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Test Chains

Context:

Safety critical embedded software

Often modelled as synchronous reactive system

Safety standards: tool support for systematic testing desirable

Problem:

Often lengthy input sequences required to drive the system to
a test goal

Reset after each test case: serious problem in on-target testing

Goal:

Find a test case chain: a single test case that covers a set of
test goals and minimises overall test execution time



Model-Based Testing

requirements design model implementation
check check



Model-Based Testing

requirements design model implementation
check check

check



Model-Based Testing

requirements design model implementation

test suite
generator

test suite

check check

check



Model-Based Testing

requirements design model implementation

test suite
generator

test suite

check check

check



Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation
check

check



Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation

test suite
generator

test suite

check

check



Model-Based Testing

textual
requirements

Simulink/
Stateflow

formalised
properties

generated
C code

implementation

test suite
generator

test suite

check

check



Example: Cruise Control
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Example: Generated C Code from Simulink

void i n i t ( s t a t e t ∗s ) {
s−>mode = OFF ;
s−>speed = 0 ;
s−>enable = FALSE ;

}
void compute ( i o t ∗ i , s t a t e t ∗s ) {

mode = s−>mode ;
switch (mode) {

case ON: i f ( i−>gas | | i−>brake ) s−>mode=DIS ; break ;
case DIS :

i f ( ( s−>speed==2 && ( i−>dec | | i−>brake ) ) | |
( s−>speed==0 && ( i−>acc | | i−>gas ) ) )

s−>mode=ON;
break ;

case OFF :
i f ( s−>speed==0 && s−>enable && ( i−>gas | | i−>acc ) | |

s−>speed==1 && i−>button | |
s−>speed==2 && s−>enable && ( i−>brake | | i−>dec ) )

s−>mode=ON;
break ;

}
i f ( i−>button ) s−>enable = ! s−>enable ;
i f ( ( i−>gas | | mode!=ON && i−>acc ) && s−>speed<2) s−>speed ++;
i f ( ( i−>brake | | mode!=ON && i−>dec ) && s−>speed>0) s−>speed−−;

}
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void i n i t ( s t a t e t ∗s ) {
s−>mode = OFF ;
s−>speed = 0 ;
s−>enable = FALSE ;

}
void compute ( i o t ∗ i , s t a t e t ∗s ) {

mode = s−>mode ;
switch (mode) {

case ON: i f ( i−>gas | | i−>brake ) s−>mode=DIS ; break ;
case DIS :

i f ( ( s−>speed==2 && ( i−>dec | | i−>brake ) ) | |
( s−>speed==0 && ( i−>acc | | i−>gas ) ) )

s−>mode=ON;
break ;

case OFF :
i f ( s−>speed==0 && s−>enable && ( i−>gas | | i−>acc ) | |

s−>speed==1 && i−>button | |
s−>speed==2 && s−>enable && ( i−>brake | | i−>dec ) )

s−>mode=ON;
break ;

}
i f ( i−>button ) s−>enable = ! s−>enable ;
i f ( ( i−>gas | | mode!=ON && i−>acc ) && s−>speed<2) s−>speed ++;
i f ( ( i−>brake | | mode!=ON && i−>dec ) && s−>speed>0) s−>speed−−;

}

Formalised properties:

p1: G
(

mode = ON ∧ speed = 1 ∧ dec ⇒ X(speed = 1)
)

p2: G
(

mode = DIS ∧ speed = 2 ∧ dec ⇒ X(mode = ON)
)

p3: G
(

mode = ON ∧ brake ⇒ X(mode = DIS)
)

p4: G
(

mode = OFF ∧ speed = 2 ∧ ¬enable ∧ button ⇒ X enable
)
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Program:

State space Σ, input space Υ

Initial states I ⊆ Σ

Transition relation T ⊆ Σ×Υ× Σ

Bounded Model Checking:

Check the existence of a path 〈s0, s1, . . . , sK 〉 of increasing length
K from φ to φ′

φ(s0) ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) ∧ φ′(sK )

If SAT: satisfying assignment aka counterexample
(s0, i0, s1, i1, . . . , sK−1, iK−1, sK )

Test case generation:

φ = I and test goal φ′

Test case: input sequence 〈i0, . . . , iK−1〉, expected outcome
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Chaining Test Cases

Temporal logic safety specification:

Set of properties, e.g., of type

G
(
mode = ON ∧ speed = 1 ∧ dec
︸ ︷︷ ︸

assumption ϕ

⇒ X(speed = 1)
)

Test goals: set of assumptions ϕ (finite paths)

Test chain: from initial states I via all ϕs to final states F

Approach

1 Abstraction: property reachability graph

2 Optimisation: shortest path

3 Concretisation: compute concrete test case
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Weighted, directed graph:

Nodes: test goals ϕ

Edges:

from I to all ϕs
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Existence of a Covering Path

Covering path: path that visits all nodes at least once.

