
Sound Static Deadlock Analysis for C/Pthreads

Daniel Kroening
University of Oxford

Oxford, UK
kroening@cs.ox.ac.uk

Daniel Poetzl
University of Oxford

Oxford, UK
daniel.poetzl@cs.ox.ac.uk

Peter Schrammel
University of Sussex

Brighton, UK
p.schrammel@sussex.ac.uk

Björn Wachter
SSW-Trading GmbH

Germany
bjoern.wachter@gmail.com

ABSTRACT
We present a static deadlock analysis for C/Pthreads. The
design of our method has been guided by the requirement
to analyse real-world code. Our approach is sound (i.e.,
misses no deadlocks) for programs that have defined be-
haviour according to the C standard and the Pthreads spec-
ification, and is precise enough to prove deadlock-freedom
for a large number of such programs. The method consists
of a pipeline of several analyses that build on a new context-
and thread-sensitive abstract interpretation framework. We
further present a lightweight dependency analysis to iden-
tify statements relevant to deadlock analysis and thus speed
up the overall analysis. In our experimental evaluation, we
succeeded to prove deadlock-freedom for 292 programs from
the Debian GNU/Linux distribution with in total 2.3 MLOC
in 4 hours.

CCS Concepts
•Theory of computation → Program analysis;

Keywords
deadlock analysis, static analysis, abstract interpretation

1. INTRODUCTION
Locks are the most frequently used synchronisation mech-

anism in concurrent programs to guarantee atomicity, pre-
vent undefined behaviour due to data races, and hide weak-
memory effects of the underlying architectures. However,
locks, if not correctly used, can cause a deadlock, where one
thread holds a lock that the other one needs and vice versa.

In small programs, deadlocks may be spotted easily. How-
ever, this is not the case in larger software systems. Lock-
ing disciplines aim to prevent deadlocks but are difficult to
maintain as the system evolves, and every extension bears
the risk of introducing deadlocks. For example, if the order
in which locks are acquired is different in different parts of
the code this may cause a deadlock.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’16, September 03-07, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970309

The problem is exacerbated by the fact that deadlocks are
difficult to discover by means of testing. Even a test suite
with full line coverage is insufficient to detect all deadlocks,
and similar to other concurrency bugs, triggering a deadlock
requires a specific thread schedule and a set of particular
program inputs. Therefore, static analysis is a promising
candidate for a thorough check for deadlocks.

We hypothesise that static deadlock detection can be per-
formed with a sufficient degree of precision and scalability
and without sacrificing soundness. To this end, this paper
presents a new method for static deadlock analysis. Our
approach is sound1 (i.e., misses no deadlocks) for programs
that have defined semantics according to the C standard [22]
and the Pthreads specification [40] (and thus in particular
do not contain data races). To quantify scalability, we have
applied our implementation to a large body of real-world
concurrent code from the Debian GNU/Linux project.

Specifically, this paper makes the following contributions:

1. A static deadlock analysis for C/Pthreads that is sound
(for defined programs) and can handle real-world code.

2. A new context- and thread-sensitive abstract interpre-
tation framework that forms the basis of our analyses.
The framework unifies contexts, threads, and program
locations via the concept of a place.

3. A lightweight dependency analysis for identifying state-
ments that could affect a given set of expressions. We
use it to speed up the pointer analysis by focusing it
to statements that are relevant to deadlock analysis.

4. We show how to build a lock graph that soundly cap-
tures a variety of sources of imprecision, such as may-
point-to information and thread creation in loops/re-
cursions, and how to combine the cycle detection with
a non-concurrency check to prune infeasible cycles.

5. A thorough experimental evaluation on 997 programs
from Debian GNU/Linux with 11.4 MLOC in total and
up to 50 KLOC per program.

2. OVERVIEW
The design of our analyses has been guided by the goal to

analyse real-world concurrent C/Pthreads code in a sound
way. For programs with undefined behaviour, we do not for-
mally guarantee soundness, as for such programs the com-
piler is allowed to do anything, and may in particular pro-
duce a program containing a deadlock. This could happen in

1We use the term soundness in the static analysis/verifica-
tion sense, i.e., a sound analysis does not miss any bugs.
This differs from the usage in dynamic analysis, where it
means that an analysis does not yield false bug reports.

http://dx.doi.org/10.1145/2970276.2970309

1 void vlc_mutex_lock (vlc_mutex_t ∗p) {
2 i n t val = pthread_mutex_lock (p) ;
3 VLC_THREAD_ASSERT(" locking mutex ") ;
4 }

1 void create_worker (void ∗(∗ func) (void ∗) ,
2 void ∗arg) {
3 p t h r e a d _ a t t r _ t a t t r ;
4 i n t r e t ;
5 p t h r e a d _ a t t r _ i n i t (& a t t r) ;
6 i f ((r e t =pthread_create (
7 &((THREAD∗) arg)−>thread_id ,
8 &a t t r , func , arg)) != 0) {
9 f p r i n t f (s tderr , " Error : %s\n" ,

10 s t r e r r o r (r e t)) ;
11 e x i t (1) ;
12 }
13 }

Figure 1: Lock and create wrappers

function pointer
call removal

return removal

ICFA con-
struction

C program

ICFA

Figure 2: ICFA constr.

dependency
analysis

pointer
analysis **

may lockset
analysis *

must lockset
analysis *

lock graph
construction *

cycle detection

non-concurrency
check

yes

no

Figure 3: Analysis pipeline

practice, for example, if the compiler removes an if-branch
that contains an unlock operation if it can determine that
the branch always invokes an undefined operation (such as
one resulting in an integer overflow).

Fig. 3 gives an overview of our analysis pipeline. An arrow
between two analyses indicates that the target uses infor-
mation computed by the source. We use a dashed arrow
from the non-concurrency analysis to the cycle detection
to indicate that the required information is computed on-
demand (i.e., the cycle detection may repeatedly query the
non-concurrency analysis, which computes the result in a
lazy fashion). All of the analyses operate on a graph rep-
resentation of the program (introduced in Sec. 3.1). The
exception is the cycle detection phase, which only uses the
lock graph computed in the lock graph construction phase.

The pointer analysis, may- and must-lockset analysis, and
the lock graph construction are implemented on top of our
new generic context- and thread-sensitive analysis frame-
work (described in detail in Sec. 3.2). To enable trade-off
between precision and cost, the framework comes in a flow-
insensitive and a flow-sensitive version. The pointer analysis
was implemented on top of the former (thus marked with **
in Fig. 3), and the may- and must-lockset analysis and the
lock graph construction on top of the latter (marked with *).
The dependency analysis and the non-concurrency analysis
are separate standalone analyses.

Context and thread sensitivity.
Typical patterns in real-world C code suggest that an ap-

proach that provides a form of context-sensitivity is nec-
essary to obtain satisfactory precision, as otherwise there
would be too many false deadlock reports. For instance,
many projects provide their own wrappers for the functions
of the Pthreads API. Fig. 1, for example, shows a lock wrap-
per from the VLC project. An analysis that is not context-
sensitive would merge the points-to information for pointer
p from different call sites invoking vlc_mutex_lock(), and
thus yield many false alarms.

