Preliminaries

- We aim at the analysis of programs given in a commodity programming language such as C, C++, or Java
- As the first step, we transform the program into a control flow graph (CFG)

Example: SHS

\[
\text{if } (0 \leq t \leq 79) \land \text{switch } (t/20) \begin{cases}
 0: & \text{TEMP2} = (B \land C) \lor (\neg B \land D), \text{TEMP3} = k_1^2, \text{break;} \\
 1: & \text{TEMP2} = (B \oplus C \oplus D), \text{TEMP3} = k_2^1, \text{break;} \\
 2: & \text{TEMP2} = (B \land C) \lor (B \land D) \lor (C \land D), \text{TEMP3} = k_3^1, \text{break;} \\
 3: & \text{TEMP2} = B \oplus C \oplus D, \text{TEMP3} = k_4^1, \text{break;} \\
 \text{default:} & \text{assert(0)} \end{cases}
\]

Bounded Program Analysis

Goal: check properties of the form AGp, say assertions.

Idea: follow paths through the CFG to an assertion, and build a formula that corresponds to the path
We pass
\[0 \leq t \leq 79 \]
\[t/20 \neq 0 \]
\[t/20 = 1 \]
\[TEMP2 = B \oplus C \oplus D \]
\[TEMP3 = K \cdot 2 \]
to a decision procedure, and obtain a satisfying assignment, say:
\[t \mapsto 21, \ B \mapsto 0, \ C \mapsto 0, \ D \mapsto 0, \ K \cdot 2 \mapsto 10, \]
\[TEMP2 \mapsto 0, \ TEMP3 \mapsto 10 \]

✓ It provides the values of any inputs on the path.

Enabling Technology: SAT

number of variables of a typical, practical SAT instance that can be solved by the best solvers in that decade

Let’s Look at Another Path

if
switch
case/suppress0
case/suppress1
case/suppress2
case/suppress3
default
0 ≤ t ≤ 79
\[t/20 \neq 0 \]
\[t/20 = 1 \]
\[t/20 \neq 2 \]
\[t/20 \neq 3 \]

That is UNSAT, so the assertion is unreachable.

What If a Variable is Assigned Twice?

\[x=0; \]
\[\text{if}(y>0) \]
\[x++; \]

Rename appropriately:
\[x1 = 0 \]
\[y0 \geq 0 \]
\[x1 = x0 + 1 \]

This is a special case of SSA (static single assignment)
Pointers

How do we handle dereferencing in the program?

```c
int *p;
p = malloc(sizeof(int) * 5);
...
p[1] = 100;
```

Track a ‘may-point-to’ abstract state while simulating!

Scalability of Path Search

Let’s consider the following CFG:

This is a loop with an if inside.

Q: how many paths for \(n \) iterations?

Bounded Model Checking

▶ Bounded Model Checking (BMC) is the most successful formal validation technique in the hardware industry

▶ Advantages:
 ✓ Fully automatic
 ✓ Robust
 ✓ Lots of subtle bugs found

▶ Idea: only look for bugs up to specific depth

▶ Good for many applications, e.g., embedded systems

Transition Systems

Definition: A transition system is a triple \((S, S_0, T)\) with
▶ set of states \(S\),
▶ a set of initial states \(S_0 \subset S\), and
▶ a transition relation \(T \subset (S \times S)\).

The set \(S_0\) and the relation \(T\) can be written as their characteristic functions.

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just “concatenate” the transition relation \(T\):

```
S_0 \land T \land T \land \ldots \land T
```

Satisfying assignments for this formula are traces through the transition system.
Example

\[T \subseteq \mathbb{N}_0 \times \mathbb{N}_0 \]
\[T(s, s') \iff s'.x = s.x + 1 \]

... and let \(S_0(s) \iff s.x = 0 \land s.x = 1 \)

An unwinding for depth 4:

\[
\begin{align*}
(s_0.x = 0 \lor s_0.x &= 1) \\
\land s_1.x &= s_0.x + 1 \\
\land s_2.x &= s_1.x + 1 \\
\land s_3.x &= s_2.x + 1 \\
\land s_4.x &= s_3.x + 1 \\
\end{align*}
\]

Checking Reachability Properties

Suppose we want to check a property of the form \(\text{AG} p \).

