CBMC: Bounded Model Checking for ANSI-C

CENGC

Version 1.0, 2010

[m] [= = = Q>

Outline

Preliminaries

BMC Basics

Completeness

Solving the Decision Problem

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Preliminaries

» We aim at the analysis of programs given in a commodity
programming language such as C, C++, or Java

» As the first step, we transform the program into a control
flow graph (CFG)

C/C++ |parse| parse
Source tree

CFG

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example: SHS

if ((0 <=1t) && (t <=179))
switch (t / 20)
{

case 0:
TEMP2 = ((B AND C) OR ("B AND D));
TEMP3 = (K_1);

(B XOR C XOR D));
K-2);

(B AND C) OR (B AND D) OR (C AND D));

(B XOR C XOR D);
(K4);

default:
assert(0);

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example: SHS

if ((0 <=1t) && (t <=179))
switch (t / 20)
{

case 0:
TEMP2
TEMP3
break;

((B AND C) OR ("B AND D));
(K-1);

case 1:
(B XOR C XOR D));
K-2);

XOR C XOR D);
4);

default:
assert(0);

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

(B AND C) OR (B AND D) OR (C AND D));

case(

t/20 #0
case-1

t/20 #1
case2

t/20 # 2
case-3
t/20 # 3
default

http://www.cprover.org/

Bounded Program Analysis

Goal: check properties of the form AGp,
say assertions.

Idea: follow paths through the CFG to an assertion,
and build a formula that corresponds to the path

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

case0

t/20 #0
case-1

t/20 # 1
case2

t/20 # 2
case-3
t/20 # 3
default

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

case-()

t/20 #0
case-1

t/20 # 1
case2

t/20 # 2
case-3
t/20 # 3
default

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

t/20 #0
case-1

t/20 # 1
case2

t/20 # 2
case-3
t/20 # 3
default

0<t<79

£/20 # 0

/20 =1

TEMP2 = B® C & D
TEMPS = K 2

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

We pass

> > >

A

0<t<T79
£/20 4 0

/20 = 1

TEMP2 =B® C & D
TEMP3 = K2

to a decision procedure, and obtain a satisfying assignment,

say:

t—21,B—0,C—0,D+—0, K2 10,
TEMP2 — 0, TEMP3 — 10

v It provides the values of any inputs on the path.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Which Decision Procedures?

» We need a decision procedure for an appropriate logic
» Bit-vector logic (incl. non-linear arithmetic)
» Arrays
» Higher-level programming languages also feature
lists, sets, and maps

» Examples

» Z3 (Microsoft)
» Yices (SRI)
» Boolector

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://yices.csl.sri.com/
http://fmv.jku.at/boolector/
http://www.cprover.org/

Enabling Technology: SAT

1,000,000

100,000

10,000

1,000

100

10

1960 1970 1980 1990 2000 2010

number of variables of a typical, practical SAT instance
that can be solved by the best solvers in that decade

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Enabling Technology: SAT

» propositional SAT solvers have made enourmous progress
in the last 10 years

» Further scalability improvements in recent years because
of efficient word-level reasoning and array decision
procedures

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Let’s Look at Another Path

case0

t/20 #0
case-1

t/20 # 1
case2

t/20 # 2
case-3
t/20 # 3
default

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Let’s Look at Another Path

case-0
t/20 #0
case-1

/20 # 1

t/20 # 3
default

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Let’s Look at Another Path

0<t<T79
/20 # 0 A t/20 #£0
case-1 | A t/20 #1
£/20 £ 1 A 1/20 #2
case-2 A t/20 73

t/20 # 3
default

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Let’s Look at Another Path

t/20 #0 A
case-1 | N
/20 # 1 N
VAN

t/20 # 3
default

0<t<T79
/20 £ 0
/20 # 1
£/20 2
/20 # 3

That is UNSAT, so the assertion is
unreachable.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 11

http://www.cprover.org/

What If a Variable is Assigned Twice?

Rename appropriately:

x=0;
|
z=0
if (y>=0) _l A y>0
x++; AN x=x+1

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 12

http://www.cprover.org/

What If a Variable is Assigned Twice?

Rename appropriately:

x=0;
: 1 =0
=
if (y>=0) \—| A yo>0
X++; AN x1=x0+1

This is a special case of SSA (static single assignment)

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 12

http://www.cprover.org/

Pointers

How do we handle dereferencing in the program?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Pointers

How do we handle dereferencing in the program?

int *p;
p=malloc(sizeof(int)*5); p1 = &DO1
| A DO1; = (\i.
i = 17100 : DO1,|i])
p[1]=100;

Track a ‘may-point-to’ abstract state while simulating!

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Scalability of Path Search

Let’s consider the following CFG:

L1

L2

L4

This is a loop with an if inside.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Scalability of Path Search

Let’s consider the following CFG:

L1

L2

L4

This is a loop with an if inside.

