
Strengthening Properties
using Abstraction Refinement

Mitra Purandare
Computer Systems Institute

ETH Zurich
mitra.purandare@inf.ethz.ch

Thomas Wahl
Computing Laboratory

Oxford University, U.K.
thomas.wahl@comlab.ox.ac.uk

Daniel Kroening
Computing Laboratory

Oxford University, U.K.
daniel.kroening@comlab.ox.ac.uk

Abstract—Model Checking is an automated formal method for
verifying whether a finite-state system satisfies a user-supplied
specification. The usefulness of the verification result depends
on how well the specification distinguishes intended from non-
intended system behavior.Vacuity is a notion that helps formalize
this distinction in order to improve the user’s understanding of
why a property is satisfied. The goal of this paper is to expose
vacuity in a property in a way that increases our knowledge ofthe
design. Our approach based on abstraction refinement computes
a maximal set of atomic subformula occurrences that can be
strengthened without compromising satisfaction. The result is a
shorter and stronger and thus, generally, more valuable property.
We quantify the benefits of our technique on a substantial setof
circuit benchmarks.

I. I NTRODUCTION

Model Checkingis an automated technique to verify whether
a finite-state design complies with a property given as a
temporal logic formula. For certain types of properties, itis
possible to compute a witness or a counterexample, attesting
to their satisfaction or violation. In general, however, such
evidence cannot be succinctly presented, such as in order to
confirm a property that universally quantifies over all allowed
executions.

This lack of evidence not only diminishes the verification
engineer’s confidence in the model checking result, but can
also cause errors to go undetected. For example, Beatty and
Bryant observed that the LTL propertyG(req → F ack) is
satisfied by a model that never assertsreq [1], which is likely
not intended. Intuitively, a formula holdsvacuouslyif it does
so for “unintended reasons”, as in the above case of antecedent
failure. Vacuous satisfaction usually indicates a flaw in the
design or the property and should be reported to the user.

Formalizing this intuition of vacuity turned out to be chal-
lenging; numerous strategies have been investigated (e.g.[2],
[3], [4] and others). All these notions have in common that
the satisfaction of the formula is invariant under certain mod-
ifications to the formula (formula vacuity[3]) or the design
model (trace and structure vacuity[4]). Invariance under such
modifications provides hints where the formula can possibly
be strengthened without causing it to fail on the given design.
Reporting the satisfaction of a formula stronger than the one

This research is supported by the Semiconductor Research Corporation
(SRC) under contract no. 2006-TJ-1539, by the EU FP7 STREP MOGENTES
(project ID ICT-216679), and by the EPSRC project EP/G026254/1.

supplied by the user substantially improves the model checking
result, as it increases the certified knowledge about the design.

In this paper, we present an algorithm that, given a formula
φ and a modelM satisfying φ, checks whether a stronger
satisfying formula can be obtained forM . The algorithm does
so by replacing inφ a maximal number atomic subformula
occurrences from some candidate setC by a constant expres-
sion that strengthens the overall formula. In the simplest case,
C is just the set of all atomic subformula occurrences ofφ.
We first describe a principal strategy that explores possible
replacements in order to compute a strongest formula. Success
or failure in verifying candidate formulas guides the search
towards the optimal solution.

We then enhance the principal strategy by exploiting coun-
terexample information of a failed model checking run. If a
candidate formula is too strong, we use a path witnessing
the failure to narrow the search space before identifying new
candidates. This approach can be seen as an instance of
counterexample-guided abstraction refinement [5], applied to
properties. The result is a maximally strengthened formula
shown to hold (or, dually, a weakened formula shown to
fail) on a given model. We demonstrate the efficiency of the
approach using a significant set of hardware benchmarks.

