexity

I Satisfiability is undecidable for an unbounded width, even without
arithmetic.

I It is NP-complete otherwise.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 92

A Simple Decision Procedure

I Transform Bit-Vector Logic to Propositional Logic
I Most commonly used decision procedure
I Also called ’bit-blasting’

Bit-Vector Flattening

1. Convert propositional part as before
2. Add a Boolean variable for each bit of each sub-expression (term)
3. Add constraint for each sub-expression

We denote the new Boolean variable for bit i of term t by µ(t)i.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 93

Bit-vector Flattening

What constraints do we generate for a given term?

I This is easy for the bit-wise operators.

I Example for a|[l]b:
l−1∧
i=0

(µ(t)i = (ai ∨ bi))

(read x = y over bits as x ⇐⇒ y)

I We can transform this into CNF using Tseitin’s method.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 94

Flattening Bit-Vector Arithmetic

How to flatten a+ b?

−→ we can build a circuit that adds them!

FA

iba

so

Full Adder
s ≡ (a+ b+ i) mod 2 ≡ a⊕ b⊕ i

o ≡ (a+ b+ i) div 2 ≡ a · b+ a · i+ b · i

The full adder in CNF:

(a ∨ b ∨ ¬o) ∧ (a ∨ ¬b ∨ i ∨ ¬o) ∧ (a ∨ ¬b ∨ ¬i ∨ o)∧
(¬a ∨ b ∨ i ∨ ¬o) ∧ (¬a ∨ b ∨ ¬i ∨ o) ∧ (¬a ∨ ¬b ∨ o)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 95

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

i

FA FA FA FA FA FA FA FA

a7b7 a6b6 a5b5 a4b4 a3b3 a2b2 a1b1 a0b0

o
s7 s6 s5 s4 s3 s2 s1 s0

I Also called carry chain adder
I Adds l variables
I Adds 6 · l clauses

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 96

Multipliers

I Multipliers result in very hard formulas

I Example:
a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y

CNF: About 11000 variables, unsolvable for current SAT solvers

I Similar problems with division, modulo

I Q: Why is this hard?
I Q: How do we fix this?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 97

Incremental Flattening

?

ϕf := ϕsk , F := ∅

?

Is ϕf SAT?

?
No!

UNSAT

-Yes! compute I

?
I = ∅

SAT

6I 6= ∅

Pick F ′ ⊆ (I \ F)
F := F ∪ F ′

ϕf := ϕf ∧ CONSTRAINT(F)

�

ϕsk : Boolean part of ϕ
F : set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 98

Incremental Flattening

I Idea: add ’easy’ parts of the formula first

I Only add hard parts when needed

I ϕf only gets stronger – use an incremental SAT solver

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 99

Motivation

Arrays are an important data structure:

I “Native” implementation in most processor architectures

I Offered by most programming languages

I O(1) index operation
E.g., all data structures in Minisat are based on arrays

I Hardware: memories

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 100

Formalization

I Mapping from an index type to an element type

I TI : index type
I TE : element type
I TA = (TI −→ TE): array type

I Assumption: there are relations

=I⊆ (TI × TI) and =E⊆ (TE × TE)

The subscript is omitted if the type of the operands is clear.

I The theories used to reason about the indices and the elements are
called index theory and element theory, respectively.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 101

Basic Operations

Let a ∈ TA denote an array.

There are two basic operations on arrays:

1. Reading: a[i] is the value of the element that has index i

2. Writing: the array a where element i has been replaced by e is
denoted by a{i←− e}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 102

More About the Index Theory

What theory is suitable for the indices?

I Index logic should permit existential and universal quantification:
I “there exists an array element that is zero”
I “all elements of the array are greater than zero”

I Example: Presburger arithmetic, i.e., linear arithmetic over integers
with quantification

n-dimensional arrays:
For n ≥ 2, add TA(n− 1) to the element type of TA(n).

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 103

A Very General Definition of Array Logic

Syntax defined by extending the syntactic rules for the index logic and
the element logic

I atomI : atom in the index logic
I atomE : atom in the element logic
I termI : term in the index logic
I termE : term in the element logic

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 104

Syntax

atom : atomI | atomE | ¬atom | atom ∧ atom |
∀array-identifier . atom

termA : array-identifier | termA{termI ←− termE}
termE : termA [termI]

Equality between arrays a1 and a2: write as ∀i. a1[i] = a2[i]

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 105

Semantics

Main axiom:

Axiom (Read-over-write Axiom)

∀a ∈ TA. ∀e ∈ TE . ∀i, j ∈ TI .

a{i←− e}[j] =
{
e : i = j
a[j] : otherwise .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 106

Program Verification Example I

1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do
5 /* ∀x ∈ N0. x < i⇒ a[x] = 0 */
6 a[i]:=0;
7 /* ∀x ∈ N0. x ≤ i⇒ a[x] = 0 */
8 done;
9 /* ∀x ∈ N0. x ≤ 99⇒ a[x] = 0 */

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 107

Program Verification Example II

Main step of the correctness argument:
invariant in line 7 is maintained by the assignment in line 6

Verification condition:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
⇒ (∀x ∈ N0. x ≤ i⇒ a′[x] = 0)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 108

Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element logic is
decidable

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 109

Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 110

Example

(i = j ∧ a[j] = ’z’)⇒ a[i] = ’z’

’z’: read as an integer number

Fa: uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’)⇒ Fa(i) = ’z’

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 111

Example

(i = j ∧ Fa(j) = ’z’)⇒ Fa(i) = ’z’

Apply Bryant’s reduction:

(i = j ∧ F ∗1 = ’z’)⇒ F ∗2 = ’z’

where

F ∗1 = f1 and F ∗2 =

{
f1 : i = j
f2 : otherwise

Prove this using a decision procedure for equality logic.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 112

Array Updates

What about a{i←− e}?