There is a covering path from I to F

iff

(1) all nodes are reachable from I ,

(2) F is reachable from all nodes,
and

(3) for all pairs of nodes (v1, v2),

(a) v2 is reachable from v1 or
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Reachability can be decided in constant time on the transitive
closure of the graph.
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Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
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Optimisation: Shortest Path Computation

Find a covering path from I to F :

Reduce to asymmetric travelling salesman problem (ATSP):

Tour that visits all nodes of a weighted directed graph exactly
once

Transitive closure
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ATSP result: 〈ϕ2, ϕ3,F , I , ϕ4, ϕ1〉
Shortest path: 〈I , ϕ4, ϕ1, ϕ2, ϕ3,F 〉



Concretisation: Computing the Test Chain

I
2

−→ ϕ4
2

−→ ϕ1
2

−→ ϕ2
1

−→ ϕ3
2

−→ F

I (s0)
∧T (s0, i0, s1) ∧ T (s1, i1, s2)∧ϕ4(s2, i2)
∧T (s2, i2, s3) ∧ T (s3, i3, s4)∧ϕ1(s4, i4)
∧T (s4, i4, s5) ∧ T (s5, i5, s6)∧ϕ2(s6, i6)

∧T (s6, i6, s7)∧ϕ3(s7, i7)
∧T (s7, i7, s8) ∧ T (s8, i8, s9)∧ F (s9)

〈i0, . . . , i8〉 = 〈gas, acc, button, dec, dec, gas, dec, brake, button〉



Concretisation: Computing the Test Chain
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Multi-State Test Goals

I ϕ1 ϕ2 F
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p1 : G
(
mode = OFF ∧ ¬enable ∧ button ⇒ X enable

)

p2 : G
(
mode = ON ∧ brake ⇒ X(mode = DIS)

)
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I ϕ1 ϕ2 F
1 1

2

2

2

2

Broken chain

Path 〈I , ϕ1, ϕ2〉 not feasible in a single step, but requires two
steps.

Chain repair

Systematically increase edge weights of failed subpath

Minimality lost

Completeness

Succeeds if path admits chain in concrete program

If for each test goal the states are strongly connected

In practice: many systems are (almost) strongly connected.



General Case

Completeness

Not strongly connected systems:

Abstraction refinement
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General Case

Completeness

Not strongly connected systems:

Abstraction refinement
More general solver than TSP solver, e.g. ASP solver

Multiple chains :

Partitioning by graph colouring

Optimality

Would require to optimise over concrete system

In practice, minimised rather than minimal solutions relevant
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Implementation

Properties specified as C functions:

void p 1 ( i o t ∗ i , s t a t e t ∗ s ) {
CPROVER assume ( s−>mode==ON && s−>speed==1 && i−>dec ) ;

compute ( i , s ) ;
a s s e r t ( s−>speed ==1) ;

}

Woven into program during test case generation.

BMC engine of Cbmc

Property reachability graph construction

Exploits incremental SAT solving

Chain repair by concrete chaining

Lkh travelling salesman problem solver
Clingo answer set programming solver



Benchmarks and Comparison

Benchmarks

Cruise control model

Window controller

Car alarm system

Elevator model

Robot arm model

Comparison with

FShell: a BMC-based test generator with test suite
minimisation

Random case generator with test suite minimisation

Klee: a test case generator based on symbolic execution



Results: Test Case Length
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Results: Test Case Generator Runtime
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Summary and Current Work

Summary

Test chain for reactive systems

Test goals from requirements, specification model, code
coverage criteria

Minimal test chain for single-state test goals, otherwise
heuristics

Experimental evaluation

Application: on-target testing, acceptance testing

Current work

Integrate acceleration to handle deep loops

Test chains for code coverage criteria, e.g. MC/DC

Further questions

Incremental test chain generation

In the case of model modifications
When test execution gets stuck due to a failed test goal



Download me!

http://www.cprover.org/chaincover
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