Q: how many paths for n iterations?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Bounded Model Checking

» Bounded Model Checking (BMC) is the most successful
formal validation technique in the hardware industry

» Advantages:

v Fully automatic
v’ Robust
v Lots of subtle bugs found

» Idea: only look for bugs up to specific depth

» Good for many applications, e.g., embedded systems

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Transition Systems

Definition: A transition system is a triple (.S, Sy, T") with
» set of states 5,
» a set of initial states Sy C .S, and
» atransition relation 7" C (S x 5).

The set Sy and the relation 7' can be written as their
characteristic functions.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 16

http://www.cprover.org/

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just "concatenate” the transition relation 7

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just "concatenate” the transition relation 7

SoNT
[}

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just "concatenate” the transition relation 7

SoNT AN T
[} [J

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 17

http://www.cprover.org/

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just "concatenate” the transition relation 7

SoANT A T A AT
[] [] [] []

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 17

http://www.cprover.org/

Unwinding a Transition System

Q: How do we avoid the exponential path explosion?

We just "concatenate” the transition relation 7

SoANT AN T A AN T
)) e - @)
S0 S1 52 Sk—1 Sk

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 17

http://www.cprover.org/

Unwinding a Transition System

As formula:

k—1
50(80) A\ /\ T(Si, 82'4_1)
=0

Satisfying assignments for this formula are traces through the
transition system

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

TQINQ XIN()
T(s,s") & sdax=sx+1

...andlet Sp(s) <= sax=0Vsz=1

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Example

TQINQ ><]N()
T(s,s") & sdax=sx+1

...andlet Sp(s) <= sax=0Vsz=1

An unwinding for depth 4:

(so.x =0V spx=1)
s1.x =sp.x+1
So.x = s1.x + 1
s3.x = so.x + 1
S4.x =583.x+ 1

> > > >

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Checking Reachability Properties

Suppose we want to check a property of the form AGnp.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

20

http://www.cprover.org/

Checking Reachability Properties

Suppose we want to check a property of the form AGnp.

We then want at least one state s; to satisfy —p:

k—1 k
So(s0) A N\ Tlsisi1) A\ —p(si)
1=0 1=0

Satisfying assignments are counterexamples for the AGp
property

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

20

http://www.cprover.org/

Unwinding Software
We can do exactly that for our transition relation for software.

E.g., for a program with 5 locations, 6 unwindings:

ot ot w1t
oottt w1t
R S N Y M T
AT S N M T
S S C NV M T
R S N T M T
#6

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Unwinding Software

Problem: obviously, most of the formula is never 'used’,
as only few sequences of PCs correspond to a path.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

22

http://www.cprover.org/

Unwinding Software

Example:

L1

L4

L5
CFG

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

23

http://www.cprover.org/

Unwinding Software

Example:

L1

L4

L5
CFG

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

unrolling

23

http://www.cprover.org/

Unwinding Software

Optimization:
don’t generate the parts of the formula that are not 'reachable’

L1

L4

L5
CFG

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

24

http://www.cprover.org/

Unwinding Software

Optimization:

don’t generate the parts of the formula that are not 'reachable’

L1

) 1

L4

L5
CFG

#0

#1

#2

#3

#4

#5

#6

[T RS P RS I R
unrolling

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 24

http://www.cprover.org/

Unwinding Software

Problem:
HoouN\ w1
L1 #o
#2
L2 | Ut BNt S NG Lol
|_| #3 e y
 RL B NN
#4 .
b L2INIS N AN
L4 #5”7@; 777777777777777777
L5 AR PR T DA
CFG unrolling

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

25

http://www.cprover.org/

Unwinding Software

» Unwinding 7" with bound £ results in a formula of size

] - k

» If we assume a k that is only linear in |7,
we get get a formula with size O(|T|?)

» Can we do better?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

26

http://www.cprover.org/

Unrolling Loops

Idea: do exactly one location in each timeframe:

L1

L4

L5
CFG

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

27

http://www.cprover.org/

Unrolling Loops

Idea: do exactly one location in each timeframe:

L1

L4

L5
CFG unrolling

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

27

http://www.cprover.org/

Unrolling Loops

v/ More effective use of the formula size

v Graph has fewer merge nodes,
the formula is easier for the solvers

X Not all paths of length & are encoded
— the bound needs to be larger

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 28

http://www.cprover.org/

Unrolling Loops

This essentially amounts to unwinding loops:

while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

29

http://www.cprover.org/

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

29

http://www.cprover.org/

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

29

http://www.cprover.org/

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

29

http://www.cprover.org/

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
assume(!cond);

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

29

http://www.cprover.org/

Completeness

BMC, as discussed so far, is incomplete.

It only refutes, and does not prove.