We then want at least one state \(s_i \) to satisfy \(\neg p \):

\[
S_0(s_0) \land \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \land \bigvee_{i=0}^{k} \neg p(s_i)
\]

Satisfying assignments are counterexamples for the \(\text{AG} p \) property.

Unwinding Software

We can do exactly that for our transition relation for software.

E.g., for a program with 5 locations, 6 unwindings:

\[
\begin{align*}
\theta^0: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^1: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^2: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^3: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^4: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^5: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\theta^6: & L_1^* L_2^* L_3^* L_4^* L_5^* \\
\end{align*}
\]

Optimization:

don't generate the parts of the formula that are not 'reachable'

Unwinding Software

Example:

Unwinding Software

Problem: obviously, most of the formula is never 'used', as only few sequences of PCs correspond to a path.
Unwinding Software

Problem:

Unwinding software

- Unwinding T with bound k results in a formula of size $|T| \cdot k$
- If we assume a k that is only linear in $|T|$, we get a formula with size $O(|T|^2)$
- Can we do better?

Unrolling Loops

Idea: do exactly one location in each timeframe:

- More effective use of the formula size
- Graph has fewer merge nodes, the formula is easier for the solvers
- Not all paths of length k are encoded \Rightarrow the bound needs to be larger

Completeness

BMC, as discussed so far, is incomplete. It only refutes, and does not prove.

How can we fix this?
Unwinding Assertions

Let’s revisit the loop unwinding idea:

```c
if (cond) {
    Body;
    if (cond) {
        Body;
        if (cond) {
            Body;
            while (cond)
                Body;
        }
    }
}
```

We replace the assumption we have used earlier to cut off paths by an assertion. This allows us to prove that we have done enough unwinding. This is a proof of a high-level worst-case execution time (WCET). Very appropriate for embedded software.

CBMC Toolflow: Summary

1. Parse, build CFG
2. Unwind CFG, form formula
3. Formula is solved by SAT/SMT

Bit-vector Flattening

- This is easy for the bit-wise operators.
- Denote the Boolean variable for bit i of term t by µ(t)ᵢ.
- Example for a ⊕ b:
 \[
 \bigwedge_{i=0}^{t-1} (µ(t)ᵢ \equiv (aᵢ \lor bᵢ))
 \]
 (read \(x = y\) over bits as \(x \iff y\))
- We can transform this into CNF using Tseitin’s method.

Flattening Bit-Vector Arithmetic

How to flatten \(a + b\)?

→ we can build a circuit that adds them!

\[
\begin{align*}
 a + b & \equiv (a + b + i) \mod 2 \equiv (a \oplus b) \oplus i \\
 o & \equiv (a + b + i) \div 2 \equiv a \cdot b + a \cdot i + b \cdot i
\end{align*}
\]

The full adder in CNF:

\[
(a \lor b \lor \neg o) \land (a \lor \neg b \lor i \lor \neg o) \land (a \lor \neg b \lor i \lor \neg o) \land \\
(\neg a \lor b \lor i \lor \neg o) \land (\neg a \lor b \lor i \lor \neg o) \land (\neg a \lor \neg b \lor o)
\]
Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

Also called carry chain adder
▶ Adds \(l \) variables
▶ Adds \(6 \cdot l \) clauses

Multipliers
▶ Multipliers result in very hard formulas
▶ Example:
\[
a \cdot b = c \land b \cdot a \neq c \land x < y \land x > y
\]

CNF: About 11000 variables, unsolvable for current SAT solvers
▶ Similar problems with division, modulo
▶ Q: Why is this hard?
▶ Q: How do we fix this?

Incremental Flattening

\(\varphi_f := \varphi_{sk}, F := \emptyset \)

\(F' \subseteq (I \setminus F) \)
\(F' := F \cup F' \)
\(\varphi_f := \varphi_f \land \text{CONSTRAINT}(F) \)

Is \(\varphi_f \) SAT?
Yes!

\(F \subseteq \emptyset \)
\(I = \emptyset \)
SAT

\(\varphi_{sk} \): Boolean part of \(\varphi \)
\(F \): set of terms that are in the encoding
\(I \): set of terms that are inconsistent with the current assignment

\(\varphi_f \) only gets stronger – use an incremental SAT solver