Thread creation causes a similar problem. For every call
to pthread_create(), the analysis needs to determine which
thread is created (i.e., the function identified by the pointer
passed to pthread_create()). This is straightforward if
a function identifier is given to pthread_create(). How-
ever, similar to the case of lock wrappers above, projects
often provide wrappers for pthread_create(). Fig. 1 gives
the wrapper for pthread_create() from the memcached
project. The wrapper then uses the function pointer that
is passed to create_worker() to create a thread. Main-
taining precision in such cases requires us to track the flow

1 i n t main ()
2 {
3 pthread_t t i d ;
4 pthread_create (& t id , 0 ,
5 thread , 0) ;
6

7 pthread_mutex_lock(&m1) ;
8 pthread_mutex_lock(&m3) ;
9 pthread_mutex_lock(&m2) ;

10 func1 () ;
11 pthread_mutex_unlock(&m2) ;
12 pthread_mutex_unlock(&m3) ;
13 pthread_mutex_unlock(&m1) ;
14

15 pthread_ jo in (t id , 0) ;
16

17 i n t r ;
18 r = func2 (5) ;
19

20 return 0 ;
21 }

22 void func1 ()
23 {
24 x = 0 ;
25 }

26 void ∗ thread ()
27 {
28 pthread_mutex_lock(&m1) ;
29 pthread_mutex_lock(&m2) ;
30 pthread_mutex_lock(&m3) ;
31 x = 1 ;
32 pthread_mutex_unlock(&m3) ;
33 pthread_mutex_unlock(&m2) ;
34 pthread_mutex_unlock(&m1) ;
35

36 pthread_mutex_lock(&m4) ;
37 pthread_mutex_lock(&m5) ;
38 x = 2 ;
39 pthread_mutex_unlock(&m5) ;
40 pthread_mutex_unlock(&m4) ;
41

42 return 0 ;
43 }

44 i n t func2 (i n t a)
45 {
46 pthread_mutex_lock(&m5) ;
47 pthread_mutex_lock(&m4) ;
48 i f (a)
49 x = 3 ;
50 e lse
51 x = 4 ;
52 pthread_mutex_unlock(&m4) ;
53 pthread_mutex_unlock(&m5) ;
54 return 0 ;
55 }

Figure 4: Example of a deadlock-free program

of function pointer values from function arguments to func-
tion parameters. This is implemented directly as part of
the analysis framework (as opposed to in the full points-to
analysis).

Dependency analysis.
Deadlock detection requires the information which lock

objects an expression used in a pthread_mutex_lock() call
may refer to. We compute this data using the pointer anal-
ysis, which is potentially expensive. However, it is easy to
see that potentially many assignments and function calls in
a program do not affect the values of lock expressions. Con-
sider for example Fig. 4. The accesses to x cannot affect
the value of the lock pointers m1–m5. Further, the code in
function func1 cannot affect the values of the lock pointers,
and thus in turn the call func1() in line 10 cannot affect
the lock pointers.

We have developed a lightweight context-insensitive, flow-
insensitive analysis to identify statements that may affect a
given set of expressions. The result is used to speed up

the pointer analysis. The dependency analysis is based on
marking statements which (transitively) share common vari-
ables with the given set of expressions. In our case, the
relevant expressions are those used in lock-, create-, and
join-statements. For the latter two we track the thread ID
variable (first parameter of both) whose value is required
to determine which thread is joined by a join operation.
We give the details of the dependency analysis in Sec. 4.

Non-concurrency analysis.
A deadlock resulting from a thread 1 first acquiring lockm1

and then attempting to acquire m2 (at program location `1),
and thread 2 first acquiring m2 and then attempting to ac-
quire m1 (at program location `2) can only occur when in a
concrete program execution the program locations `1 and `2
run concurrently. If we have a way of deciding whether two
locations could potentially run concurrently, we can use this
information to prune spurious deadlock reports. For this
purpose we have developed a non-concurrency analysis that
can detect whether two statements cannot run concurrently
based on two criteria.

Common locks. If thread 1 and thread 2 hold a common
lock at locations `1 and `2, then they cannot both simultane-
ously reach those locations, and hence the deadlock cannot
happen. This is illustrated in Fig. 4. The thread main() at-
tempts to acquire the locks in the sequence m1, m3, m2, and
the thread thread() attempts to acquire the locks in the se-
quence m1, m2, m3. There is an order inversion between m2

and m3, but there is no deadlock since the two sections 7–13
and 28–34 (and thus in particular the locations 8 and 30)
are protected by the common lock m1. The common locks
criterion has first been described by Havelund [20] (common
locks are called gatelocks there).

Create and join. Statements might also not be able to
run concurrently because of the relationship between threads
due to the pthread_create() and pthread_join() opera-
tions. In Fig. 4, there is an order inversion between the
locks of m5 and m4 by function func2(), and the locks of
m4, m5 of thread thread(). Yet there is no deadlock since
the thread thread() is joined before func2() is invoked.

Our non-concurrency analysis makes use of the must lock-
set analysis (computing the locks that must be held) to
detect common locks. To detect the relationship between
threads due to create and join operations it uses a search
on the program graph for joins matching earlier creates. We
give more details of our non-concurrency analysis in Sec. 5.

3. ANALYSIS FRAMEWORK
In this section, we first introduce our program representa-

tion, then describe our context- and thread-sensitive frame-
work, and then describe the pointer analysis and lockset
analyses that are implemented on top of the framework.

3.1 Program Representation
Preprocessing. Our tool takes as input a concurrent C pro-

gram using the Pthreads threading library. In the first step,
the calls to functions through function pointers are removed.
A call is replaced by a case distinction over the functions
the function pointer could refer to. Specifically, a function
pointer can only refer to functions that are type-compatible
and of which the address has been taken at some point in
the code. This is illustrated in Fig. 5 (top). We assume that
the function pointer fp has type void (*)(void). Function
f2() (address not taken) and f4() (not type-compatible)
do not have to be part of the case distinction. Calling f4
via fp would be undefined behaviour according to the C
standard [22]. In the second step, functions with multiple

exit points (i.e., multiple return statements) are transformed
such as to have only one exit points (illustrated in Fig. 5,
bottom).

Interprocedural CFAs. We transform the program into
a graph representation which we term interprocedural con-
trol flow automaton (ICFA). The functions of the program
are represented as CFAs [21]. CFAs are similar to control
flow graphs, but with the nodes representing program loca-
tions and the edges being labeled with operations. ICFAs
have additional inter-function edges modeling function en-
try, function exit, thread entry, thread exit, and thread join.
Fig. 4 shows a concurrent C program and Fig. 6 shows its
corresponding ICFA (thread exit and thread join edges and
the function func1() are omitted).

We denote by Prog a program (represented as an ICFA),
by Funcs the set of identifiers of the functions, by L =
{`0, . . . , `n−1} the set of program locations, by E the set
of edges connecting the locations, and by op(e) a function
that labels each edge with an operation. For example, in
Fig. 6, the edge between locations 49 and 52 is labeled with
the operation x=3, and the edge between locations 18 and
46 is labeled with the operation func entry(5, a).

We further write L(f) for the locations in function f . Each
program location is contained in exactly one function. The
function func(`) yields the function that contains `. The set
of variable identifiers in the program is denoted by Vars.
We assume that all identifiers in Prog are unique, which can
always be achieved by a suitable renaming of identifiers.

We treat lock, unlock, thread create, and thread join as
primitive operations. That is, we do not analyse the body
of e.g. pthread_create() (as implemented in e.g. glibc on
GNU/Linux systems). Instead, our analysis only tracks the
semantic effect of the operation, i.e., creating a new thread.