1. Replace a{i←− e} by a fresh variable a′ of array type

2. Add two constraints:
a) a′[i] = e for the value that is written,
b) ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 113

Array Updates: Example I

Transform
a{i←− e}[i] ≥ e

into:
a′[i] = e⇒ a′[i] ≥ e

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 114

Array Updates: Example II

Transform
a[0] = 10⇒ a{1←− 20}[0] = 10

into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j]))⇒ a′[0] = 10

and then replace a, a′:

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j 6= 1. Fa′(j) = Fa(j)))⇒ Fa′(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 115

Array Properties

Now: restricted class of array logic formulas in order to obtain
decidability.
We consider formulas that are Boolean combinations of array
properties.

Definition (array property)

A formula is an array property iff if it is of the form

∀i1, . . . , ik ∈ TI . φI(i1, . . . , ik)⇒ φV (i1, . . . , ik) ,

and satisfies the following conditions:
1. The predicate φI must be an index guard.
2. The index variables i1, . . . , ik can only be used in array read

expressions of the form a[ij].
The predicate φV is called the value constraint.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 116

Index Guards

Definition (Index Guard)

A formula is an index guard iff if follows the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard |
iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer-constant |
integer-constant · index-identifier |
term + term

The “index-identifier” used in “term” must not be one of i1, . . . , ik.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 117

Array Properties: Example

The extensionality rule defines the equality of two arrays a1 and a2 as
element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i]

How about the array update?

a′ = a{i←− 0}

Is this an array property as well?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 118

Array Properties: Array Update

An array update expression can be replaced by adding two constraints:

a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

∀j. (j ≤ i− 1 ∨ i+ 1 ≤ j)⇒ a′[j] = a[j]

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 119

Algorithm

Input: Array property formula φA in NNF
Output: Formula φUF

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by
P (j), where j is a fresh variable.

3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by∧
i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and
obtain φUF ;

5. return φUF ;

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 120

The Set I

I(φ) denotes the index expressions that i might possibly be equal to.

Theorem: This set contains the following elements:
1. All expressions used as an array index in φ that are not quantified

variables.
2. All expressions used inside index guards in φ that are not quantified

variables.
3. If φ contains none of the above, I(φ) is {0} in order to obtain a

nonempty set of index expressions.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 121

Example

We prove validity of

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
⇒ (∀x ∈ N0. x ≤ i⇒ a′[x] = 0) .

That is, we check satisfiability of

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′ = a{i←− 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 122

Example

Apply write rule:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

Instantiate existential quantifier with a new variable z ∈ N0:

(∀x ∈ N0. x < i⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] 6= 0 .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 123

Example

The set I for our example is {i, z}.
Replace the two universal quantifications as follows:

(i < i⇒ a[i] = 0) ∧ (z < i⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (i 6= i⇒ a′[i] = a[i]) ∧ (z 6= i⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

Remove the trivially satisfied conjuncts to obtain

(z < i⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (z 6= i⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 124

Example

Replace the arrays by uninterpreted functions:

(z < i⇒ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z 6= i⇒ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) 6= 0 .

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see
that this formula is unsatisfiable.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 125

Outlook SMT-BVAUF

I The instantiations of the array axioms and the function
conconsistency rule are typically done incrementally
→ this is over-approximation

I Usually combined with constraints on hard bit-vector operators
→ this is under-approximation

I Yes, both in the same instance!

I The rule instantiation extends to (incomplete) treatment for
quantifiers (Z3 is good at this)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 126

Propo-
sitional

SAT

BMC

Netlists

SMT-BV
CBMC

SystemC

C/C++

decision procedures verification engines

bit-level

word-level

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 127

Bounded Program Analysis

Goal: check properties of the form Gp,
say assertions.

Idea: follow paths through the CFG to an assertion

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 128

Example

if ((0 <= t) && (t <= 79))
switch (t / 20)
{
case 0:

TEMP2 = ((B AND C) OR (˜B AND D));
TEMP3 = (K 1);
break;

case 1:
TEMP2 = ((B XOR C XOR D));
TEMP3 = (K 2);
break;

case 2:
TEMP2 = ((B AND C) OR (B AND D) OR (C AND D));
TEMP3 = (K 3);
break;

case 3:
TEMP2 = (B XOR C XOR D);
TEMP3 = (K 4);
break;

default:

assert(0);

}

(from an implementation of SHS)

if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 129

Example
if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 = 1
∧ TEMP2 = B ⊕ C ⊕D
∧ TEMP3 = K 2

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 130

Example

We pass

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 = 1
∧ TEMP2 = B ⊕ C ⊕D
∧ TEMP3 = K 2

to a decision procedure, and obtain a satisfying assignment,
say:

t 7→ 21, B 7→ 0, C 7→ 0, D 7→ 0, K 2 7→ 10,
TEMP2 7→ 0, TEMP3 7→ 10

4 It provides the values of any inputs on the path.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 131

Another Example
if

switch

case 0

case 1

case 2

case 3

default

0 ≤ t ≤ 79

t/20 6= 0

t/20 6= 1

t/20 6= 2

t/20 6= 3

0 ≤ t ≤ 79
∧ t/20 6= 0
∧ t/20 6= 1
∧ t/20 6= 2
∧ t/20 6= 3

That is UNSAT, so the assertion is
unreachable.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 132

What If a Variable is Assigned Twice?

x=0;

if (y>=0)
x++;

Rename appropriately:

x1 = 0
∧ y0 ≥ 0
∧ x1 = x0 + 1

This is a special case of SSA
(static single assignment)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 133

Pointers

How do we handle dereferencing in the program?

int ∗p;
p=malloc(sizeof(int)∗5);
...

p[1]=100;

p1 = &DO1
∧ DO1 1 = (λi.

i = 1?100 : DO1 0[i])

Track a ‘may-point-to’ abstract state while unwinding!