Related Work

A variety of vacuity notions have been proposed in the
literature. Among the earliest, [3] and [2] introduce syntac-
tic vacuity, i.e., vacuity with respect to subformulas and to
subformula occurrences, respectively. Efficient algorithms for
syntactic vacuity detection for CTL are given in [6]. The
semantic notions of vacuity in [4] for LTL are extended to
CTL* in [7] and to RELTL in [8]. A detailed discussion
on the ramifications of the various notions of vacuity can
be found in [9]. A temporal logic query based approach
to vacuity detection is presented in [10]. Vacuity detection
in the framework of SAT-Based bounded model checking is
addressed in [11].

Closest to our work, Gurfinkel and Chechik presentmutual
vacuity [12]. The objective is to find a maximum set of
literal occurrences that can be simultaneously replaced byfalse

without causing the property to fail. The authors propose an
exponential-time multi-valued model checking algorithm to
detect mutual vacuity. We provide a solution to this problem

for which a two-valued model checker suffices, as they are
typically available in industry. Our algorithm is similar in
spirit to the one proposed by Chockler and Strichman [13],
[14]. They propose an iterative algorithm at the automaton
level, which hides literals in the automaton and iteratively
adds back aminimum number of literals that give rise to
the counterexample. The second step requires solving an NP-
complete problem (minimum hitting set). In contrast, we
address the problem at the formula level and systematically
exploit the relationship between candidate formulae, which
allows for a much more cost-effective solution. Moreover,
we use counterexample traces to eliminate many candidate
formulaswithout model-checking the entire design.

A recent approach by Chockler et al. determinesvacuity
valuesover paths inM , in order to compute the strongest
formula that satisfiesM and lies in the Boolean closure of
the strengthenings of the original property [15]. Althoughthe
approach finds formulas stronger than mutual vacuity does, its
complexity seems impractical for large formulas.

II. PRELIMINARIES

Model checking is a technique to verify a finite-state model
of a system against a user-specified property [16]. A property
is typically given in atemporal logic; we focus in this paper
on the linear-time logic LTL [17]. LTL model checking is
worst-case exponential in the size of the formula. In case
of a failing property, a model checker can provide a finitely
representablecounterexampleevidencing the failure. In this
paper we first transform every LTL formula intonegation
normal form, where the Boolean negation operator¬ occurs
only immediately in front of atomic propositions.

A partially ordered set(“poset”) (L,⊑) is a setL together
with a reflexive, transitive and anti-symmetric binary relation
⊑; we say the elements ofL are ordered according to⊑.
Let B ⊆ L. An elementy ∈ L is an upper boundfor B if
for every s ∈ B, s ⊑ y. Further,y is a least upper bound
for L if y ⊑ y′ for every upper boundy′ of B. Lower
bound and greatest lower bound are defined analogously. A
lattice is a poset(L,⊑) such that every non-empty finite
subsetB ⊆ L has a least upper bound and a greatest lower
bound. A complete latticeis a poset(L,⊑) such that every
subsetB ⊆ L has a least upper bound and a greatest lower
bound. Finite lattices are complete. Fig. 1 shows a complete
lattice. A chain (antichain) is a set of pairwise comparable
(pairwise incomparable) elements ofL. Theheightof a lattice
is the cardinality of the biggestchain. The subsets of a finite
set X , partially ordered by the subset relation⊆, form the
subset latticeof X . Given a lattice(L,⊑) and a subset
B ⊆ L, the (reflexive) upward closureof B is the set
UC (B) = {e ∈ L|∃b ∈ B.b ⊑ e}; note thatB ⊆ UC (B).
The (reflexive) downward closureDC is defined analogously.

Notation: For a subformula occurrenceζ of a formulaφ,
we writeφ[ζ ← ⊥] to mean the result of replacingζ in φ by
true if ζ is immediately preceded by a negation (which implies
that ζ is an atomic proposition), and byfalse otherwise.

false

FGa Xb GF(b ∨ c)

FGa ∨ Xb FGa ∨ GF(b ∨ c) Xb ∨ GF(b ∨ c)

FGa ∨ Xb ∨ GF(b ∨ c)

Level 3

Level 2

Level 1

Level 0

Fig. 1. Formula lattice forFGa ∨ Xb ∨ GF(b ∨ c)

Throughout the paper, we writeC for the set of atomic
subformula occurrences under consideration for replacement
in φ. As usual,2C denotes the power set ofC. Given Y ⊆
C, we write φY for the formula obtained by replacing the
occurrences inY by ⊥. Thus, if Y = {y1, . . . , yn}, then

φY = φ[y1 ← ⊥, . . . , yn ← ⊥] .

