
Chaining Test Cases for Reactive System Testing

Peter Schrammel, Tom Melham and Daniel Kroening
first.lastname@cs.ox.ac.uk

The 25th IFIP International Conference on
Testing Software and Systems (ICTSS’13)

Nov 13-15, 2013, Istanbul, Turkey

Test Chains

Context:

Safety critical embedded software

Often modelled as synchronous reactive system

Safety standards: tool support for systematic testing desirable

Problem:

Often lengthy input sequences required to drive the system to
a test goal

Reset after each test case: serious problem in on-target testing

Goal:

Find a test case chain: a single test case that covers a set of
test goals and minimises overall test execution time

Model-Based Testing

requirements design model implementation
check check

Model-Based Testing

requirements design model implementation
check check

check

Model-Based Testing

requirements design model implementation

test suite
generator

test suite

check check

check

Model-Based Testing

requirements design model implementation

test suite
generator

test suite

check check

check

Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation
check

check

Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation

test suite
generator

test suite

check

check

Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation

test suite
generator

test suite

check

check

Example: Cruise Control

OFF,0,FALSE

OFF,1,FALSE OFF,0,TRUE

ON,1,TRUE

DIS,2,TRUE DIS,0,TRUE

OFF,2,FALSE OFF,2,TRUE

brake ∨ dec

brake ∨ dec

brake
∨ dec

gas ∨ acc

gas ∨ acc
gas
∨ acc

acc ∨ dec

gas ∨ acc

brake ∨ dec button button

button

button

button
button

button

gas ∨ acc

gas ∨ acc

brake
gas

∨ acc
brake
∨ dec

brake
∨ dec

brake ∨ dec

Example: Generated C Code from Simulink

void i n i t (s t a t e t ∗s) {
s−>mode = OFF ;
s−>speed = 0 ;
s−>enable = FALSE ;

}
void compute (i o t ∗ i , s t a t e t ∗s) {

mode = s−>mode ;
switch (mode) {

case ON: i f (i−>gas | | i−>brake) s−>mode=DIS ; break ;
case DIS :

i f ((s−>speed==2 && (i−>dec | | i−>brake)) | |
(s−>speed==0 && (i−>acc | | i−>gas)))

s−>mode=ON;
break ;

case OFF :
i f (s−>speed==0 && s−>enable && (i−>gas | | i−>acc) | |

s−>speed==1 && i−>button | |
s−>speed==2 && s−>enable && (i−>brake | | i−>dec))

s−>mode=ON;
break ;

}
i f (i−>button) s−>enable = ! s−>enable ;
i f ((i−>gas | | mode!=ON && i−>acc) && s−>speed<2) s−>speed ++;
i f ((i−>brake | | mode!=ON && i−>dec) && s−>speed>0) s−>speed−−;

}

Example: Generated C Code from Simulink

void i n i t (s t a t e t ∗s) {
s−>mode = OFF ;
s−>speed = 0 ;
s−>enable = FALSE ;

}
void compute (i o t ∗ i , s t a t e t ∗s) {

mode = s−>mode ;
switch (mode) {

case ON: i f (i−>gas | | i−>brake) s−>mode=DIS ; break ;
case DIS :

i f ((s−>speed==2 && (i−>dec | | i−>brake)) | |
(s−>speed==0 && (i−>acc | | i−>gas)))

s−>mode=ON;
break ;

case OFF :
i f (s−>speed==0 && s−>enable && (i−>gas | | i−>acc) | |

s−>speed==1 && i−>button | |
s−>speed==2 && s−>enable && (i−>brake | | i−>dec))

s−>mode=ON;
break ;

}
i f (i−>button) s−>enable = ! s−>enable ;
i f ((i−>gas | | mode!=ON && i−>acc) && s−>speed<2) s−>speed ++;
i f ((i−>brake | | mode!=ON && i−>dec) && s−>speed>0) s−>speed−−;

}

Formalised properties:

p1: G
(

mode = ON ∧ speed = 1 ∧ dec ⇒ X(speed = 1)
)

p2: G
(

mode = DIS ∧ speed = 2 ∧ dec ⇒ X(mode = ON)
)

p3: G
(

mode = ON ∧ brake ⇒ X(mode = DIS)
)

p4: G
(

mode = OFF ∧ speed = 2 ∧ ¬enable ∧ button ⇒ X enable
)