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 134

Scalability of Path Search

L1

L2 L3

L4

This is a loop with an if inside.

Q: how many paths for n iterations?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 135

Bounded Model Checking

I Bounded Model Checking (BMC) is the most successful formal
validation technique in the hardware industry

I Advantages:
4 Fully automatic
4 Robust
4 Lots of subtle bugs found

I Idea: only look for bugs up to specific depth

I Good for many applications, e.g., embedded systems

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 136

Transition Systems

Reminder: A transition system has a
I set of states S,
I a set of initial states S0 ⊂ S, and
I a transition relation T ⊂ (S × S).

The set S0 and the relation T can be written as their characteristic
functions.

The graph with nodes S and edges T is called the Kripke structure.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 137

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just ”concatenate” the transition relation T :

tS0 -∧ T t∧ T
- t . . .
∧ t -T∧ t

s0 s1 s2 sk−1 sk

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 138

Unwinding a Transition System

As formula:

S0(s0) ∧
k−1∧
i=0

T (si, si+1)

Satisfying assignments for this formula are traces through the Kripke
structure

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 139

Example

T ⊆ N0 ×N0

T (s, s′) ⇐⇒ s′.x = s.x+ 1

. . . and let S0(s) ⇐⇒ s.x = 0 ∨ s.x = 1

An unwinding for depth 4:

(s0.x = 0 ∨ s0.x = 1)
∧ s1.x = s0.x+ 1
∧ s2.x = s1.x+ 1
∧ s3.x = s2.x+ 1
∧ s4.x = s3.x+ 1

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 140

Unwinding a Transition System

Suppose we want to check a property of the form Gp.

We then want at least one state si to satisfy ¬p:

S0(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨
i=0

¬p(si)

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 141

Unwinding Software

We can do exactly that for our transition relation for software.

E.g., for a program with 5 locations, 6 unwindings:

L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 142

Unwinding Software

Problem: obviously, most of the formula is never ’used’,
as only few sequences of PCs correspond to a path.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 143

Unwinding Software

Example:

L1

L2

L3

L4

L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

CFG unrolling

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 144

Unwinding Software

Optimization:
don’t generate the parts of the formula that are not ’reachable’

L1

L2

L3

L4

L5 L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

L3
L5

CFG unrolling

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 145

Unwinding Software

Another problem:

L1

L2

L3

L4

L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

L1

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L2

L3L2

CFG unrolling

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 146

Unrolling Loops

Idea: do exactly one location in each timeframe:

L1

L2

L3

L4

L5 #6

#5

#4

#3

#2

#1

#0 L1

L2

L3

L2

L3

L4

L5

CFG unrolling

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 147

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body ;
if (cond) {

Body ;
if (cond) {

Body ;
while(cond)

Body ;
}

}
}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 148

Unrolling Loops

Problem: bad performance on some shallow bugs.

Solution: build multiple instances, in a BFS fashion

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 149

Solving the Decision Problem

Suppose we have used some unwinding, and have built the formula.

For bit-vector arithmetic, the standard way of deciding satisfiability of the
formula is flattening,
followed by a call to a propositional SAT solver.

In the SMT context: SMT-BV

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 150

Completeness

BMC, as discussed so far, is incomplete.
It only refutes, and does not prove.

How can we fix this?

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 151

Completeness: Summary

1. Unwinding assertions

2. Completeness thresholds

3. k-induction

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 152

Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body ;
if (cond) {

Body ;
if (cond) {

Body ;
while(cond)

Body ;
}

}
}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 153

Unwinding Assertions

I This allows us to prove that we have done enough unwinding.

I This is a proof of a high-level worst-case execution time (WCET).

I Appropriate for embedded software.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 154

Completeness Thresholds

I Let’s write
M |=k φ

for “φ holds on paths of M up to length k”.

I Idea: for finite state models, there is obviously some d with

M |=d φ ⇐⇒ M |= φ

I Such a d is called completeness threshold or cutoff.

I Getting smallest such d is as hard as deciding M |= φ.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 155

Completeness Thresholds

I Completeness thresholds are therefore overapproximated.

I Can be done in a property-specific way.

I Often yields a bound that is small enough.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 156

Using the Completeness Threshold

Unroll
transition function

k times

Check for
counterexample

Compare k to
completeness

threshold

Increase
k by one

[error found]
report

[reached]

OK

C program

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 157

Induction

In many cases, we can use inductive reasoning to show that assertions
hold for an unbounded number of loop iterations:

int array[n];
...
for(unsigned i=0;

i!=n;
i++)

{
assert (i<n);
...

}

i′ = i+ 1 ∧ i < n ∧ i 6= n
⇒ i′ < n

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 158

Induction

for(unsigned i=0;
i!=10;
i++)

{
assert (i!=100);
...