III. A L ATTICE OF FORMULAE

Kupferman and Vardi present an efficient way of tightening
a formula by replacing a single occurrence of a subformula by
⊥ [2]. We first observe that the more occurrences are replaced
by ⊥ in φ, the stronger the resulting formula:

Theorem 1:For two formulaeφY andφX such thatY ⊆
X ⊆ C, φY → φX is valid.

The set {φZ : Z ⊆ C} of formulae obtained by re-
placing certain subsets of occurrences inC by ⊥ forms
a complete lattice, with the partial order relation given by
φY ⊑ φX iff Y ⊆ X . Let this formula lattice be denoted
by L. The top and bottom elements ofL areφstng = φC (all
occurrences inC replaced by⊥) andφ (no occurrences inC
replaced by⊥), respectively. Givenn := |C|, the height of the
lattice isn + 1; its width is the binomial coefficient

(

n
⌈n/2⌉

)

.
The upward closure of an elementφY ∈ L is

⋃

X⊆Y φX .
The level of φY ∈ L is |Y |, i.e., the number of literal

occurrences inφ that are replaced by⊥. Theweight imbalance
of φY is the absolute value of the difference between the
size of its upward and downward closure. Agroup is an
antichain inL containing elements at the same level. The
upper (lower) weightof a group with levell in L is the number
of elements in all groups with level greater than (less than)l.
The weight imbalance of a group inL is the absolute value of
the difference between the upper and the lower weight of that
group. A lattice element with minimum weight imbalance is
said to bebalanced. A balanced groupis defined similarly.

As an example, the lattice for the formulaFGa∨Xb∨GF(b∨
c), with C = {a, b, b ∨ c}, is given in Fig. 1. Our goal is to
compute a top-most elementφtop in L that is satisfied byM .
Various properties of the formula lattice can be exploited while
searching for such an element.

Lemma 1:For any formulaα ∈ L satisfiedby M , φtop

belongs toUC (α). For any formulaβ ∈ L not satisfiedby
M , UC (β) does not contain any formula satisfied byM .
Givenα, the lemma allows us to restrict attention toα’s up-
ward closure, which can reduce the set of candidate solutions
drastically. Analogously, givenβ, the upward closure ofβ
can beeliminated. An algorithm to computeφtop shrinks the

solution space after every model checking run, directing the
algorithm towards the solution. We now show in more detail
how to search through the lattice, with the goal of verifying
againstM as few times as possible.

Exhaustive Search through the Lattice:Since we are inter-
ested in a top-most element inL that is satisfied byM , a
reasonable strategy is to start from the top of the lattice and
verify each elementφY againstM (Algorithm 1). IfM |= φY ,
we have found astrongestpossible solution. IfM 6|= φY , the
algorithm eliminatesUC (φY) (Lemma 1). Note thatUC (φY)
also includesφY . We point out that the exhaustive technique
returns a maximum (not maximal) set of literal occurrences
that can be replaced with⊥.

Algorithm 1 Property Strengthening Using Exhaustive Search

EXHAUSTIVE-LATTICE-SEARCH(M,L)
Input: ModelM with M |= φ, formula latticeL (unmarked)
Output: a strongest lattice element satisfied byM

1: while true do
2: Pick a top-most unmarked elementφY ∈ L
3: if M |= φY then
4: return φY

5: else
6: mark all elements inUC (φY)
7: end if
8: end while

Binary Search through the Lattice:If we select a formula
near the top ofL, it is likely to be falsified since it is much
stronger than the original formula. If we select a formula
close to the bottom ofL, it is likely to be satisfied, but
it may not be a strongest element satisfyingM . A better
strategy, implemented by Algorithm 2, is therefore to select
a most balancedgroup g and a most balanced elementφY

within g. If M satisfiesφY , there is a solution in the upward
closure ofφY (Lemma 1). In this case, the algorithm calls
BINARY-LATTICE-SEARCH recursively on this closure. Once
the number of unmarked elements in the current lattice is 1,
the algorithm returns the unique element as a solution.