Apart from intra-function edges we also have inter-function
edges that can be labeled with the five operations func entry,
func exit, thread entry, thread exit, and thread join.

A function entry edge (func entry) connects a call site to
the function entry point. The edge label also includes the
function call arguments and the function parameters. For
example, func entry(5, a) indicates that the integer literal 5
is passed to the call as an argument, which is assigned to
function parameter a. A function exit edge (func exit) con-
nects the exit point of a function to every call site calling
the function. Our analysis algorithm filters out infeasible
edges during the exploration of the ICFA. That is, if a func-
tion entry edge is followed from a function f1 to function f2,
then the analysis algorithm later follows the exit edge from
f2 to f1, disregarding exit edges to other functions.

A thread entry edge (thread entry) connects a thread cre-
ation site to all potential thread entry points. It is necessary
to connect to all potential thread entry points since often
a thread creation site can create threads of different types
(i.e., corresponding to different functions), depending on the
value of the function pointer passed to pthread_create().
Analogous to the case of function exit edges, our analysis
algorithm tracks the values of function pointers during the
ICFA exploration. At a thread creation site it thus can re-
solve the function pointer, and only follows the edge to the
thread entry point corresponding to the value of the function
pointer.

A thread exit edge connects the exit point of a thread
to the location following all thread creation sites, and a
thread join edge connects a thread exit point to all join op-
erations in the program.

3.2 Analysis Framework – Overview
Our framework to perform context- and thread-sensitive

analyses on ICFAs is based on abstract interpretation [14].

1 void f1 () { }
2 void f2 () { }
3 void f3 () { }
4 i n t f4 (i n t a) { }
5 . . .
6 . . . = &f1 ;
7 . . . = &f3 ;
8 . . . = &f4 ;
9 . . .

10 fp () ;

⇒
1 . . .
2 i f (fp==f1)
3 f1 () ;
4 e lse
5 i f (fp==f3)
6 f3 () ;

1 i n t f () {
2 i f (. . .)
3 return 0 ;
4 e lse
5 return 1 ;
6 }
7 . . .
8 a = f () ;

⇒

1 i n t f () {
2 i n t r e t ;
3 i f (. . .)
4 r e t = 0 ;
5 goto END;
6 e lse
7 r e t = 1 ;
8 goto END;
9 END:

10 return r e t ;
11 }
12 . . .
13 a = f () ;

Figure 5: Function pointers and returns

func2(int a)

46

47

48

49 51

52

54

55

lock(m5)

lock(m4)

[a 6= 0] [a = 0]

x = 3 x = 4

...

return 0

main()

4

7

8

15

18

20

21

create(&tid, 0,
thread, 0)

lock(m1)

join(tid, 0)

r = func2(3)

return 0

thread()

28

29

30

39

40

42

43

lock(m1)

lock(m2)

unlock(m5)

unlock(m4)

return 0

thread entry(thread, 0, par)

func entry(5, a)

func exit(0, r)

... ...

Figure 6: ICFA associated with the program in Fig. 4

It implements a flow-sensitive and flow-insensitive fixpoint
computation over the ICFA, and needs to be parametrised
with a custom analysis to which it delegates the handling of
individual edges of the ICFA. We provide more details and
a formalization of the framework in the next section.

Our analysis framework unifies contexts, threads, and pro-
gram locations via the concept of a place. A place is a tu-
ple (`0, `1, . . . , `n) of program locations. The program lo-
cations `0, . . . , `n−1 are either function call sites or thread
creation sites in the program (such as, e.g., location 18 in
Fig. 6). The final location `n can be a program location
of any type. The locations `0, . . . , `n−1 model a possible
function call and thread creation history that leads up to
program location `n. We denote the set of all places for a
given program by P . We use the + operator to extend tu-
ples, i.e., (`0, . . . , `n−1)+ `n = (`0, . . . , `n−1, `n). We further
write |p| for the length of the place. We write p[i] for ele-
ment i (indices are 0-based). We use slice notation to refer
to contiguous parts of places; p[i : j] denotes the part from
index i (inclusive) to index j (exclusive), and p[: i] denotes
the prefix until index i (exclusive). We write top(p) for the
last location in the place.

As an example, in Fig. 6, place (18, 49) denotes the pro-
gram location 49 in function func2() when it has been
invoked at call site 18 in the main function. If function
func2() were called at multiple program locations `1, . . . ,
`m in the main function, we would have different places
(`1, 49), . . . , (`m, 49) for location 49 in function func2(). Sim-
ilarly, for the thread function thread() and, e.g., location
29, we have a place (4, 29) with 4 identifying the creation
site of the thread.

Each place has an associated abstract thread identifier,
which we refer to as thread ID for short. Given a place
p = (`0, . . . , `n), the associated thread ID is either t = ()
(the empty tuple) if no location in p corresponds to a thread
creation site, or t = `0, . . . , `i, such that `i is a thread cre-
ation site and all `j with j > i are not thread creation sites.
It is in this sense that our analysis is thread-sensitive, as the
information computed for each place can be associated with
an abstract thread that way. We write get thread(p) for the
thread ID associated with place p.

The analysis framework must be parametrised with a cus-
tom analysis. The framework handles the tracking of places,

the tracking of the flow of function pointer values from func-
tion arguments to function parameters, and it invokes the
custom analysis to compute dataflow facts for each place.

The domain, transfer function, and join function of the
framework are denoted by Ds, Ts, and ts, respectively,
and the domain, transfer function, and join function of the
parametrising analysis are denoted by Da, Ta, and ta. The
custom analysis has a transfer function Ta : E × P →
(Da → Da) and a join function ta : Da × Da → Da.
The domain of the framework (parametrised by the cus-
tom analysis) is then Ds = Fpms × Da, the transfer func-
tion is Ts : E × P → (Ds → Ds), and the join function is
ts : Ds ×Ds → Ds.

The set Fpms is a set of mappings from identifiers to
functions which map function pointers to the functions they
point to. We denote the empty mapping by ∅. We further
write fpm(fp) = ⊥ to indicate that fp is not in dom(fpm)
(the domain of fpm). A function pointer fp might be mapped
by fpm either to a function f or to the special value d (for
“dirty”) which indicates that the analysed function assigned
to fp or took the address of fp. In this case we conservatively
assume that the function pointer could point to any thread
function.

3.3 Analysis Framework – Details
We now explain the formalisation of the analysis frame-

work which is given in Fig. 7. The figure gives the flow-
sensitive variant of our framework. We refer to the extended
version of the paper [29] for the flow-insensitive version. The
figure gives the domain, join function ts and transfer func-
tion Ts, which are defined in terms of the join function ta

and transfer function Ta of the parametrising analysis (such
as the lockset analyses defined in the next section).