Example

I = F

OFF,0,FALSE

OFF,1,FALSE OFF,0,TRUE

ON,1,TRUE

DIS,2,TRUE DIS,0,TRUE

OFF,2,FALSE OFF,2,TRUE

brake ∨ dec

brake ∨ dec

brake
∨ dec

gas ∨ acc

gas ∨ acc
gas
∨ acc

acc ∨ dec (p1)

gas ∨ acc

brake ∨ dec button button

button

button

button (p4)
button

button

button

gas ∨ acc

gas ∨ acc

brake (p3)
gas

∨ acc
gasbrake

∨ dec
brake
∨ dec(p2)

brake ∨ dec

Example

I = F

OFF,0,FALSE

OFF,1,FALSE OFF,0,TRUE

ON,1,TRUE

DIS,2,TRUE DIS,0,TRUE

OFF,2,FALSE OFF,2,TRUE

brake ∨ dec

brake ∨ dec

brake
∨ dec

gas ∨ acc

gas ∨ acc
gas
∨ acc

acc ∨ dec (p1)

gas ∨ acc

brake ∨ dec button button

button

button

button (p4)
button

button

button

gas ∨ acc

gas ∨ acc

brake (p3)
gas

∨ acc
gasbrake

∨ dec
brake
∨ dec(p2)

brake ∨ dec

Preliminaries

Program:

State space Σ, input space Υ

Initial states I ⊆ Σ

Transition relation T ⊆ Σ×Υ× Σ

Preliminaries

Program:

State space Σ, input space Υ

Initial states I ⊆ Σ

Transition relation T ⊆ Σ×Υ× Σ

Bounded Model Checking:

Check the existence of a path 〈s0, s1, . . . , sK 〉 of increasing length
K from φ to φ′

φ(s0) ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) ∧ φ′(sK)

If SAT: satisfying assignment aka counterexample
(s0, i0, s1, i1, . . . , sK−1, iK−1, sK)

Preliminaries

Program:

State space Σ, input space Υ

Initial states I ⊆ Σ

Transition relation T ⊆ Σ×Υ× Σ

Bounded Model Checking:

Check the existence of a path 〈s0, s1, . . . , sK 〉 of increasing length
K from φ to φ′

φ(s0) ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) ∧ φ′(sK)

If SAT: satisfying assignment aka counterexample
(s0, i0, s1, i1, . . . , sK−1, iK−1, sK)

Test case generation:

φ = I and test goal φ′

Test case: input sequence 〈i0, . . . , iK−1〉, expected outcome

Chaining Test Cases

Temporal logic safety specification:

Set of properties, e.g., of type

G
(
mode = ON ∧ speed = 1 ∧ dec
︸ ︷︷ ︸

assumption ϕ

⇒ X(speed = 1)
)

Chaining Test Cases

Temporal logic safety specification:

Set of properties, e.g., of type

G
(
mode = ON ∧ speed = 1 ∧ dec
︸ ︷︷ ︸

assumption ϕ

⇒ X(speed = 1)
)

Test goals: set of assumptions ϕ (finite paths)

Chaining Test Cases

Temporal logic safety specification:

Set of properties, e.g., of type

G
(
mode = ON ∧ speed = 1 ∧ dec
︸ ︷︷ ︸

assumption ϕ

⇒ X(speed = 1)
)

Test goals: set of assumptions ϕ (finite paths)

Test chain: from initial states I via all ϕs to final states F

Chaining Test Cases

Temporal logic safety specification:

Set of properties, e.g., of type

G
(
mode = ON ∧ speed = 1 ∧ dec
︸ ︷︷ ︸

assumption ϕ

⇒ X(speed = 1)
)

Test goals: set of assumptions ϕ (finite paths)

Test chain: from initial states I via all ϕs to final states F

Approach

1 Abstraction: property reachability graph

2 Optimisation: shortest path

3 Concretisation: compute concrete test case

Abstraction: Property Reachability Graph

Weighted, directed graph:

Nodes: test goals ϕ

Edges:

from I to all ϕs
from all ϕs to F

pairwise links between ϕs

Edge weights: number of execution steps

Incrementally build graph by reachability queries:

ϕ1 ϕ3

I F

ϕ2 ϕ4

Abstraction: Property Reachability Graph

Weighted, directed graph:

Nodes: test goals ϕ

Edges:

from I to all ϕs
from all ϕs to F

pairwise links between ϕs

Edge weights: number of execution steps

Incrementally build graph by reachability queries: K = 1

ϕ1 ϕ3

I F

ϕ2 ϕ4

1

1

1

Abstraction: Property Reachability Graph

Weighted, directed graph:

Nodes: test goals ϕ

Edges:

from I to all ϕs
from all ϕs to F

pairwise links between ϕs

Edge weights: number of execution steps

Incrementally build graph by reachability queries: K = 2

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

2

1

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from I to F

iff

(1) all nodes are reachable from I ,

(2) F is reachable from all nodes,
and

(3) for all pairs of nodes (v1, v2),

(a) v2 is reachable from v1 or
(b) v1 is reachable from v2.