IV. GUIDED PROPERTYREFINEMENT

WhenM 6|= φY , neither of the search strategies presented
so far exploits counterexample information provided by the
model checker. A counterexample pathπ is an inexpensive
guide to rule out any formula in the lattice that is not satisfied
along π, since such a formula is not satisfied by the model
either. We say that a formulaψ allows a pathπ if π |= ψ.

Lemma 2: If a formula ψ ∈ L is not satisfied byM and
permits a counterexample pathπ, the formulae inL that do
not allow π can be discarded.

That is, if some formula in the lattice does not allow a valid
path through the model, the upward closure of that formula can
be discarded. Since a counterexample to an LTL property is a
single finitely representable path, the test whether a formula
allows a counterexample can be performed very efficiently

Algorithm 2 Property Strengthening Using Binary Search

BINARY-LATTICE-SEARCH(M,L)
Input: ModelM with M |= φ, formula latticeL (unmarked)
Output: a strongest lattice element satisfied byM

1: while true do
2: if |L| = 1 then // count unmarked elements
3: return the unique element of the lattice
4: end if
5: Select a most balanced groupg ∈ L
6: Pick a most balanced unmarkedφY ∈ g
7: if M |= φY then
8: return BINARY-LATTICE-SEARCH(M,UC (φY))
9: else

10: mark all elements inUC (φY)
11: end if
12: end while

using a specialized path checker, with a complexity that is
worst-case linear in the size of the formula.

The counterexample test serves as a low-cost way to reduce
the set of candidate solutions in the lattice, compared to the
exponential cost of model checking every candidate.

We observe that the number of elements in the upward
closure of an element with levelH1 in L is less than the
number of elements in the upward closure of an element with
levelH2 in L whereH1 > H2.

That is, verification against the counterexample should be
performed from bottom-to-top in order to mark as many
elements as possible.

The above strategy may have very limited benefits in
terms of the number of times path checking was performed
compared to the number of times the formula did not allow
the counterexample. The formulae at the bottom of the lattice
are weaker and hence, are harder to refute. But, if refuted, they
result in large reduction in the size of the lattice. Hence, we
propose a strategy similar to binary lattice search to perform
the counterexample tests as well. Algorithm 3 implements
the strategy. The function BINARY-ELIMINATE is recursively
called until the formula at the middle of the lattice allows
the counterexample. Lines 6 and 10 in Algorithms 1 and 2,
respectively are replaced by a call to BINARY-ELIMINATE .

Computing a most balanced group and a most balanced
element: If M 6|= φY , the algorithm eliminates the upward
closure ofφY and uses the counterexample to eliminate further
elements. When an element in the lattice is marked, the
weight imbalance of all the groups has to be recalculated. This
requires tracking the upper weight and lower weight of each
group. The weights are updated for all groups each time when
an element in the lattice is marked. The weight imbalance of
every individual element can be calculated on the fly using
the difference between the number of incoming and outgoing
edges as a rough indication of the imbalance.

We demonstrate our lattice search algorithms 1 and 2
with and without binary elimination in Algorithm 3 using an
example. Consider the Kripke structureM in Fig. 2 and the

Algorithm 3 Eliminating lattice elements using counterexam-
ple in Binary Search manner

BINARY-ELIMINATE (φY , L)
Input: lattice elementφY , latticeL
Effect: mark irrelevant lattice elements

1: let π be a counterexample witnessingM 6|= φY

2: while true do
3: mark all elements inUC (φY)
4: Select a most balanced groupg ∈ L
5: Let φY be a most balanced unmarked element ing

6: if π |= φY then
7: return;
8: end if
9: end while

S1 S3 S4
a a, b c

Fig. 2. Kripke structureM

propertyFGa∨Xb∨GF(b∨c). A formula lattice for the property
with C = {a, b, b ∨ c} is given in Fig. 1.