The function nexts(e, p) defines how the place p is updated
when the analysis follows the ICFA edge e. For example, on
a func exit edge, the last two locations are removed from the
place (which are the exit point of the function, and the lo-
cation of the call to the function), and the location to which
the function returns to is added to the place (which is the
location following the call to the function). The thread entry
and func entry cases are delegated to entrys(p, `). The first
case of the function handles recursion. If the location ` of
the called function is already part of the place, then the pre-

Domain: Ds = Fpms ×Da

s1s ts s
2
s =(fpm, sa)

with s1s = (fpm1, s1a)

with s2s = (fpm2, s2a)

with fpm = fpm1 tfp fpm2

with sa = s1a ta s
2
a

fpm1 tfp fpm2 = fpm

fpm(fp) =
d fpm1(fp) = d ∨ fpm2(fp) = d

v (fpm1(fp) = v ∧ (fp /∈ dom(fpm2) ∨ fpm2(fp) = v))∨
(fpm2(fp) = v ∧ (fp /∈ dom(fpm1) ∨ fpm1(fp) = v))

⊥ otherwise

With e = (`1, `2), top(p) = `1, f = func(`2), and n = |p|:

nexts(e, p) =
entrys(p, `2) op(e) ∈ {thread entry, func entry}
p[: n− 2] + `2 op(e) ∈ {func exit, thread exit, thread join}
p[: n− 1] + `2 otherwise

entrys(p, `) =

{
p′ + ` p = p′ + `+ p′′

p+ ` otherwise

With e = (`src, `tgt),
op(e) = func entry(arg1, . . . , argk, par1, . . . , park), and
ss = (fpm, sa):

TsJe, pK(ss) =(fpm ′, TaJe, p K(sa))

fpm ′(par i) =

{
argi is func(argi)

fpm(arg i) is func pointer(arg i)

With e = (`src, `tgt), f = func(`tgt),
op(e) = thread entry(thr , arg , par), and ss = (fpm, sa):

TsJe, pK(ss) =

{
(fpm ′, TaJe, pK(sa)) match fp(fpm, thr , f)

(∅,⊥a) otherwise

match fp(fpm, thr , f) =

(is func pointer(thr) ∧ fpm(thr) ∈ {⊥, d, f})∨
(is func(thr) ∧ thr = f)

With e = (`src, `tgt),
op(e) ∈ {func exit, thread exit, thread join}, and
ss = (fpm, sa):

TsJe, pK(ss) = (∅, TaJe, pK(sa))

With e = (`src, `tgt), op(e) = op, and ss = (fpm, sa):

TsJe, pK(ss) = (fpm, TaJe, pK(sa))

Figure 7: Context-, thread-, and flow-sensitive framework

fix of the place that corresponds to the original call to the
function is reused (first case). If no recursion is detected, the
entry location of the function is simply added to the current
place (second case). For intra-function edges (last case of

nexts), the last location is removed from the place and the
target location of the edge is added.

The overall result of the analysis is a mapping s ∈ P →
(Fpms × Da). The result is defined via a fixpoint equa-
tion [14]. We obtain the result by computing the least fix-
point (via a worklist algorithm) of the equation below (with
s0 denoting the initial state of the places):

s = s0 t λ p.
⊔

p′,e s.t.np(p,p′,e)

TsJe, p′K(s(p′))
s

with np(p, p′, (`1, `2)) = `1 = top(p′)∧
`2 = top(p)∧
nexts((`1, `2), p′) = p

with s t s′ = λ p. s(p) ts s
′(p)

The equation involves computing the join over all places p′

and edges e in the ICFA such that np(p, p′, e).
We next describe the definition of the transfer function

of the framework in more detail. The definition consists of
four cases: (1) function entry, (2) thread entry, (3) function
exit, thread exit, thread join, and (4) intra-function edges.

(1) When applying a function entry edge, a new function
pointer map fpm ′ is created by assigning arguments to pa-
rameters and looking up the values of the arguments in the
current function pointer map fpm. As in the following cases,
the transfer function Ta of the custom analysis is applied to
the state sa.

(2) Applying a thread entry edge to a state ss yields one
of two outcomes. When the value of the function pointer
argument thr matches the target of the edge (i.e., the edge
enters the same function as the function pointer points to),
then the function pointer map is updated with arg and par
(as in the previous case), and the transfer function of the
custom analysis is applied. Otherwise, the result is the bot-
tom element ⊥s = (∅,⊥a).

(3) The function pointer map is cleared (as its domain
contains only parameter identifiers which are not accessible
outside of the function), and the custom transfer function is
applied.

(4) The custom transfer function is applied.
If a function pointer fp is assigned to or its address is

taken, its value is set to d in fpm, thus indicating that it
could point to any thread function. This case is omitted
from Fig. 7 for lack of space.

Implementation.
During the analysis we need to keep a mapping from places

to abstract states (which we call the state map). However,
directly using the places as keys for the state maps in all
analyses can lead to high memory consumption. Our imple-
mentation therefore keeps a global two-way mapping (shared
by all analyses in Fig. 3) between places and unique IDs for
the places (we call this the place map). The state maps
of the analyses are then mappings from unique IDs to ab-
stract states, and the analyses consult the global place map
to translate between places and IDs when needed.

In the two-way place map, the mapping from places to
IDs is implemented via a trie, and the mapping from IDs to
places via an array that stores pointers back into the trie.
The places in a program can be efficiently stored in a trie
as many of them share common prefixes. We give further
details in the extended version [29].

3.4 Pointer Analysis
We use a standard points-to analysis that is an instanti-

ation of the flow-insensitive version of the above framework

Domain: 2Objs ∪ {{?}}

s1 t s2 =

{
s1 ∪ s2 if s1, s2 6= {?}
{?} otherwise

With op(e) = lock(a):

T Je, pK(s) =

{
s ∪ vs(p, a) if s, vs(p, a) 6= {?}
{?} otherwise

With op(e) = unlock(a):

T Je, pK(s) =

∅ if |s| = 1 ∧ s 6= {?}
s− vs(p, a) if |s ∩ vs(p, a)| = 1∧

s 6= {?} ∧ vs(p, a) 6= {?}
s otherwise

With op(e) ∈ {thread entry, thread exit, thread join}:

T Je, pK(s) = ∅

Figure 8: May lockset analysis. We denote by vs(p, a) the
value set of pointer expression a at place p (see Sec. 3.4)

(see the extended version of the paper [29]). It computes
for each place an element of Vars → (2Objs ∪ {{?}}). That
is, the set of possible values of a pointer variable is either
a finite set of objects it may point to, or {?} to indicate
that it could point to any object. We use vs(p, a) to de-
note the value set at place p of pointer expression a. The
pointer analysis is sound for concurrent programs due to its
flow-insensitivity [37].

3.5 Lockset Analysis
Our analysis pipeline includes a may lockset analysis (com-

puting for each place the locks that may be held) and a
must lockset analysis (computing for each place the locks
that must be held). The former is used by the lock graph
analysis, and the latter by the non-concurrency analysis.

The may lockset analysis is formalised in Fig. 8 as a cus-
tom analysis to parametrise the flow-sensitive framework
with. The must lockset analysis is given in the extended ver-
sion [29]. Both the may and must lockset analyses makes use
of the previously computed points-to information by means
of the function vs(). In both cases, care must be taken to
compute sound information from the may-point-to informa-
tion provided by vs(). For example, for the may lockset
analysis on an unlock(a) operation, we cannot just remove
all elements in vs(p, a) from the lockset, as an unlock can
only unlock one lock. We use lsa(p), lsu(p) to denote the
may and must locksets at place p.

4. DEPENDENCY ANALYSIS
We have developed a context-insensitive, flow-insensitive

dependency analysis to compute the set of assignments and
function calls that might affect the value of a given set of ex-
pressions (in our case the expressions used in lock-, create-,
and join-statements). The purpose of the analysis is to speed
up the following pointer analysis phase (cf. Fig. 3).

Below we first describe a semantic characterisation of de-
pendencies between expressions and assignments, and then
devise an algorithm to compute dependencies based on syn-
tax only (specifically, the variable identifiers occuring in the
expressions/assignments).