}

i′ = i+ 1 ∧ i 6= 100 ∧ i 6= 10
⇒ i′ 6= 100

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 159

k-induction

Idea:
I Induction step assumes that k iterations are successful

I Often elininates the need for invariant strengthening

I Useful loops that have “bounded memory”

For formalization, see TACAS 2010 paper.

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 160

The Cell Broadband Engine Processor

I Used in Sony’s
PlayStation 3

I Also in the top
supercomputer

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 161

The Cell Broadband Engine Processor

I EIB: element interface bus
I Four sixteen-byte data rings

with 64-bit tags
I Transfers 96 bytes/cycle
I Handles over 100 outstanding

requests

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 162

DMA on the Cell BE

I put(l, h, s, t)

issues a transfer of s bytes from local store address l to host
address h, identified by tag t

I get(l, h, s, t)

issues a transfer of s bytes from host address h to local store
address l, identified by tag t

I wait(t)

blocks until completion of all pending DMA operations identified by
tag t

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 163

Example

float buffers [3][CHUNK/sizeof(float)]; // Triple−buffering requires 3 buffers

void triple buffer (char∗ in, char∗ out, int num chunks) {
unsigned int tags[3] = { 0, 1, 2 }, tmp, put buf, get buf, process buf;

(1) get(buffers [0], in, CHUNK, tags[0]); // Get triple−buffer scheme rolling
in += CHUNK;

(2) get(buffers [1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags [0]); process data(buffers [0]); // Wait for and process first buffer
put buf = 0; process buf = 1; get buf = 2;
for(int i = 2; i < num chunks; i++) {

(4) put(buffers [put buf], out, CHUNK, tags[put buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers [get buf], in, CHUNK, tags[get buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process buf]); // Wait for and process data
process data(buffers [process buf]); // requested last iteration

tmp = put buf; put buf = process buf; // Cycle the buffers
process buf = get buf; get buf = tmp;
}
... // Handle data processed / fetched on final loop iteration

}

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 164

DMA Races

Definition

Let op1(l1, h1, s1, t1) and op2(l2, h2, s2, t2) be a pair of simultaneously
pending DMA operations, where op1, op2 ∈ {put, get}.

The pair is said to be race free if the following holds:
((op1 = put ∧ op2 = put) ∨ (l1 + s1 ≤ l2) ∨ (l2 + s2 ≤ l1))∧
((op1 = get ∧ op2 = get) ∨ (h1 + s1 ≤ h2) ∨ (h2 + s2 ≤ h1)).

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 165

Experiments

I Implementation on top of CBMC

I 22 benchmarks from IBM Cell SDK

I Runtime for most < 1 s

I Found previously unknown bug in SDK example

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 166

Experiments

Correct
Benchmark iterations time speedup
1-buf 15 9.49 23.14 ×
2-buf >100 >1352.43 >417.78 ×
3-buf >100 >4344.98 >120.9 ×

Buggy
Benchmark iterations time speedup
1-buf 3 1.25 2.91 ×
2-buf 20 33.62 59.97 ×
3-buf 69 4969.03 6641.47 ×

Speedup in comparison to SATABS

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 167

References

Clarke, E., Kroening, D., Lerda, F.:
A tool for checking ANSI-C programs.
In: TACAS. Volume 2988 of LNCS, Springer (2004) 168–176

Cordeiro, L., Fischer, B., Marques-Silva, J.:
SMT-based bounded model checking for embedded ANSI-C software.
In: ASE. (2009)

Kroening, D., Strichman, O.:
Efficient computation of recurrence diameters.
In: VMCAI. Volume 2575 of LNCS, Springer (2003) 298–309

Sheeran, M., Singh, S., Stålmarck, G.:
Checking safety properties using induction and a SAT-solver.
In: FMCAD. Volume 1954 of LNCS, Springer (2000) 108–125

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 168

Outlook

There is more. Ask me about

I Concurrency (including weak consistency)

I Automated abstraction refinment (SLAM and the like)

I Floating-point arithmetic

I Automated test-suite generation

I Combinations of SAT and abstract interpretation

D. Kroening: Formal Techniques for Hardware/Software Co-Verification 169

26th International Conference on VLSI

January 2013

Pune,India

Formal Techniques for
Hardware/Software Co-Verification

Daniel Kroening, Mandayam Srivas

• Acknowledgements: Madukar Kumar Singh, TRDC

 Nassim Seghir, Oxford

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC on Binsearch

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
2 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Step-1: Convert C-code into Control-Flow-Graph

3

if ((0 <= t) && (t <= 79))

 switch (t/20)

 { case 0:

 TEMP2 = ((B AND C) OR (!B AND D));

 TEMP3 = (K_1);

 break;

 case 1:

 TEMP2 = ((B XOR C XOR D));

 TEMP3 = (K_2);

 break;

 case 2:

 TEMP2 = ((B AND C) OR (B AND D) OR (C AND D));

 TEMP3 = (K_3);

 break;

 case 3:

 TEMP2 = (B XOR C XOR D);

 TEMP3 = (K_4);

 break;

 default: assert(0);