EXHAUSTIVE-LATTICE-SEARCH: Without the coun-
terexample test, the algorithm refutesfalse, FGa, Xb, GF(b∨c),
and FGa ∨ Xb. The next candidate, i.e.,FGa ∨ GF(b ∨ c) is
the solution. Observe that the solution does not contain the
redundant subformulaXb indicating vacuity.

When the top-most elementfalse is refuted, let the coun-
terexampleπ1 to it be(S1)

w. The counterexample test utilizes
π1 to discard more elements. Assume that the algorithm
chooses the formulaψ1 = FGa ∨ Xb as a most balanced
element from the balanced level 1. The elementψ1 allows
π1 aborting the counterexample test.

Let the top-most element selected beFGa and the coun-
terexampleπ2 to it be(S1S4)

w. The most balanced elementψ1

does not allowπ2. The algorithm marksUC(ψ1). The current
state of dynamic lattice is shown in Fig. 3. The most balanced
element in the balanced level 1 isψ2 = FGa∨GF(b∨c). Since
the pathπ2 allowsψ2, the counterexample test is aborted.

The algorithm now selectsGF(b ∨ c) for which the coun-
terexampleπ3 be (S1)

w. The balanced level is still the same.
Let the most balanced element selected beψ2. The element
ψ2 allows the pathπ3 aborting the counterexample test. The
next top-most element in the dynamic lattice isψ2 and is the
solution. Observe that the number of model checking calls
againstM are reduced from six to four with the counterxample
test.

BINARY-LATTICE-SEARCH: Initially, level 1 and level 2
in the lattice are balanced. The algorithm selects, say, thelevel
2. Assume further that the algorithm chooses the formulaFGa

as the balanced element. SinceM 6|= FGa, the upward closure
of FGa is marked disturbing the balance the lattice. The most
balanced level is shifted to level 1 in the lattice towards the
solution.

false
∗

FGa
∗

Xb
∗

GF(b ∨ c)

FGa ∨ Xb
∗

FGa ∨ GF(b ∨ c) Xb ∨ GF(b ∨ c)

FGa ∨ Xb ∨ GF(b ∨ c)

Level 3

Level 2

Level 1

Level 0

Fig. 3. Dynamic Lattice state after markingUC(FGa ∨ Xb)

false
∗

FGa∗ GF(b ∨ c)

FGa ∨ GF(b ∨ c)

Fig. 4. State of Dynamic lattice in Fig. 3 after retainingUC(FGa∨GF(b∨c))

The most balanced elements in this level areψ1 = FGa∨Xb
andψ2 = FGa∨GF(b∨ c). Let the algorithm selectψ2. Since
M |= ψ2, the algorithm now operates on theUC(ψ2). The
algorithm selectsGF(b∨ c), which fails inM . The lattice has
only one unmarked element left, which isFGa ∨ GF(b ∨ c).
This formula is also the solution. The binary search requires
three calls to the model checker in total.

SinceM 6|= FGa, the counterexample to it can be exploited.
Let the counterexampleπ1 be (S1S4)

w. The current balanced
level in the dynamic lattice is 1. Assume that the algorithm
selects the elementψ2 = FGa∨Xb. The elementψ2 does not
allow π1. The algorithm marksUC(ψ2). Fig. 3 illustrates the
state of the dynamic lattice. The balanced level continues to
be 1. The algorithm selectsψ3 = FGa∨GF (b∨ c) as a most
balanced element. The elementψ3 allows the counterexmaple
π1 aborting the counterexample test. In the new dynamic
lattice,ψ3 is still a most balanced element. SinceM |= ψ3, the
algorithm operates onUC(ψ3). Fig. 4 illustrates the state of
the lattice. Let the balanced element selected beGF(b∨c). This
element is not satisfied byM . Thus, the new dynamic lattice
contains only one unmarked element which is the solution.