Semantic characterisation of dependencies.
Let AS = {e ∈ E(Prog) | is assign(op(e))} be the set of

assignment edges. Let exprs be a set of starting expressions.
Let further R(a),W (a) denote the set of memory locations

that an expression or assignment a may read (resp. write)
over all possible executions of the program. Let further
M(a) = R(a) ∪W (a). Then we define the immediate de-
pendence relation dep as follows (with ∗ denoting transitive
closure and ; denoting composition):

dep1 ⊆ exprs ×AS , (a, b) ∈ dep1 ⇔ R(a) ∩W (b) 6= ∅
dep2 ⊆ AS ×AS , (a, b) ∈ dep2 ⇔ R(a) ∩W (b) 6= ∅
dep = dep1; dep∗2

If (a, b) ∈ dep1, then the evaluation of expression a may
read a memory location that is written to by assignment b.
If (a, b) ∈ dep2, then the evaluation of the assignment a may
read a memory location that is written to by the assign-
ment b. If (a, b) ∈ dep, this indicates that the expression a
can (transitively) be influenced by the assignment b. We say
a depends on b in this case.

The goal of our dependency analysis is to compute the set
of assignments A = dep|(,a)7→a (the binary relation A pro-
jected to the second component). However, we cannot di-
rectly implement a procedure based on the definitions above
as this would require the functions R(), W () to return the
memory locations accessed by the expressions/assignments.
This in turn would require a pointer analysis–the very thing
we are trying to optimise.

Thus, in the next section, we outline a procedure for com-
puting the relation dep which relies on the symbols (i.e.,
variable identifiers) occuring in the expressions/assignments
rather then the memory locations accessed by them.

Computing dependencies.
In this section we outline how we can compute an over-

approximation of the set of assignments A as defined above.
Let symbols(a) be a function that returns the set of variable
identifiers occuring in an expression/assignment. For exam-
ple, symbols(a[i]->lock) = {a, i} and symbols(*p=q+1) =
{p, q}. As stated in Sec. 3.1, in our program representation
all variable identifiers in a program are unique. We first
define the relation sym2 which indicates whether two as-
signments have common symbols:

sym2 ⊆ AS ×AS

(a, b) ∈ sym2 ⇔ symbols(a) ∩ symbols(b) 6= ∅
Our analysis relies on the following property: If two as-

signments a, b can access a common memory location (i.e.,
M(a) ∩M(b) 6= ∅), then (a, b) ∈ sym∗2. This can be seen
as follows. Whenever a memory region/location is allo-
cated in C it initially has at most one associated identi-
fier. For example, the memory allocated for a global vari-
able x at program startup has initially just the associated
identifier x. Similarly, memory allocated via, e.g., a = (int
*)malloc(sizeof(int) * NUM) has initially only the asso-
ciated identifier a. If an expression not mentioning x, such
as *p, can access the associated memory location, then the
address of x must have been propagated to p via a sequence
of assignments such as q=&x, s->f=q, p=s->f, with each of
the adjacent assignments having common variables. Thus, if
a, b can access a common memory location, then both must
be “connected” to the initial identifier associated with the
location via such a sequence. Thus, in particular, a, b are
also connected. Therefore, (a, b) ∈ sym∗2.

We next define the sym relation which also incorporates
the starting expressions:

sym1 ⊆ exprs ×AS

(a, b) ∈ sym1 ⇔ symbols(a) ∩ symbols(b) 6= ∅
sym = sym1; sym∗2

As we will show below we have dep ⊆ sym and thus also
A = dep|(,a)7→a ⊆ sym|(,a)7→a. Thus, if we compute sym
above we get an overapproximation of A.

The fact that dep ⊆ sym can be seen as follows. Let
(a, b) ∈ dep. Then there are a1, a2, . . . , an, b such that (a1, a2)
∈ dep1∪dep2, (a2, a3) ∈ dep2, . . . , (an, b) ∈ dep2. Let (a′, a′′)
be an arbitrary one of those pairs. Then R(a) ∩W (b) 6= ∅
by the definition of dep1 and dep2. Thus M(a) ∩M(b) 6= ∅.
As we have already argued above, if two expressions/assign-
ments can access the same memory location then they must
transitively share symbols. Thus (a′, a′′) ∈ sym1 ∪ sym∗2
must hold. Therefore, since we have chosen (a′, a′′) arbi-
trarily, we have that all of the pairs above are contained
in sym1 ∪ sym∗2 and thus by the definition of sym and in
particular the transitivity of sym∗2 we get (a, b) ∈ sym.

Thus, we can use the definition of sym above to compute
an overapproximation of the set of assignments that can af-
fect the starting expressions as defined semantically in the
previous section.

Algorithm.
Algorithm 1 gives our dependency analysis. The first

phase (line 1, Algorithm 2) is based on the ideas from the
previous section. It computes the set of edges that can af-
fect the given set of starting edges. It first computes the
set of sets R which contains for each edge a set which con-
tains the symbols mentioned by this edge (lines 4–9). Then
line 10 assigns to NM a map that maps unique integers to
sets in R. Then line 11 assigns to SM a map that maps
symbols to those numbers corresponding to sets in R in
which the respective symbols occur. For example, if we
have R = {{x, y}, {z}}, then we would get NM = {0 7→
{x, y}, 1 7→ {z}} and SM = {x 7→ 0, y 7→ 0, z 7→ 1}. The
purpose of this numbering is to have a compact represen-
tation of SM to guarantee linear runtime of the algorithm.
Then in lines 12–20, the algorithm propagates the set of sym-
bols to compute transitive dependencies. The sets Nh, Sh

store the numbers and symbols that have been handled al-
ready. Finally, lines 21–24 select the assignment-, func exit-,
and thread join-edges that share symbols with those encoun-
tered during the propagation phase.

In the second phase the algorithm additionally determines
the func entry and thread entry edges that could lead to an
edge determined in the previous phase. The ability to prune
function calls has a potentially big effect on the performance
of the analysis, as it can greatly reduce the amount of code
that needs to be analysed. In the following section we eval-
uate the performance and effectiveness of the dependency
analysis. Its effect on the overall analysis is evaluated in
Sec. 7.

Evaluation.
We have evaluated the dependency analysis on a subset

of 100 benchmarks of the benchmarks given in Sec. 7. For
each benchmark the dependency analysis was invoked with
the set of starting expressions exprs being those occuring in
lock operations or as the first argument of create and join
operations. The results are given in the table below.

runtime sign. assign. sign. func.

25th percentile 0.03 s 0.3% 43.3%
arithmetic mean 0.18 s 40.0% 63.3%
75th percentile 0.34 s 72.2% 86.5%

Figure 9: Dependency analysis runtime and effectiveness

The table shows that the average time (over all benchmarks)
to perform the dependency analysis was 0.18 s. The first and

Algorithm 1: Dependency analysis

Input : ICFA Prog , start edges start edges
Output: Set of affecting edges A

1 A← affecting edges(Prog , start edges)
2 F ← {f | e ∈ A ∧ f = func(src(e))}
3 Fh ← ∅
4 while F 6= ∅ do
5 remove f from F
6 Fh ← Fh ∪ {f}
7 E ← {e | func(tgt(e)) = f ∧

op(e) ∈ {func entry, thread entry}}
8 for e ∈ E do
9 A← A ∪ {e}

10 f ′ ← func(src(e))
11 if f ′ /∈ Fh then
12 F ← F ∪ {f ′}

13 return A

last line give the 25th and 75th percentile. This indicates for
example that for 25% of the benchmarks it took 0.03 s or less
to perform the dependency analysis. The third and fourth
column evaluate the effectiveness of the analysis. On av-
erage, 40% of the assignments in a program were classified
as significant (i.e., potentially affecting the starting expres-
sions). The data also shows that often the number of signif-
icant assignments was very low (in 25% of the cases it was
0.3% or less). This happens when the lock usage patterns
in the program are simple, such as using simple lock ex-
pressions (like pthread_mutex_lock(&mutex)) that refer to
global locks with simple initialisations (such as using static
initialization via PTHREAD_MUTEX_INITIALIZER).