ϕ1

I F

ϕ2

Reachability can be decided in constant time on the transitive
closure of the graph.

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from I to F

iff

(1) all nodes are reachable from I ,

(2) F is reachable from all nodes,
and

(3) for all pairs of nodes (v1, v2),

(a) v2 is reachable from v1 or
(b) v1 is reachable from v2.

ϕ1

I F

ϕ2

Reachability can be decided in constant time on the transitive
closure of the graph.

Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from I to F

iff

(1) all nodes are reachable from I ,

(2) F is reachable from all nodes,
and

(3) for all pairs of nodes (v1, v2),

(a) v2 is reachable from v1 or
(b) v1 is reachable from v2.

ϕ1

I F

ϕ2

Reachability can be decided in constant time on the transitive
closure of the graph.

Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
once

Transitive closure

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

21

Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
once

Transitive closure

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

21

4 4

3

4

6

4 4

Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
once

Transitive closure

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

21

4 4

3

4

6

4 4

0

Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
once

Transitive closure

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

21

4 4

3

4

6

4 4

0

ATSP result: 〈ϕ2, ϕ3,F , I , ϕ4, ϕ1〉
Shortest path: 〈I , ϕ4, ϕ1, ϕ2, ϕ3,F 〉

Concretisation: Computing the Test Chain

I
2

−→ ϕ4
2

−→ ϕ1
2

−→ ϕ2
1

−→ ϕ3
2

−→ F

I (s0)
∧T (s0, i0, s1) ∧ T (s1, i1, s2)∧ϕ4(s2, i2)
∧T (s2, i2, s3) ∧ T (s3, i3, s4)∧ϕ1(s4, i4)
∧T (s4, i4, s5) ∧ T (s5, i5, s6)∧ϕ2(s6, i6)

∧T (s6, i6, s7)∧ϕ3(s7, i7)
∧T (s7, i7, s8) ∧ T (s8, i8, s9)∧ F (s9)

〈i0, . . . , i8〉 = 〈gas, acc, button, dec, dec, gas, dec, brake, button〉

Concretisation: Computing the Test Chain

I = F

OFF,0,FALSE

OFF,1,FALSE OFF,0,TRUE

ON,1,TRUE

DIS,2,TRUE DIS,0,TRUE

OFF,2,FALSE OFF,2,TRUE

brake ∨ dec

brake ∨ dec

brake
∨ dec

gas ∨ acc

gas ∨ acc
gas
∨ acc

acc ∨ dec (p1)

gas ∨ acc

brake ∨ dec button button

button

button

button (p4)
button

button

button

gas ∨ acc

gas ∨ acc

brake (p3)
gas

∨ acc
gasbrake

∨ dec
brake
∨ dec(p2)

brake ∨ dec

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K -reachability
graph.

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K -reachability
graph.

ϕ1 ϕ3

ϕ2
w1

w2

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K -reachability
graph.

ϕ1 ϕ3

ϕ2
w1

w2

w < w1 + w2

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K -reachability
graph.

ϕ1 ϕ3

ϕ2
w1

w2

w < w1 + w2

Reachability diameter d = length of maximum, shortest path
between any two states

There is a K ≤ d such that, under the preconditions (1) and (2),
the test chain is minimal.

In practice, fix a bound K and obtain minimised chain.

Optimality

The test case chain is minimal if

(1) the program and the properties admit a test chain,

(2) all test goals are singleton sets, and

(3) the test chain visits each property once in the K -reachability
graph.

ϕ1 ϕ3

ϕ2
w1

w2

w < w1 + w2

Reachability diameter d = length of maximum, shortest path
between any two states

There is a K ≤ d such that, under the preconditions (1) and (2),
the test chain is minimal.

In practice, fix a bound K and obtain minimised chain.

Multi-State Test Goals

I ϕ1 ϕ2 F
0 1

2

2

2

2

p1 : G
(
mode = OFF ∧ ¬enable ∧ button ⇒ X enable

)

p2 : G
(
mode = ON ∧ brake ⇒ X(mode = DIS)

)

Multi-State Test Goals

I ϕ1 ϕ2 F
0 1

2

2

2

2

Broken chain

Multi-State Test Goals

I ϕ1 ϕ2 F

0
11

2

2

2

2

Broken chain

Path 〈I , ϕ1, ϕ2〉 not feasible in a single step, but requires two
steps.

Multi-State Test Goals

I ϕ1 ϕ2 F
1 1

2

2

2

2

Broken chain

Path 〈I , ϕ1, ϕ2〉 not feasible in a single step, but requires two
steps.