Complexity Analysis: The number of model checking
runs againstM dominates the cost of our algorithms. This
number is maximal, for both search techniques, when the
property is not vacuous and no counterexample test eliminates
any lattice element. In this case, for the exhaustive search,
the number of runs againstM is about equal to the size
of the lattice. For the binary search, this number is about
equal to

∑log n
i=1

(

n
n/2i

)

, which can be bounded from above by
logn ·

(

n
n/2

)

. This number is only a small factor larger than
the width of the lattice.

The best case for the exhaustive search technique occurs
when the top-most formula in the lattice is satisfied byM ,
requiring only one model checking run. For the binary search
algorithm, the best case occurs when none of the elements to
be verified againstM fail. The algorithm is recursively called
on ever smaller sublattices with the height halved in each
iteration. The algorithm performs aboutlogn model checking
runs againstM .

Benchmark Max. Lattice Tot. Prop / Max.
Height Vac. Prop Strengthening Level

Chameleon 6 4/0 0
Lock 12 7/2 2

TicTacToe 10 29/1 4
Eisenberg 2 9/6 1

Heap 8 15/5 3
Coherence 6 8/3 4

Vlunc 12 2/0 0
s1269 5 9/0 0
Matrix 12 1/0 0

Needham(ns3) 9 20/8 2

TABLE I
PROPERTYCHARACTERISTICS

On average, some schedule of failing and satisfying model
checking runs will occur. We can estimate in this case the
number of candidate formulas in the lattice that get eliminated.
In the failing case, this number is2k, for a formula at level
k of the lattice, i.e., withk of the occurrences present:2k is
roughly the size of the upward closure of the lattice element,
which gets eliminated. In the satisfying case, the elimination
count is roughlym−2k, since the upward closure isretained,
rather than eliminated. In these estimates,m is the current
cardinality of the (dynamic) lattice.

We emphasize that these estimates are affected by how
many, and which, elements get eliminated by means of the
(inexpensive) counterexample tests, whose purpose is to im-
prove convergence of the algorithms. Their success rate is hard
to predict. In the next section, we present empirical results
quantify their benefit.

V. EXPERIMENTS

In this section, we present experimental results obtained
with our implementation of the proposed algorithms. We
have implemented the proposed lattice search techniques both
with and without the counterexample test, using the model
checker VIS [18]. We use a significant subset of the Verilog
benchmarks released with VIS. The candidate setC contains
all literal occurrences in a formula. Since the counterexample
path is always finitely representable, the loop-free lengthof the
counterexample is known. We can therefore use a bounded
model checker [19] from the VIS tool set to perform the
counterexample test.

Table I presents information about the properties used for
these benchmarks. The table lists the total number ofpassing
properties that were tested, and the number of properties re-
ported to be vacuous. The table also lists the maximum height
of the formula lattice, indicating the size of the properties.
The highest level in the lattice at which a solution was found
is also reported, indicating how many literal occurrences were
replaced by⊥ without sacrificing satisfaction. We found about
25% of the 104 properties checked to contain vacuity.

Tables II and III illustrate the effect of counterexample

checks on the exhaustive and binary lattice search techniques.1

Both tables are sorted by the latch count of the designs, which
is a rough indicator of the hardness of the benchmarks. In both
tables,#LTL is the number of lattice elements checked against
the complete design, i.e., calls to the LTL Model Checker,LTL
is the time taken for these calls, andTotal is the total time. The
time spent on the lattice operations such as finding the middle
of the lattice or finding the top of the lattice is denoted byLAT.
The number of times the counterexample test was performed
is given in column#CE. In the same column the number
of counterexample tests that were successful, i.e., resulted in
eliminating a lattice element, are listed as%SUC. The column
CE lists the time spent on the counterexample checks.