The average number of functions classified as significant
was 63.3%. This means that on average 36.7% of the func-
tions that occur in a program were identified as irrelevant by
the dependency analysis and thus do not need to be analysed
by the following pointer analysis.

Overall, the data shows that the analysis is cheap and able
to prune a significant number of assignments and functions.

5. NON-CONCURRENCY ANALYSIS
We have implemented an analysis (Algorithm 3) to com-

pute whether two places p1, p2 are non-concurrent. That is,
the analysis determines whether the statements associated
with the places p1, p2 (i.e., the operations with which the
outgoing edges of top(p1), top(p2) are labeled) cannot exe-
cute concurrently in the contexts embodied by p1, p2.

Whether the places are protected by a common lock is
determined by computing the intersection of the must lock-
sets (lines 3–4). If the intersection is non-empty they cannot
execute concurrently and the algorithm returns true. This
approach is similar to the one described by Havelund [20],
except that we statically compute the set of locks that must
be held at a place p, whereas Havelund does dynamic anal-
ysis and deals with exact locksets associated with concrete
program executions.

If the common locks check yields false, the algorithm pro-
ceeds to check whether the places are non-concurrent due to
create and join operations. This is done via a graph search
in the ICFA. First the length of the longest common prefix
of p1 and p2 is determined (line 5). This is the starting point
for the ICFA exploration. If there is a path from `1 to `2,
it is checked that all the threads that are created to reach
place p1 are joined before location `2 is reached (and same
for a path from `2 to `1). This check is performed by the

Algorithm 2: Affecting edges

1 function affecting edges(Prog , start edges)
2 A← start edges
3 R← ∅
4 for e ∈ E(Prog) do
5 op ← op(e)
6 if op = (a = b) ∨

op = thread entry(, a, b) ∨
op = func exit(a, b) ∨
op = thread join(a, b) then

7 R← R ∪ {symbols(a) ∪ symbols(b)}
8 else if op = func entry(arg1, . . . , argn,

par1, . . . , parn) then

9 R← R ∪ {symbols(arg i) ∪ symbols(par i) |
i ∈ {1, . . . , n}}

10 NM ← number map(R)
11 SM ← symbol map(R)
12 S ←

⋃
e∈start edges symbols(op(e))

13 Nh, Sh ← ∅, ∅
14 while S 6= ∅ do
15 remove s from S
16 Sh ← Sh ∪ {s}
17 for n ∈ SM [s] do
18 if n /∈ Nh then
19 Nh ← Nh ∪ {n}
20 S ← S ∪ (NM [r]− Sh)

21 for e ∈ E(Prog) do
22 if op = (a = b) ∨

op = func exit(a, b) ∨
op = thread join(a, b) then

23 if ((symbols(a) ∪ symbols(b)) ∩ Sh) 6= ∅ then
24 A← A ∪ {e}

25 return A

procedure unwind(), the full details of which we give in the
extended version [29].

We evaluated the non-concurrency analysis with respect
to what fraction of all the pairs of places p1, p2 of a program
it classifies as non-concurrent. We found that on a subset
of 100 benchmarks of the benchmarks of Sec. 7, it classified
60% of the places corresponding to different threads as non-
concurrent on average. We give more data in the extended
version [29].

6. LOCK GRAPH ANALYSIS
Our lock graph analysis consists of two phases. First, we

build a lock graph based on the lockset analysis. In the
second phase, we prune cycles that are infeasible due to
information from the non-concurrency analysis.

6.1 Lock Graph Construction
A lock graph is a directed graph L ∈ 2Objs∗×P×Objs∗ (with

Objs∗ = Objs ∪ {?}). Each node is a lock ∈ Objs∗, and
an edge (lock1, p, lock2) ∈ Objs∗ × P × Objs∗ from lock1 to
lock2 is labelled with the place p of the lock operation that
acquired lock2 while lock1 was owned by the same thread
get thread(p). Hence, the directed edges indicate the order
of lock acquisition. Fig. 10 gives the lock graph for the
example program in Fig. 4.

We use the result of the may lockset analysis (Sec. 3.5) to
build the lock graph. Fig. 11 gives the lock graph domain

Algorithm 3: Non-concurrency analysis

Input : places p1, p2, must locksets ls1
u, ls2

u
Output: true if p1, p2 are non-conc., false otherwise

1 if p1 = p2 then
2 return true

3 if ls1
u ∩ ls2

u 6= ∅ then
4 return true

5 i← |common prefix(p1, p2)|
6 r1, r2 ← true, true
7 `1, `2 ← p1[i], p2[i]
8 if has path(`1, `2) then
9 r1 ← unwind(i, p1, `1, `2)

10 if has path(`2, `1) then
11 r2 ← unwind(i, p2, `2, `1)

12 return r1 ∧ r2

m1 m2 m3 m4 m5

(m:4,t:29) (m:4,t:30) (m:4,t:37)

(m:9)

(m:8) (m:18,f:47)

Figure 10: Lock graph for the program in Fig. 4 (t, m and
f are shorthand for thread, main and func2, respectively).

that is instantiated in our analysis framework. For each
lock operation in place p a thread may acquire a lock lock2

corresponding to the value set of the argument to the lock
operation. This happens while the thread may own any lock
lock1 in the lockset at that place. Therefore we add an edge
(lock1, p, lock2) for each pair (lock1, lock2).

Finally, we have to handle the indeterminate locks, de-
noted by ?. We compute the closure cl(L) of the graph
w.r.t. edges that involve ? by adding edges from all prede-
cessors of the ? node to all other nodes, and to each successor
node of the ? node, we add edges from all other nodes.

6.2 Checking Cycles in the Lock Graph
The final step is to check the cycles in the lock graph. We

look for deadlocks involving two or more threads. Each cycle
c in the lock graph could be a potential deadlock. A cycle c is
a set of (distinct) edges; there is a finite number of such sets.
A cycle is a potential deadlock if |c| > 1 ∧ all concurrent(c)
where

all concurrent(c)⇔
∀(lock1, p, lock2), (lock ′1, p

′, lock ′2) ∈ c :

¬non concurrent(p, p′) ∨
(get thread(p) = get thread(p′) ∧
multiple thread(get thread(p)))

and multiple thread(t) means that t was created in a loop or
recursion. Owing to the use of our non-concurrency analysis
we do not require any special treatment for gate locks or
thread segments as in [3].