 }

default

if

switch

case-0

case-1

case-2

case-3

0 ≤ t ≤ 79

t/20 ≠ 0

t/20 ≠ 1

t/20 ≠ 2

t/20 ≠ 3

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Step-2: Generate Formula for Path

default

if

switch

case-0

case-1

case-2

case-3

0 ≤ t ≤ 79

t/20 ≠ 0

t/20 ≠ 1

t/20 ≠ 2

t/20 ≠ 3

 0 ≤ t ≤ 79

 Λ t/20 ≠ 0

 Λ t/20 ≠ 1

 Λ TEMP2 = B xor C xor D

 Λ TEMP3 = K_2

4 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Step-3: Pass formulas to SAT Solver

Pass

 0 ≤ t ≤ 79

 Λ t/20 ≠ 0

 Λ t/20 ≠ 1

 Λ TEMP2 = B xor C xor D

 Λ TEMP3 = K_2

to a SAT solver to obtain a satisfying assignment of values

 t → 21, B → 0, C → 0, D → 0, K_2 → 10,

 TEMP2 → 0, TEMP3 → 10

Denotes a set of possible values that any inputs can take on the path

Can be used to check if user-defined assertions hold at program locations

5 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Putting It All Together: Step-1+Ste-2+Step3

default

if

switch

case-0

case-1

case-2

case-3

0 ≤ t ≤ 79

t/20 ≠ 0

t/20 ≠ 1

t/20 ≠ 2

t/20 ≠ 3

assert (condn)

SAT Solver

Unsatisfiable

 Verified 
Bug

Counter-ex

Satisfiable

(Path1 || Path2 || Path3 || Path4 || Path5)  !(condn)

6 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Bounded Model Chekcing (BMC): Verification Flow-
chart

Unwind C/Verilog model and assertions

To Specified or Auto bound

Transform unwound program and assertions into

Boolean formulas (C and P)

over bit-vector equations

Check (C  !P)

Using SAT Solver

BMC threshold

 reached?

Unsatisfiable
Bug!

Satisfiable  Counter example

Verified Yes

No

Enhance bound

 Use induction or

assume/guar methods

to scale verification

SAT “running out of steam”

7 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC (Binsearch)

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
8 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

CBMC Features to Hi-light
• Assumptions: constrained non-determinism

• Assertions:

– Implicitly generated

– Getting effect of Quantification

• Basic CBMC commands

– show-claims, show-loops

– Checking assertions

– Controlling unwinding depth

• Analyzing error traces

9 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC (Binsearch)

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
10 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Objectives of the Exercise

• Verilog module verification

– 3 designs implement same function with
different timing and resource usage

– Verify them against same C-specification

• How do you handle timing/clock issues?

• How do you monitor and drive verilog signals?

• How do you analyze verilog error traces?

11 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

12

Courtesy: Calypto Design

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

13

Courtesy: Calypto Design

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

14

Courtesy: Calypto Design

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

15

Verilog Model C-Model

C-Assertions
(=?)

Inputs

C-Out Verilog-Out

What is Verified?

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

CBMC Infrastructure for RTL verification

• “Import” a verilog module into a C-Wrapper:

• Synthesize verilog into a transition system
– pin-accurate and clock-cycle-accurate

– next_timeframe() effect of once clock-cycle transition

• All verilog signals can be accessed
– Verilog input signals can be forced/constrained from the C-wrapper via

__CPROVER_assume/set_inputs()

– Output and any intermediate signals can be
monitored and check

• C Vs. RTL consistency check can be done by
importing C-model and verified assertions on
C-model into the C-wrapper

16

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Steps for performing C Vs. RTL FV

1. Construct C-wrapper

2. Specify required reset/input signal protocols

3. Define and check C- behavioral assertions
a. Map C vars used in C-assertions to corresponding Verilog signals

b. Specify trigger events each C-assertions need to be triggered

c. This depends on the latency and timing or RTL behavior

d. Steps 1&2 will yield mapped trigger-event qualified assertions for RTL

4. Specify unwind depth for verilog module

5. Fire FV run

17

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC (Binsearch)

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
18 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

C/C++ Models in SoC Design Flow

Control proc + Mems + Comm Fabric

Chip-Level

Video Subsystem Image Subsystem Display Subsystem

Use-case scenarios as C program sequences

Algorithmic description of Codecs in C/C++

 (10-50K lines)

C-models of IP blocks

 (<= 5-10K lines)

19 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Typical Multi-media IP blocks

• Large (8K X 8K) array processing: 2-3 deep nested loops

• Arrays consist of "macro blocks" of pixel clusters
– Mostly similar computation for each block with some history

– Sometimes, computation is cumulative for the whole array

• Data-oriented with lot of fixed-point arithmetic

20 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

21

ME5 – Bbox HWOD: Hybrid Window With Overlap Detection

IP Control

Growing Window

Shared On-Chip

Memory

Sliding window

Growing window

Rectangular

Search Area for

macro-block MBn

•FV Goals:
•Define complete behavior of algorithm as formal assertions on logical coordinates

• OD: “Every part of non-overlapping region and nothing else” is fetched
• Formally verify the properties for both C-model and RTL
• Verify “physical address” generation by showing direct C Vs RTL code equivalence

Actual BBox for MBn

Non-overlapping

Portion of BBox

For MBn+1

• Hybrid Window: Uses part sliding and part growing window to efficiently utilize the
 available DDR bandwidth and on chip memory
• Overlap detection (OD): Only non overlapping regions of the bounding box w.r.t. the
previous macro-block are identified and fetched (DMA commands)from DDR

•~1500 lines of C and ~3000 lines of verilog

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Technical challenges

• Unwinding for whole array is not practical

– Solution: Use induction

• Challenges in employing induction:

– May need to formulate “loop invariants”