Chain repair

Systematically increase edge weights of failed subpath

Minimality lost

Multi-State Test Goals

I ϕ1 ϕ2 F
1 1

2

2

2

2

Broken chain

Path 〈I , ϕ1, ϕ2〉 not feasible in a single step, but requires two
steps.

Chain repair

Systematically increase edge weights of failed subpath

Minimality lost

Completeness

Succeeds if path admits chain in concrete program

If for each test goal the states are strongly connected

In practice: many systems are (almost) strongly connected.

General Case

Completeness

Not strongly connected systems:

Abstraction refinement

Abstraction Refinement

I ϕ1 ϕ2 F0 1

2

2

2

2

Abstraction Refinement

I ϕ1 ϕ2 F0 1

2

2

2

2

Abstraction refinement:

I ϕ1 ϕ2 F
0 1

2

2

2
2

2

2

Abstraction Refinement

I ϕ1 ϕ2 F0 1

2

2

2

2

Abstraction refinement: Find any path

I ϕ1 ϕ2 F
0 1

2
2

2
2

2

2

Abstraction Refinement

I ϕ1 ϕ2 F0 1

2

2

2

2

Abstraction refinement: Optimise with TSP solver

I ϕ1 ϕ2 F
1

2

2
2

2

2

Abstraction Refinement

I ϕ1 ϕ2 F0 1

2

2

2

2

Abstraction refinement: Optimise with TSP solver

I ϕ1 ϕ2 F
1

2

2
2

2

2

General Case

Completeness

Not strongly connected systems:

Abstraction refinement

General Case

Completeness

Not strongly connected systems:

Abstraction refinement
More general solver than TSP solver, e.g. ASP solver

General Case

Completeness

Not strongly connected systems:

Abstraction refinement
More general solver than TSP solver, e.g. ASP solver

Multiple chains :

Partitioning by graph colouring

General Case

Completeness

Not strongly connected systems:

Abstraction refinement
More general solver than TSP solver, e.g. ASP solver

Multiple chains :

Partitioning by graph colouring

Optimality

Would require to optimise over concrete system

In practice, minimised rather than minimal solutions relevant

Implementation

reactive
system
model

C code
generator

static
analyser

properties ChainCover test suite

Implementation

Properties specified as C functions:

void p 1 (i o t ∗ i , s t a t e t ∗ s) {
CPROVER assume (s−>mode==ON && s−>speed==1 && i−>dec) ;

compute (i , s) ;
a s s e r t (s−>speed ==1) ;

}

Woven into program during test case generation.

BMC engine of Cbmc

Property reachability graph construction

Exploits incremental SAT solving

Chain repair by concrete chaining

Lkh travelling salesman problem solver
Clingo answer set programming solver

Benchmarks and Comparison

Benchmarks

Cruise control model

Window controller

Car alarm system

Elevator model

Robot arm model

Comparison with

FShell: a BMC-based test generator with test suite
minimisation

Random case generator with test suite minimisation

Klee: a test case generator based on symbolic execution

Results: Test Case Length

ut ut ut ut ut ut
ut

ut
ut

ut
ut

ut

ut

* * * * * * * *
*

*
*

*
*

ld ld ld ld
ld

ld
ld

ld

ld

ld

ld

rs rs
rs

rs
rs

rs

rs

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of benchmarks

A
c
c
u

m
u

la
te

d
te

s
t
c
a

s
e

le
n

g
th

s

� KLEE

♦ RANDOMTEST

∗ FSHELL

△ CHAINCOVER

Results: Test Case Generator Runtime

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12

ut ut ut ut ut ut ut ut ut ut
ut

ut

* * * * *
*

*
*

*

*

*

*

ld ld ld ld ld ld ld ld ld ldrs rs rs rs rs
rs

A
c
c
u

m
u

la
te

d
ru

n
ti
m

e
s

Number of benchmarks

� KLEE

♦ RANDOMTEST

∗ FSHELL

△ CHAINCOVER

Summary and Current Work

Summary

Test chain for reactive systems

Test goals from requirements, specification model, code
coverage criteria

Minimal test chain for single-state test goals, otherwise
heuristics

Experimental evaluation

Application: on-target testing, acceptance testing

Current work

Integrate acceleration to handle deep loops

Test chains for code coverage criteria, e.g. MC/DC

Further questions

Incremental test chain generation

In the case of model modifications
When test execution gets stuck due to a failed test goal

Download me!

http://www.cprover.org/chaincover

	Introduction
	Preliminaries
	Chaining Test Cases
	Generalisations
	Experimental Evaluation
	Summary