Both tables indicate that the number of successful coun-
terexample tests is considerably high. For the exhaustive and
binary search technique, 62% and 81% of the counterexample
tests, respectively, were successful. This causes reduction
in the number of LTL Model Checking runs resulting in
performance improvement. Note, however, that combining the
counterexample test with the exhaustive and binary search
methods sometimesdegradestheir performance. As stated
above, generating the counterexamples comes at a cost. In
the s1296 benchmark, the time spent by VIS in generating an
error trace dominates the run time. For both techniques, 55–
60% of the LTL model checking time was spent on generating
the counterexamples. This time is intrinsic to VIS and, hence,
cannot be completely avoided. In our implementation, the
counterexample generated is read by VIS each time a lattice
element is checked against it. In the Lock benchmark, nearly
80% of the counterexample checking time is wasted in reading
the counterexamples back into VIS. The results obtained can
be further improved by implementing the presented techniques
inside a model checker. The performance degradation in the
Eisenberg benchmark is the combined result of the reasons
mentioned above.

Adding the counterexample test to the proposed search
techniques has significant benefits for the examples with larger
candidate setC. The counterexample test is effective and very
inexpensive for these benchmarks. The larger the setC, the
larger the lattice and, hence, the larger the relative time savings
due to a reduced number of expensive LTL model checking
calls. On such benchmarks, we observed speedups of 30–50%.

In our benchmarks, we observe that a maximal strength-
ening is also a maximum strengthening. We conclude from
the tables that the binary lattice search reduces the number
of Model Checking runs nearly by one order of magnitude.
As a result, the binary search technique is consistently faster
than the exhaustive one. However, in the Lock benchmark,
we observe that the time improvement is not proportional to
the reduction in the number of Model Checking runs. This
is because the binary method selects formulae that are harder
than the ones selected by the exhaustive method. Nevertheless,
the total runtime is reduced in half.

1The CPU times were measured on an 3 GHz Intel Xeon with 16 GB of
RAM running Linux. We use the optimized BDD variable orderings that ship
with the benchmarks.

Without CE test With CE test
Ex #LTL LTL (min) LAT (min) Total (min) #LTL #CE (%SUC) LTL (min) CE (min) LAT (min) Total (min)

Chameleon 256 0.38 0.00 0.40 88 112 (42) 0.13 0.11 0.00 0.28
Lock 13543 29.38 8.40 40.40 515 2069 (80) 0.96 27.10 0.86 29.93

TicTacToe 1048 13.70 0.03 13.80 432 525 (26) 6.00 0.63 0.00 6.80
Eisenberg 24 1.73 0.00 1.73 24 15 (0) 2.05 0.31 0.00 2.38

Heap 416 1.43 0.00 1.45 158 200 (43) 0.53 0.18 0.00 0.78
Coherence 174 0.61 0.00 0.61 113 96 (19) 0.41 0.11 0.00 0.58

Vlunc 4112 5.85 2.90 9.11 1729 504 (63) 2.61 0.75 3.06 7.28
s1269 170 7.93 0.00 7.93 91 59 (52) 15.46 0.18 0.00 15.68
Matrix 4096 101.36 2.75 104.51 1590 309 (67) 39.53 0.38 1.53 42.35

Needham 2754 2637.33 0.11 2637.63 1809 500 (42) 1862.83 0.65 0.10 1864.41

TABLE II
RESULTS FOREXHAUSTIVE SEARCH

Without CE test With CE test
Ex #LTL LTL (min) LAT (min) Total (min) #LTL #CE (%SUC) LTL (min) CE (min) LAT (min) Total (min)

Chameleon 72 0.10 0.00 0.11 36 72 (50) 0.05 0.08 0.00 0.15
Lock 1833 2.76 0.78 3.80 119 1828 (93) 0.20 25.43 0.76 26.98

TicTacToe 270 3.60 0.01 3.63 159 263 (42) 2.20 0.31 0.01 2.60
Eisenberg 18 1.60 0.00 1.60 18 12 (0) 1.81 0.25 0.00 2.10