How can we fix this?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

30

http://www.cprover.org/

Unwinding Assertions

Let’s revisit the loop unwinding idea:

while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

31

http://www.cprover.org/

Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

31

http://www.cprover.org/

Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

31

http://www.cprover.org/

Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

31

http://www.cprover.org/

Unwinding Assertions

Let’s revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
assert (lcond);

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

31

http://www.cprover.org/

Unwinding Assertions

» We replace the assumption we have used earlier to cut off
paths by an assertion

v/ This allows us to prove that we have done enough
unwinding

» This is a proof of a high-level worst-case execution time
(WCET)

» Very appropriate for embedded software

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 32

http://www.cprover.org/

CBMC Toolflow: Summary

1. Parse, build CFG

2. Unwind CFG, form formula

3. Formula is solved by SAT/SMT

C/C++
Source

CFG

‘un-

flattening

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

“wind

formula

T

CNF

SMT
AUFBV

http://www.cprover.org/

Solving the Decision Problem

Suppose we have used some unwinding, and have built the
formula.

For bit-vector arithmetic, the standard way of deciding
satisfiability of the formula is flattening,
followed by a call to a propositional SAT solver.

In the SMT context: SMT-BY

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 34

http://www.cprover.org/

Bit-vector Flattening

» This is easy for the bit-wise operators.
» Denote the Boolean variable for bit i of term ¢ by 1(¢);.

» Example for a |; b:

-1

/\(M(t)z' = (a; V b;))

=0

(read x = y over bits as © <)

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/ 35

http://www.cprover.org/

Bit-vector Flattening

» This is easy for the bit-wise operators.
» Denote the Boolean variable for bit i of term ¢ by 1(¢);.

» Example for a [b:

-1
/\(M(t)z' = (a; V b;))
i=0

(read x = y over bits as © <)

» We can transform this into CNF using Tseitin’s method.

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

35

http://www.cprover.org/

Flattening Bit-Vector Arithmetic

How to flatten a + b?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

36

http://www.cprover.org/

Flattening Bit-Vector Arithmetic

How to flatten a + b?

—— we can build a circuit that adds them!

abi

LIl Full Adder

FA s = (a+b+i)mod2 = ad®bdi

|] o = (a+b+i)div2 = a-bt+a-i+b-i
0 S

The full adder in CNF:

(@VbV=0)A(aV-bViV=-0)A(aV-bV—iVo)A
(maVbViV-0)A(maVbV—iVo)A(-aV-bVo)

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

36

http://www.cprover.org/

Flattening Bit-Vector Arithmetic

OK, this is good for one bit! How about more?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

37

http://www.cprover.org/

Flattening Bit-Vector Arithmetic

OK, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

a7b7 a6b6 (l5b5 a4b4 a3b3 a2b2 (l]bl aobo

R Y e e)

S7 S6 S5 Sy S3 59 S1 S0

» Also called carry chain adder
» Adds [variables
» Adds 6 - [clauses

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

http://www.cprover.org/

Multipliers

» Multipliers result in very hard formulas

» Example:
a-b=cANb-atchz<yhzx>y

CNF: About 11000 variables,
unsolvable for current SAT solvers

» Similar problems with division, modulo

» Q: Why is this hard?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

38

http://www.cprover.org/

Multipliers

» Multipliers result in very hard formulas

» Example:
a-b=cANb-atchz<yhzx>y

CNF: About 11000 variables,
unsolvable for current SAT solvers

» Similar problems with division, modulo

» Q: Why is this hard?
» Q: How do we fix this?

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

38

http://www.cprover.org/

Incremental Flattening

}
Pf = Psks F:=0

@q- Boolean part of ¢
F: set of terms that are in the encoding

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

}
Pf = Psks F:=0

 lserSAT2

wsi: Boolean part of ¢
F': set of terms that are in the encoding

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

}
Pf = Psks F:=0

Is

No!
UNSAT

wsi: Boolean part of ¢
F': set of terms that are in the encoding

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

}
Pf = Psks F:=0

|
Is o _Yesl [com

No!
UNSAT

sk: Boolean part of
F': set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

}
Pf = Psks F:=0

|
Is o _Yesl [com

No! I=0
UNSAT SAT

sk: Boolean part of
F': set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

}

Pf = Psks F:=0

Is ¢

No!
UNSAT

sk: Boolean part of

Yes!

Pick F/ C (I\ F)
F.=FUF'

@5 = oy A CONSTRAINT(F)

TI#@

com

I=10

F': set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

39

http://www.cprover.org/

Incremental Flattening

» |dea: add ’easy’ parts of the formula first

» Only add hard parts when needed

> ¢ only gets stronger — use an incremental SAT solver

CBMC: Bounded Model Checking for ANSI-C — http://www.cprover.org/

40

http://www.cprover.org/

	Preliminaries
	BMC Basics
	Completeness
	Solving the Decision Problem