7. EXPERIMENTS
We implemented our deadlock analyser as a pipeline of

static analyses in the CPROVER framework.The tool and
benchmarks are available online at http://www.cprover.org/
deadlock-detection.

http://www.cprover.org/deadlock-detection
http://www.cprover.org/deadlock-detection

Domain: 2Objs∗×P×Objs∗

s1 t s2 = s1 ∪ s2

With op(e) = lock(a):

T Je, pK(s) = s ∪ {(lock1, p, lock2) | lock1 ∈ lsa(p),
lock2 ∈ vs(p, a)}

cl(s) = s∪{(lock1, p, lock) | (lock1, p, ?) ∈ s,
lock ∈ get locks(s) \ {lock1, ?}}

∪{(lock , p, lock2) | (?, p, lock2) ∈ s,
lock ∈ get locks(s) \ {lock2, ?}}

Figure 11: Lock graph construction

We performed experiments to support the following hy-
pothesis: Our analysis handles real-world C code in a pre-
cise and efficient way. We used 997 concurrent C programs
that contain locks from the Debian GNU/Linux distribution,
with the characteristics shown in Fig. 14.2 The table shows
that the minimum number of different locks and lock opera-
tions encountered by our analysis was 0. We found that this
is due to a small number of benchmarks on which the lock
operations were not reachable from the main function of the
program (i.e., they were contained in dead code).

We additionally selected 8 programs and introduced dead-
locks in them. This gives us a benchmark set consisting of
1005 benchmarks with a total of 11.4 MLOC. Of these, 997
benchmarks are assumed to be deadlock-free, and 8 bench-
marks are known to have deadlocks. The experiments were
run on a Xeon X5667 at 3 GHz running Fedora 20 with 64-bit
binaries. Memory and CPU time were restricted to 24 GB
and 1800 seconds per benchmark, respectively.

Results.
We correctly report (potential) deadlocks in the 8 bench-

marks with known deadlocks. The results for the deadlock-
free programs are shown in Fig. 12 grouped by benchmark
size (t/o. . . timed out, m/o. . . out of memory).

KLOC analysed proved alarms t/o m/o
0–5 250 131 55 44 20
5–10 272 91 35 104 42

10–15 152 22 13 95 22
15–20 181 28 6 98 49
20–50 142 20 5 112 5

Figure 12: Results for the deadlock-free programs

For 114 deadlock-free benchmarks, we report alarms that
are most likely spurious. The main reason for such false
alarms is the imprecision of the pointer analysis with respect
to dynamically allocated data structures. This leads to lock
operations on indeterminate locks (see statistics in Fig. 14).
For 65.1% of the lock operations on average the analysis was
precise, i.e., the value set contained only a single lock.

The scatter plot in Fig. 13 illustrates how the tool scales
in terms of running time with respect to the number of lines
of code. The tool successfully analysed programs with up
to 40K lines of code. As the plots show, the asymptotic
behaviour is difficult to predict since it mostly depends on
the complexity of the pointer analysis.

We evaluated the impact of the different analysis features
on a random selection of 61 benchmarks and break down
the running times into the different analysis phases on those

2Lines of code were measured using cloc 1.53.

0 1 2 3 4

·104

10−2

10−1

100

101

102

103

Figure 13: LOC vs. analysis time (timeout 1800 s)

benchmarks where the tool does not time out or goes out
of memory: We found that the dependency analysis is ef-
fective at decreasing both the memory consumption and the
runtime of the pointer analysis. It decreased the memory
consumption by 67% and the runtime by 81% on average.
We observed that still the vast majority of the running time
(80%) of our tool is spent in the pointer analysis, which is
due to the often large number of general memory objects,
including all heap and stack objects that may contain locks.
May lock analysis (7.5%), must lock analysis (5.5%), and
lock graph construction (5.5%) take less time; the run times
for the dependency analysis and the cycle checking (up to
the first potential deadlock) are negligible.

In 89 benchmarks, the non-concurrency analysis refuted
infeasible cycles; however, all of these programs had other
feasible cycles.

8. THREATS TO VALIDITY
This section discusses the threats to internal and external

validity of our results and the strategies we have employed
to mitigate them [17].

The main threat to internal validity concerns the correct-
ness of our implementation. To mitigate this threat we have
continually tested our tool during the implementation phase,
which has resulted in a testsuite of 122 system-, unit-, and
regression-tests. To further test the soundness claim of our
tool on larger programs, we introduced deadlocks into 8 pre-
viously deadlock-free programs, and checked that our tool
correctly detected them. While we have reused existing locks
and lock operations to create those deadlocks, they might
nevertheless not correspond well to deadlocks inadvertently
introduced by programmers.

The threats to external validity concern the generalisabil-
ity of our results to other benchmarks and programming lan-
guages. Our benchmarks have been drawn from a collection
of open-source C programs from the Debian GNU/Linux dis-
tribution [30] that use Pthreads and contain lock operations,
from which we ran most of the smaller ones and some larger
ones. We found that the benchmark set contains a diverse
set of programs. However, we did not evaluate our tool on
embedded (safety- or mission-critical) software, a field that
we see as a prime application area of a sound tool like ours,
due to the ability to verify the absence of errors.

During the experiments we have used a timeout of 1800 s.
This in particular means that we cannot say how the tool
would fare for users willing to invest more time and comput-
ing power; in particular, the false positive rate could increase
as programs that take a long time to analyse are likely larger
and could have more potential for deadlocks to occur.

Finally, our results might not generalise to other pro-
gramming languages. For example, while Naik et al. [34]

max avg min
Lines of code 41,749 11,401.7 86
Threads 163 3.8 1
Threads in loop 162 5.8 0
Locks 16 1.8 0
Lock operations 30,773 417.4 0
Precise lock operations 100% 65.1% 0%
Indeterminate locking operations 100% 8.6% 0%
Size of largest lockset 8.0 1.5 1.0
Non-concurrency checks 11,043.0 132.8 0.0

max avg min
Total analysis time (s) 1,800.0 80.54 0.0

Dependency analysis 2.8 0.02 0.0
Pointer analysis 1,710.7 2.15 0.0
May lockset analysis 346.3 0.16 0.0
Must lockset analysis 211.4 0.06 0.0
Lock graph construction 259.8 0.06 0.0
Cycles detection 318.8 0.00 0.0

Peak memory (GB) 24.0 7.7 0.007

Figure 14: Benchmark characteristics and analysis statistics

(analysing Java) found that the ability to detected common
locks was crucial to lower the false positive rate, we found
that it had little effect in our setting, since most programs
do not acquire more than 2 locks in a nested manner (see
Tab. 14, size of largest lockset).

9. RELATED WORK
Deadlock analysis is an active research area. A common

deficiency of many of the existing tools is that they are nei-
ther sound nor complete, and produce false positives and
negatives.

Dynamic tools.
The development of the Java PathFinder tool [20, 3] led

to ground-breaking work over more than a decade to find
lock acquisition hierarchy violation with the help of lock
graphs, exposing the issue of gatelocks, and segmentation
techniques to handle different threads running in parallel at
different times. [4, 25, 39] try to predict deadlocks in ex-
ecutions similar to the observed one. DeadlockFuzzer [25]
use a fuzzying technique to search for deadlocking execu-
tions. Multicore SDK [32] tries to reduce the size of lock
graphs by clustering locks; and Magiclock [10] implements
significant improvements on the cycle detection algorithms.
Helgrind [1] is a popular open source dynamic deadlock de-
tection tool, and there are many commercial implementa-
tions of dynamic deadlock detection algorithms.