• To capture history recorded b/w iterations

– K-induction may help [Donaldson,et.al., SAS2011]

• Coding of HW-timing protocol
– Solution: Automatic synthesis from timing diagrams

22 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

23

 i = 0;

 savearr = myarr; INIT
 history = myarr[N-1];

 assume i<len ;
 temp = myarr[j];

 myarr[j] = myarr[j]+history; BODY
 history = temp;
 i++;

 assume I >= len ;
 assert Forall (k < N): (PROP[N])
 myarr[k]==(savearr[k]+savearr[k-1 % N]

L

O

O

P

P

R

O

B

L

E

M

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

24

INIT BLOCK

 assert loop_invariant (inv)
 i, temp, history = “arbitrary value”
 myarr[i] = “arbitrary value”
 assume loop_invariant (inv)

 LOOP BODY

assume i >= N;
assert inv  Prop[N]

assert inv

L

O

O

P

I

N

V

A

P

P

R

O

A

C

H

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

25

INIT BLOCK

 assume i < N
 assert Prop[i]
temp = myarr[j];
myarr[j] = myarr[j]+history;
history = temp;
 i++;

L

O

O

P

K

(2)

 I

N

D

U

C

T

 I

O

N

BODY (WITH ASSERT) BODY-A (WITH ASSUME)

BODY

i, temp, history = “arb val”
myarr[i] = “arb val”

 assume i < N
 assume Prop[i]
temp = myarr[j];
myarr[j] = myarr[j]+history;
history = temp;
 i++;

BODY-A

BODY (WITH ASSERT)
 assume i >= N
 assert Prop[N]

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Memory Access Merging – Problem and Properties

Input example Output example

Merged for Fetch

Fetch

Don’t Fetch

Some example properties:

• Functional Property: “Every blue box in input should be part of at-least one yellow box in output”

• Performance property: “Every blue box in input should be part of exactly one yellow box in output”

• 2 power 36 input combinations

• 4 times the input combinations considering

arrival of 8x8 blocks (aligned or non-aligned)

• Functional Bug: A bug where a required data is

not fetched - will cause MC failure

• Scheme Bug : Implementation is not following

expected scheme

• Performance Bug: Non optimality - can cause

potential functional failure due to increase in bw

Verification problem

Design problem: Optimize DMA access by increasing size of “block” fetches

Implementation: Scans a 2-dim array of “tiles” looking to merge adjacent “fetches”

 into a single rectangular larger multi-fetch (~300 lines of C and RTL (~400 lines verilog)

• Bigger block: 800 lines of C and 2500 lines of verilog

8

FV Goal:

• Verify all assertions for C-model, first and verify the same on RTL

26 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Technical challenges:
Memory_access_merge

• Doesn’t scale beyond 8X8 arrays at C-level

– RTL verification scales much better 8X20

– Parallelism inherent in RTL seems to help

• Direct application of K-induction doesn’t work

– Worst-case history-depth can be as large as array
dimensions

• Internal buffer needs to be exposed to define loop
invariant

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Some Useful General Techniques

• Redefine Property using info in history buffers

– Need to combine information in internal
and output buffers

• Instrument assertions to Force-Flush history
information before checking assertions

– Can reverse-engineer existing code

• Both require design knowledge

• Use loop-invariant generation techniques

– An active research area

28 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC (Binsearch)

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
29 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Earlier Verification is Better

Courtesy: David N. Kleidermache, EE Times

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Model-based System Development:
 Formal Verification Value-Addition

System

 Testing (HIL)

Implementation (SIL)

Automatic Test

Generation

Formal

Verification

Requirements

Capture

Specification

Modeling (MIL)

Formal

Specification

Automatic Test

Execution

Integration

 Testing PIL/HIL

Design Model MIL
Unit Testing SIL/PIL

Formal

Verification

Formal Specification:

• Ensures complete and consistent

 requirements specification

Formal Verification:

• Ensures expected behavior

• Excludes unintended behavior

• Ensures full verification coverage

• Leads to reliable models and code

31

Object
of

Demo

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Model-Based SW Development

• Some popular Spec-modeling languages

– Statechart/Statemate [Harel&Politi98]

– Matlab/Simulink

• Verification on executable spec-models

– Sanity, safety, and consistency checks

• A good candidate for FV

– Equivalence b/w spec-model and generated
code

32 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

33

Spec-Model
(Statechart)

Safety &
Sanity Checks

FV Tool
(CBMC)

Automatic Translation C-Assertions

YES BUG!!

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

34

E
N
V
I
R
O
N

LOCK

Shared Global
START_A

A_CS_START

A_CS_END

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Main Features of Statecharts

• A hierarchy of finite-state machines (FSM)

– OR-state: Regular FSM where a state can be
refined into another statechart

– AND-state: “Synchronous” composition of a set of
OR-states

• Transition: “Guard/Action”

– Guards: boolean events/conditions

– Actions: Modify events and variables

– Enabled, if guard evaluates to true

• Statecharts share global variables

35 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Reactive System Semantics

While (true) { //BigStep

1. Environment: update external events

2. While (Exists: Enabled Transitions) { //Step

a. Evaluate guards of transitions

b. Pick a “maximal set” of enabled transitions

c. Compute results of actions in enabled transitions

d. Update results in arbitrary total order of transitions

e. } //End of Step

3. } //End of Bigstep

36 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Reactive Semantics Special Notes

