Chaining Test Cases for Reactive System Testing

Peter Schrammel, Tom Melham and Daniel Kroening
first.lastname@cs.ox.ac.uk

UNIVERSITY OF

OXFORD

The 25th IFIP International Conference on
Testing Software and Systems (ICTSS'13)

Nov 13-15, 2013, Istanbul, Turkey

Context:
o Safety critical embedded software
@ Often modelled as synchronous reactive system

@ Safety standards: tool support for systematic testing desirable

Problem:

@ Often lengthy input sequences required to drive the system to
a test goal

@ Reset after each test case: serious problem in on-target testing

Goal:

@ Find a test case chain: a single test case that covers a set of
test goals and minimises overall test execution time

Model-Based Testing

requirements <—> implementation
chea > desie reacime]

Model-Based Testing

requirements <—> implementation
heai > desie TreaimP

check

Model-Based Testing

requirements implementation

design model [«———>

test suite
generator

Model-Based Testing

implementation

requirements design model |[«——>

test suite
generator

Model-Based Testing
textual
requirements

Simulink/

Stateflow

generated
C code

implementation

formalised
. <
properties check

check

Model-Based Testing

textual

requirements

Simulink/
Stateflow
generated 3 3
. <> implementation
properties

check

formalised

test suite

generator

Model-Based Testing

textual

requirements

Simulink/
Stateflow
generated 3 3
. <> implementation
properties

V check

formalised

test suite
generator

Example: Cruise Control

brake V dec

gas V acc

brake Vv dec button

brake V dec

acc V dec

gas V acc

Example: Generated C Code from SIMULINK

void init(state_-t xs) {
s—>mode = OFF;
s—>speed = 0;
s—>enable = FALSE;

void compute(io_t i, state_t *s) {
mode = s—>mode;
switch (mode) {
case ON: if (i—>gas ||
case DIS:
if ((s—>speed==2 && (i—>dec || i—>brake)) ||
(s—>speed==0 && (i—>acc || i—>gas)))
s—>mode=0N;
break;
case OFF:
if (s—>speed==0 && s—>enable && (i—>gas || i—>acc) ||
s—>speed==1 && i—>button ||
s—>speed==2 && s—>enable && (i—>brake || i—>dec))
s—>mode=0N;
break;

i—brake) s—>mode=DIS; break;

}

if (i—button) s—>enable = !s—>enable;

if ((i—gas || mode!=ON && i—>acc) && s—>speed<2) s—>speed++;
if ((i—brake || mode!=ON && i—>dec) && s—>speed>0) s—>speed——;

Example: Generated C Code from SIMULINK

void init(state_-t *s) {
s—>mode = OFF;
s—>speed = 0;
s—>enable = FALSE;
}
void compute(io-t *i, state_t xs) {
mode = s—>mode;
switch (mode) {

case ON: if(i—>gas || i—>brake) s—>mode=DIS; break;
case DIS:
if ((s—>speed==2 && (i—>dec || i—>brake)) ||

Formalised properties:
p1: G(mode = ON A speed = 1 N\ dec = X(speed = 1))
p2: G(mode = DIS A speed = 2 A dec = X(mode = ON))
ps: G(mode = ON A brake = X(mode = DIS))
ps: G(mode = OFF A speed = 2 A —enable A button = X enable)

S—>speed==Z &X 5—>enable &X (1—>Dbrake || I—>dec) J
s—>mode=0ON;
break;
}
if (i—>button) s—>enable = !s—>enable;
if ((i—gas || mode!=ON && i—>acc) && s—>speed <2) s—>speed++;

if ((i—brake || mode!=ON && i—>dec) && s—>speed >0) s—>speed——;

brake V dec

gas V acc

button button

brake V dec

OFF,0,TRUE

brake V dec button

button gas V acc

acc V dec (p1)

button ON,].,TRUE
gas V acc

V acc

button (ps

I=F brake V dec

gas V acc

button

button

brake V dec

OFF,0,TRUE
button

brake V dec

button gas V acc

£

ON,1, TRUE

acc V dec (p1)

gas V acc

button

Preliminaries

Program:
@ State space ¥, input space T
@ Initial states | C X
@ Transition relation T C X x T x &

Preliminaries

Program:
@ State space ¥, input space T
@ Initial states | C X
@ Transition relation T C X x T x &

Bounded Model Checking;:
Check the existence of a path (s, s1,...,5k) of increasing length
K from ¢ to ¢’

é(s) A N\ T(sketsik—1,5%) A ¢'(sk)

1<k<K

If SAT: satisfying assignment aka counterexample
(S0, 051515+« + 5 SK—15 iK1, SK)

Preliminaries

Program:
@ State space ¥, input space T
@ Initial states | C X
@ Transition relation T C X x T x &