Heap 137 0.50 0.00 0.50 64 129 (56) 0.23 0.13 0.00 0.40
Coherence 56 0.20 0.00 0.20 46 48 (20) 0.16 0.06 0.00 0.25

Vlunc 540 0.75 0.25 1.05 156 454 (84) 0.23 0.46 0.25 1.05
s1269 62 5.50 0.00 5.51 35 50 (54) 12.90 0.16 0.00 13.08
Matrix 534 13.25 0.25 13.56 217 342 (92) 5.40 0.35 0.25 6.16

Needham 613 687.03 0.03 687.11 450 262 (62) 494.06 0.31 0.03 494.63

TABLE III
RESULTS FORBINARY SEARCH (WINNING TIME PER BENCHMARK IN BOLD)

VI. CONCLUSION

Vacuity indicates the inadequacy of a specification, or points
to a design bug, and therefore needs to be addressed by the
user. We provide an algorithmic way to expose the vacuity
to the user in the form of a strengthened and shortened
formula. In order to achieve an efficient solution, we make
two contributions: 1) we define a lattice of candidate formulae
and devise a binary search strategy on this lattice, and 2) we
make use of refutations for failed model checking runs in order
to reduce the search space. Our experimental results show
that on hard benchmarks with long properties, both techniques
perform best when combined.

Acknowledgments

The authors would like to thank Hana Chockler and Ofer
Strichman for their suggestions.

REFERENCES

[1] D. L. Beatty and R. E. Bryant, “Formally verifying a microprocessor
using a simulation methodology,” inDAC. ACM, 1994, pp. 596–602.

[2] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” inCHARME. Springer-Verlag, 1999, pp. 82–96.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficientdetection of
vacuity in temporal model checking,” vol. 18, no. 2. Kluwer Academic
Publishers, 2001, pp. 141–163.

[4] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman,A. Tiemeyer,
and M. Y. Vardi, “Enhanced vacuity detection in linear temporal logic,”
in CAV. Springer-Verlag, 2003, pp. 368–380.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” inCAV. Springer-
Verlag, 2000, pp. 154–169.

[6] M. Purandare and F. Somenzi, “Vacuum cleaning CTL formulae,” in
CAV. Springer-Verlag, 2002.

[7] A. Gurfinkel and M. Chechik, “Extending extended vacuity,” in FMCAD.
Springer-Verlag, 2004, pp. 306–321.

[8] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi,
“Regular vacuity,” inCHARME. Springer-Verlag, 2005, pp. 191–206.

[9] M. Samer and H. Veith, “On the notion of vacuous truth,” inLPAR.
Springer-Verlag, 2007, pp. 2–14.

[10] ——, “Parameterized vacuity,” inFMCAD. Springer-Verlag, 2004, pp.
322–336.

[11] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik, “Exploiting
resolution proofs to speed up LTL vacuity detection for BMC,” in
FMCAD. IEEE Computer Society, 2007, pp. 3–12.

[12] A. Gurfinkel and M. Chechik, “How vacuous is vacuous?” inTACAS.
Springer-Verlag, 2004, pp. 451–466.

[13] H. Chockler and O. Strichman, “Easier and more informative vacuity
checks,” inMEMOCODE. IEEE Computer Society, 2007, pp. 189–198.

[14] ——, “Before and after vacuity,”FMSD, 2008, (to be published).
[15] H. Chockler, A. Gurfinkel, and O. Strichman, “Beyond vacuity: Towards

the strongest passing formula,” inFMCAD. IEEE Computer Society,
2008, pp. 188 – 195.

[16] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,”in Logic of
Programs. Springer-Verlag, 1981, pp. 52–71.

[17] A. Pnueli, “The temporal logic of programs,” inFOCS. IEEE Computer
Society, 1977, pp. 46–57.

[18] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G.Swamy,
and T. Villa, “VIS: A system for verification and synthesis,”in CAV.
Springer-Verlag, 1996, pp. 428–432.

[19] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolicmodel
checking without BDDs,” inTACAS. Springer-Verlag, 1999, pp. 193–
207.