• Pick one enabled transition from each OR-state
in an AND-state

– if >1, pick one non-deterministically

• All transitions are evaluated on old value

• Update events/variables in some total order

• External events change only once every BigStep

• Repeat Step until there are no enabled transitions

37 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Some Properties of Interest

• Safety: Bad states are never reachable

– NOT(in(A_CS) && in(B_CS))

• Progress: “BigStep Convergence”

– BigStep always terminates

– i.e., must eventually reach an idle state

• Determinism:

– Behavior is invariant w.r.t. choice and order
of transitions

38 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Challenges in Statechart
Analysis

• Scaling to system with a few hundreds of
charts and a dozen deep hierarchy

• A few techniques that can help

– Exploit determinism in || composition

–Exploit Inherent structure in OR-state

• Assume-Guarantee reasoning

• Abstraction

39 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Statechart Demo Objectives

• Modeling statecharts in C

– Transition systems in C

– Statemate semantics of || composition

• Efficiency gain of partial-order reduction

• Safety property checking

• BigStep convergence checking

• Lasso-like-loop checking for more effective
reachability property checking
[BiereCyrilleSchuppan]

 40 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Outline

1. BMC-based FV methodology overview

2. Introduction to CBMC (Binsearch)

3. RTL (Verilog) verification

4. Multi-media IP verification

– K-induction

5. Model-based verification of automotive SW

6. Microprocessor verification

– Sequential circuit equivalence

– C Vs RTL
41 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

42

Verilog Ckt-B Verilog Ckt-A

Outputs Equivalence
(at specified regular cycles)

Inputs

C-Out Verilog-Out

What is Verified?

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

Seq. Circuit Equiv. Problem

• Given: 2 RTL ckts (A,B) with identical I/O

• Check:

– For identical seq. of inputs (after reset),

– A and B have equivalent outputs

– In every cycle or (at specified regular points)

• Infinite trace equivalence property

– Q: How to convert into a finite-distance property
for BMC?

• Consider Avg4 circuits considered earlier

– Are they output equivalent at every t+3, t>=0?

 43 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

44

Courtesy: Calypto Design

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

45

Courtesy: Calypto Design

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

How to apply it to Avg4 equiv.?

• Identify an invariant (Inv) condition expected
to hold at equivalent checking points

– Inv(Ckt) = (Ckt.fsm_cntrl_state == S0)

• Properties to check:

– Base: Inv and Output Equiv holds after reset

– Induct:

• Assume Inv holds for both ckts at time t

• Check Inv and output equiv holds at (t+3)

• Exercise: Can K-induction be used to generate Inv?

46 M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

47

Can a similar
approach be used

to verify
uProcessor?

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

A Simple DSP

• Low-cost embedded DSP meant for processing

• Dual memory multiplier-accumulator architecture
– 32-bit data path, 2K instrn mem, two 1K data mems, 32 registers

• 4-stage pipeline

• 135 instructions:
– MUL, MAC, SHIFT

– Direct and indirect memory addressing

– Special-purpose address generation logic

– CALL, RET, REP (loop body) instructions

– Interrupt instructions

• RTL of DSP core: 2600 lines verilog (w/o mem & I/O)
– ~30K gates (w/o memories)

• C-Model: ISA and ISS

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 48

48

S-0 S-1

Resetz==0 &&
core_en==1

Resetz==1 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

• I-ref denotes a SET of RTL states
• Captures result of 6 valid instructions after a reset
• Includes ALL possible ways in which pipeline can be filled
 with 4 possible instructions
• Covers ALL possible variations of every instruction
• Covers ALL possible combinations of UNCONSTRAINED
 input signals

“How can we use result
of symbolic simulation?”

CHECK ASSERTIONS ON
THEM

Global Constraints:

Forall addr:
Assume imem[addr]
 isVALID &&
 (!(isOUT)|| isINT)

No constraints on
Xmem and ymem

I-ref

Symbolic sim RT L

 for n cycles

 n >=4 (say 6)

Goal:

 Fill pipeline with

 all possible seq of

 instrns

I-ck1 I-ck2 I-ck3

Resetz==1 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Resetz==1 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 49

Microprocessor Verification:
 Problem Statement

Reset seq
RTL Machine Trace

Reset seq

Spec (C-Model) Machine Trace

• Sequential Equivalence b/w RTL and ISA machines: [SrivasMiller]
•For ALL identical sequences of instructions

• Challenges:
•ISA and RTL machines may complete instructions at different rates

• RTL is pipelined but ISA may not be
• ISA is Pipelined, but may not be cycle accurate

• ISA state is an abstraction of RTL state

Assume:
Mems are
identical

Check equiv of visible parts:
Data mems, PC, registers, accs

 Instruction completion points

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 50

Verifying Sequential Equivalence:
Using “finite-distance” assertions

Reset seq

Check equiv of visible parts:
Data mems, PC, registers, accs

 Instruction completion points
RTL Machine Trace

Reset seq
Spec (C-Model) Machine Trace (unpipelined)

Assume:
Mems are
identical

Pipeline-depth

In general, enough to check “pipeline-deep” assertions

• involving states that are separated at most pipeline depth apart

• on traces originating from an arbitrary pipeline state

• with arbitrary sequence of instructions in flight

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 51

Finite-distance Inductive
Assertions: What do they
Assume?

Reset seq
RTL Machine Trace

Pipeline-depth

Start with an arbitrary but valid RTL machine state such that:

• pipeline is filled with arbitrary sequence of legal instructions

• F-stage, D-stage, M-stage, E-stage

• the instrns in the piepline satisfy all required pipeline restrictions

I-state D-state M-state E-state

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 52

Finite-distance Inductive
Assertions: What do they
check on RTL?