Bounded Model Checking;:
Check the existence of a path (s, s1,...,5k) of increasing length
K from ¢ to ¢’

é(s) A N\ T(sketsik—1,5%) A ¢'(sk)

1<k<K
If SAT: satisfying assignment aka counterexample
(S0, 051515+« + 5 SK—15 iK1, SK)

Test case generation:

@ ¢ = | and test goal ¢’

@ Test case: input sequence (ip,. .., ik_1), expected outcome

Chaining Test Cases

Temporal logic safety specification:
@ Set of properties, e.g., of type
G(mode = ON A speed = 1 A dec = X(speed = 1))

assumption ¢

Chaining Test Cases

Temporal logic safety specification:
@ Set of properties, e.g., of type
G(mode = ON A speed = 1 A dec = X(speed = 1))

assumption ¢

Test goals: set of assumptions ¢ (finite paths)

Chaining Test Cases

Temporal logic safety specification:
@ Set of properties, e.g., of type
G(mode = ON A speed = 1 A dec = X(speed = 1))

assumption ¢

Test goals: set of assumptions ¢ (finite paths)

Test chain: from initial states / via all s to final states F

Chaining Test Cases

Temporal logic safety specification:
@ Set of properties, e.g., of type
G(mode = ON A speed = 1 A dec = X(speed = 1))

assumption ¢

Test goals: set of assumptions ¢ (finite paths)

Test chain: from initial states / via all s to final states F

Approach

© Abstraction: property reachability graph
© Optimisation: shortest path

© Concretisation: compute concrete test case

Abstraction: Property Reachability Graph

Weighted, directed graph:

@ Nodes: test goals ¢
o Edges:

e from [to all s
@ from all s to F
@ pairwise links between s

@ Edge weights: number of execution steps

Incrementally build graph by reachability queries:

O

Abstraction: Property Reachability Graph

Weighted, directed graph:
@ Nodes: test goals ¢

o Edges:

e from [to all s
@ from all s to F
@ pairwise links between s

@ Edge weights: number of execution steps

Incrementally build graph by reachability queries: K =1

Abstraction: Property Reachability Graph

Weighted, directed graph:
@ Nodes: test goals ¢

o Edges:

e from [to all s
@ from all s to F
@ pairwise links between s

@ Edge weights: number of execution steps

Incrementally build graph by reachability queries: K = 2

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from / to F
iff

(1) all nodes are reachable from /, @

(2) F is reachable from all nodes, 0 e
and

(3) for all pairs of nodes (v1, v2), @

(a) v is reachable from v; or
(b) w1 is reachable from vs.

Reachability can be decided in constant time on the transitive
closure of the graph.

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from / to F
iff

(1) all nodes are reachable from /, @

(2) F is reachable from all nodes, 0 e
and

(3) for all pairs of nodes (v1, v2), @

(a) v is reachable from v; or
(b) w1 is reachable from vs.

Reachability can be decided in constant time on the transitive
closure of the graph.

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from / to F
iff

(1) all nodes are reachable from /, @

(2) F is reachable from all nodes, 0 e
and

(3) for all pairs of nodes (v1, v2), @

(a) v is reachable from v; or
(b) w1 is reachable from vs.

Reachability can be decided in constant time on the transitive
closure of the graph.

Optimisation: Shortest Path Computation

Find a covering path from / to F:
@ Reduce to asymmetric travelling salesman problem (ATSP):

o Tour that visits all nodes of a weighted directed graph exactly
once

@ Transitive closure

Optimisation: Shortest Path Computation

Find a covering path from / to F:
@ Reduce to asymmetric travelling salesman problem (ATSP):

o Tour that visits all nodes of a weighted directed graph exactly
once

@ Transitive closure

Optimisation: Shortest Path Computation

Find a covering path from / to F:
@ Reduce to asymmetric travelling salesman problem (ATSP):

o Tour that visits all nodes of a weighted directed graph exactly
once

@ Transitive closure

Optimisation: Shortest Path Computation

Find a covering path from / to F:
@ Reduce to asymmetric travelling salesman problem (ATSP):

o Tour that visits all nodes of a weighted directed graph exactly
once

@ Transitive closure

ATSP result: (02,903, F, 1, 04,01)
Shortest path: (I, ¢4, 1, @2, p3, F)

Concretisation: Computing the Test Chain

)
AT (0, 0o, 51) A T(s1,11,5)A\pa(s2, i2)
AT (s2,12,53) N T(s3,13,54)Ap1(sa, ia)
/\T(S4, Ia, 55) /\ T(S is, 56)/\g02(56, /6)

AT (ss, Is, S7)Ap3(s7, i7)
AT (s7,i7,58) N\ T(sg,ig,S0)A F(s9)

(io, ..., ig) = (gas, acc, button, dec, dec, gas, dec, brake, button)

Concretisation: Computing the Test Chain

brake V dec

gas V acc

button button

brake V dec

OFF,0, TRUE

brake V dec button

button gas V acc

ON,1, TRUE

acc V dec (p1)

button gas V acc

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K-reachability
graph.