RTL Machine Trace

Pipeline-depth

Reset seq

I-state D-state M-state E-state

C-spec function

(from Instrn-accurate

C-model)

Assert-1: The I-stage instrn (in I-state) will move to D-stage in (D-state)

Assert-2: Expected NEW instrn will be the I-stage instrn (in D-state)

Assert-3: Rest of visible state (mem, internal regs, ACC, etc.) in E-state will

 correspond as per the C-spec function

 D-stage instrn completes

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 53

Instruction behavior correctness:
NOP cc s2

NOP-assert1: “The F-instrn in I-ref state will
ALWAYS EVENTUALLY move to D-stage “

• in I-ck1 state, if !isNOP(D-instrn)
• #wait-cycles later, if isNOP(D-instrn)

•NOP-assert2: “Visible state MUST not
change from Iref+2 to Iref+#wait-cycles

S-0 S-1 I-ref I-ck1 I-ck2 I-ck3

Resetz==0 &&
core_en==1

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Global Constraints:

Forall addr:
Assume imem[addr]
 isVALID &&
 (!(isOUT)|| isINT)

No constraints on
Xmem and ymem

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 54

S-0 S-1 I-ref I-ck1 I-ck2 I-ck3

Resetz==0 &&
core_en==1

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Resetz==0 &&
core_en==1 &&
Idata==
imem[prev_iaddr]

Global Constraints:

Forall addr:
Assume imem[addr]
 isVALID &&
 (!(isOUT)|| isINT)

No constraints on
Xmem and ymem

NOP-assert1 FV Revelations

• Requires Pipe-7 restrn as precondition
•“A condtnl ST instrn cannot have

 a non ST condtnl instrn in 2nd place after ST”

• ACC sign/zero condn change during

 NOP countdown, can change NOP cycles
• #nop-cycles is also impacted by n-1 and n-2 instrns!!

• is this expected or a BUG?

• Doesn’t require any other pipe restrictions

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 55

FV Error Trace: Conditional ST
Issue

Advantages of FV for uProcessors
• Coverage: A single symbolic FV run covers

– All possible variations of instruction under test and external conditions
• Eg., for NOP all variations of CC and #op cycles (up to a limit)

• Eg., for CTL, all possible CC conditions, target values

– All possible combinations of sequences of 4 instrns in flight in the
pipeline

• With and without pipeline restriction

– All possible combinations of two instructions following instrn under test

• Counter-example ( reduced debug time)
– Generates an offending error trace (waveform), if assertion fails

– Error trace has all information needed to reproduce in simulation

• Large reduction in number of test-cases
– Roughly one assertion per major class of instructions (15 – 20 classes)

• Eg., all CTL instructions and their variations handled by a single assertion

• Eg., all LD instrns should be possible to do with a single assertion

– Verif plan: 162 test cases with >= 14788 variations

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 60

The FV Flow

Skeleton C-Wrapper/Driver

Constraints on
instrn and input

sequences
Instruction Spec

(C-function)

FV Tool
(HW_CBMC)

uProc RTL

Data
Mems

imem Inputs

NCSIM

Error trace
(waveform

vcd)

FAIL

SUCCESS

uDSP tb & sim env

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification 61

62

A. Biere, A. Cimatti, E. Clarke, and Y. Yhu, Symbolic model checking without BDDs,

In “Tools for Algorithms for Construction and Analysis of Systems, pp 193-207, 1999.

Mandayam K. Srivas and Steve P. Miller, Applying Formal Verification to the AAMP5

Microprocessor: A Case-study in the Industrial Use of Formal Methods, Formal

Methods n System Design, vol.8, No.2, pp 153-188, 1996.

R. Hosabettu, M.K. Srivas, and G. Gopalakrishnan, Proof of Correctness of a

Processor with Reorder Buffer using the Completion Functions Approach, CAV 1999.

A. Donaldson, L. Haller, D. Kroening, Software Verification Using K-Induction, Static

Analysis Symposium 2011, LNCS, pp. 351-368, Springer

Armin Biere, Cyrille Artho, Viktor Schuppan, Liveness Checking as Safety Checking,

Electronic Notes in Theoretical Computer Science 66 No. 2 (2002), URL:

http://www.elsevier.nl/locate/entcs/volume66.html 18 pages

REFERENCES

M.K.Srivas: Formal Techniques for Hardware/Software Co-Verification

	vlsi2013-slides
	Why?
	What?
	Formal Definition SAT
	Conjunctive Normal Form
	Definition

	Binary Search
	Basic DPLL for Propositional SAT
	Decision Heuristics I
	Implication Graphs
	Non-Chronological Backtracking
	Conflict Clauses
	Decision Heuristics II
	Bounded Model Checking for Safety
	Bounded Model Checking for Liveness
	Completeness in Bounded Model Checking
	Introduction to Bit-Vector Logic
	Syntax
	Semantics
	Decision procedures for Bit-Vector Logic
	Flattening Bit-Vector Logic
	Incremental Flattening

	Introduction
	Definition
	Basic Operations
	Syntax
	Semantics
	Example

	Arrays as Uninterpreted Functions
	A Reduction Algorithm for Array Logic
	Array Properties
	A Reduction Algorithm
	Unwinding a Transition System
	Unwinding Software
	Completeness
	Application of BMC

	Applications