Optimality

The test case chain is minimal if
(1) the program and the properties admit a test chain,
(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K-reachability
graph.

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K-reachability
graph.

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K-reachability
graph.

Reachability diameter d = length of maximum, shortest path
between any two states

There is a K < d such that, under the preconditions (1) and (2),
the test chain is minimal. J

In practice, fix a bound K and obtain minimised chain.

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K-reachability
graph.

Reachability diameter d = length of maximum, shortest path
between any two states

There is a K < d such that, under the preconditions (1) and (2),
the test chain is minimal. J

In practice, fix a bound K and obtain minimised chain.

Multi-State Test Goals

pL: G(mode = OFF N —enable N\ button = X enab/e)
p2 : G(mode = ON A brake = X(mode = DIS))

Multi-State Test Goals

Broken chain

Multi-State Test Goals

2

Broken chain

@ Path (I, ¢1,¢2) not feasible in a single step, but requires two
steps.

Multi-State Test Goals

Broken chain
@ Path (/,¢1,¢2) not feasible in a single step, but requires two
steps.
Chain repair
@ Systematically increase edge weights of failed subpath

@ Minimality lost

Multi-State Test Goals

Broken chain
@ Path (/,¢1,¢2) not feasible in a single step, but requires two
steps.
Chain repair
@ Systematically increase edge weights of failed subpath

@ Minimality lost

Completeness
@ Succeeds if path admits chain in concrete program

o If for each test goal the states are strongly connected

In practice: many systems are (almost) strongly connected.

General Case

Completeness
@ Not strongly connected systems:
@ Abstraction refinement

Abstraction Refinement

Abstraction Refinement

Abstraction refinement:

Abstraction Refinement

Abstraction Refinement

Abstraction Refinement

General Case

Completeness
@ Not strongly connected systems:
@ Abstraction refinement

General Case

Completeness
@ Not strongly connected systems:

@ Abstraction refinement
@ More general solver than TSP solver, e.g. ASP solver

General Case

Completeness
@ Not strongly connected systems:

@ Abstraction refinement
@ More general solver than TSP solver, e.g. ASP solver

@ Multiple chains :
@ Partitioning by graph colouring

General Case

Completeness
@ Not strongly connected systems:

@ Abstraction refinement
@ More general solver than TSP solver, e.g. ASP solver

@ Multiple chains :
@ Partitioning by graph colouring

Optimality
@ Would require to optimise over concrete system

@ In practice, minimised rather than minimal solutions relevant

Implementation

reactive .

C code static
system enerator analyser
model g y

@ CHAINCOVER

Implementation

Properties specified as C functions:

void p_1(io-t* i, state_tx s) {
-.CPROVER_.assume (s—>mode==0N && s—>speed==1 && i—>dec);
compute(i,s);
assert (s—>speed==1);

}

Woven into program during test case generation.

BMC engine of CBMC
@ Property reachability graph construction
@ Exploits incremental SAT solving

@ Chain repair by concrete chaining

LkH travelling salesman problem solver
CLINGO answer set programming solver

Benchmarks and Comparison

Benchmarks
@ Cruise control model
@ Window controller
@ Car alarm system
@ Elevator model
@ Robot arm model

Comparison with
@ FSHELL: a BMC-based test generator with test suite
minimisation
@ Random case generator with test suite minimisation

@ KLEE: a test case generator based on symbolic execution

Results: Test Case Length

650
600 1 O KLEE
w550 + O RANDOMTEST
%,500 * FSHELL
C
2 450 /A CHAINCOVER
2 400
(&)
% 350
Q
=300

2 200
=}

g 150

< 100

50

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of benchmarks

Results: Test Case Generator Runtime

5000
4000 0 KLEE
¢ RANDOMTEST

0
g * FSHELL
€ 3000 4 /A CHAINCOVER
o
[0]
©
g 2000 +
2
(&)
o
<

1000

0 } i {

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of benchmarks

Summary and Current Work

Summary
@ Test chain for reactive systems

@ Test goals from requirements, specification model, code
coverage criteria

@ Minimal test chain for single-state test goals, otherwise
heuristics

@ Experimental evaluation

@ Application: on-target testing, acceptance testing

Current work

@ Integrate acceleration to handle deep loops

@ Test chains for code coverage criteria, e.g. MC/DC
Further questions

@ Incremental test chain generation

o In the case of model modifications
@ When test execution gets stuck due to a failed test goal

Download me!

Ehain60$er

http://www.cprover.org/chaincover

	Introduction
	Preliminaries
	Chaining Test Cases
	Generalisations
	Experimental Evaluation
	Summary