Static tools.
There are few static analysis tools to find deadlocks in C

programs. LockLint [2] is a semi-automatic lightweight ap-
proach that relies on user-supplied lock acquisition orders.
RacerX [15] performs a path- and context-sensitive analysis,
but its pointer analysis is very rudimentary. Several model
checking tools also allow to find deadlocks (among other
errors). The tools Lazy-CSeq [23] and MU-CSeq [41] use
context-bounded sequentialisation, and analyse the result-
ing program with the bounded model checker CBMC [12].
ESBMC [13] also uses context-bounding and encodes each
interleaving as an SMT formula. Both the versions of CSeq
and ESBMC are unsound for defined programs due to context-
bounding and loop unrolling, but in contrast to our tool are
also able to detect some undefined behaviours. The CIVL
model checker [45, 38] explores all execution paths and inter-
leavings of a program. It symbolically represents the pro-
gram state and queries a constraint solver to check state
reachability.

For Java there is Jlint2 [6], a tool similar to LockLint.
The tool Jade [34] consciously uses a may analysis instead
of a must analysis, which causes unsoundness. The tools
presented in [44] and [42] do not consider gatelock scenarios.

Other tools.
Some tools combine dynamic approaches and constraint

solving. For example, CheckMate [24] model-checks a path
along an observed execution of a multi-threaded Java pro-
gram; Sherlock [16] uses concolic testing; and [39, 4] moni-

tor runtime executions of Java programs. There are related
techniques to detect synchronisation defects due to blocking
communication, e.g. in message passing (MPI) programs [19,
11], for the modelling languages BIP (DFinder tool [7, 8])
or ABS (DECO tool [18]) that use similar techniques based
on lock graphs and may-happen-in-parallel information.

Dependency analysis.
Our dependency analysis is related to work on concurrent

program slicing [27, 28, 35] and alias analysis [9, 26]. Our
analysis is more lightweight than existing approaches as it
works on the level of variable identifiers only, as opposed to
more complex objects such as program dependence graphs
(PDG) or representations of possible memory layouts. More-
over, our analysis disregards expressions occuring in control
flow statements (such as if-statements) as these are not rel-
evant to the following pointer analysis which consumes the
result of the dependency analysis. The analysis thus does
not produce an executable subset of the program statements
as in the original definition of slicing by Weiser [43].

Non-concurrency analysis.
Our non-concurrency analysis is context-sensitive, works

on-demand, and can classify places as non-concurrent based
on locksets or create/join. Locksets have been used in a sim-
ilar way in static data race detection [15], and Havelund [3]
used locksets in dynamic deadlock detection to identify non-
concurrent lock statements. Our handling of create/join is
most closely related to the work of Albert et al. [5]. They
consider a language with asynchronous method calls and an
await statement that allows to wait for the completion of a
previous call. Their analysis works in two phases, the second
of which can be performed on-demand, and also provides a
form of context-sensitivity. Other approaches, which how-
ever do not work on-demand, include the work of Masticola
and Ryder [33] and Naumovich et al. [36] for ADA, and the
work of Lee et al. [31] for async-finish parallelism.

10. CONCLUSIONS
We presented a new static deadlock analysis approach for

concurrent C/Pthreads programs. We demonstrated that
our tool can effectively prove deadlock freedom of 2.3 MLOC
concurrent C code from the Debian GNU/Linux distribu-
tion. The experiments show that the pointer analysis takes
the most time, and its imprecision is the primary source for
false alarms. Future work will focus on addressing this limi-
tation. Moreover, we will integrate the analysis of Pthreads
synchronisation primitives other than mutexes, e.g. condi-
tion variables, and extend our algorithm to Java synchroni-
sation constructs.

11. ACKNOWLEDGMENTS
This work is supported by ERC project 280053 and SRC

task 2269.002. We are grateful to Michael Tautschnig for
the infrastructure for extracting CFGs from Debian.

12. REFERENCES
[1] http://valgrind.org/info/tools.html#helgrind.
[2] http:

//developers.sun.com/solaris/articles/locklint.html.
[3] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund,

Y. Nir-Buchbinder, S. D. Stoller, S. Ur, and L. Wang.
Detection of deadlock potentials in multithreaded
programs. IBM Journal of Research and Development,
54(5):3, 2010.

[4] R. Agarwal and S. D. Stoller. Run-time detection of
potential deadlocks for programs with locks,
semaphores, and condition variables. In Workshop on
Parallel and Distributed Systems: Testing, Analysis,
pages 51–60. ACM, 2006.

[5] E. Albert, A. Flores-Montoya, and S. Genaim.
Analysis of may-happen-in-parallel in concurrent
objects. In FMOODS/FORTE, volume 7273 of LNCS,
pages 35–51. Springer, 2012.

[6] C. Artho and A. Biere. Applying static analysis to
large-scale, multi-threaded Java programs. In
Australian Software Engineering Conference, pages
68–75. IEEE, 2001.

[7] S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis.
D-Finder: A tool for compositional deadlock detection
and verification. In CAV, volume 5643 of LNCS, pages
614–619. Springer, 2009.

[8] S. Bensalem, A. Griesmayer, A. Legay, T. Nguyen,
and D. Peled. Efficient deadlock detection for
concurrent systems. In Formal Methods and Models
for Codesign, pages 119–129. IEEE, 2011.

[9] M. G. Burke, P. R. Carini, J.-D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in the
presence of pointers. In LCPC, volume 892 of LNCS,
pages 234–250. Springer, 1995.

[10] Y. Cai and W. K. Chan. Magiclock: Scalable
detection ofpotential deadlocks in large-scale
multithreaded programs. IEEE Trans. Software Eng.,
40(3):266–281, 2014.

[11] Z. Chen, X. Li, J. Chen, H. Zhong, and F. Qin.
SyncChecker: detecting synchronization errors
between MPI applications and libraries. In
International Parallel and Distributed Processing
Symposium, pages 342–353. IEEE, 2012.

[12] E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In TACAS, volume 2988
of LNCS, pages 168–176. Springer, 2004.

[13] L. C. Cordeiro and B. Fischer. Verifying
multi-threaded software using SMT-based
context-bounded model checking. In ICSE, pages
331–340. ACM, 2011.

[14] P. Cousot and R. Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
POPL, pages 238–252. ACM, 1977.

[15] D. R. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. In
Symposium on Operating Systems Principles, pages
237–252. ACM, 2003.

[16] M. Eslamimehr and J. Palsberg. Sherlock: scalable
deadlock detection for concurrent programs. In
Foundations of Software Engineering, pages 353–365.
ACM, 2014.

[17] R. Feldt and A. Magazinius. Validity threats in
empirical software engineering research – an initial
survey. In Software Engineering & Knowledge
Engineering (SEKE), pages 374–379. Knowledge

Systems Institute Graduate School, 2010.
[18] A. Flores-Montoya, E. Albert, and S. Genaim.

May-happen-in-parallel based deadlock analysis for
concurrent objects. In FMOODS/FORTE, volume
7892 of LNCS, pages 273–288. Springer, 2013.

[19] V. Forejt, D. Kroening, G. Narayanaswamy, and
S. Sharma. Precise predictive analysis for discovering
communication deadlocks in MPI programs. In Formal
Methods, volume 8442 of LNCS, pages 263–278.
Springer, 2014.

[20] K. Havelund. Using runtime analysis to guide model
checking of Java programs. In SPIN, volume 1885 of
LNCS, pages 245–264. Springer, 2000.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In POPL. ACM, 2002.

[22] International Organization for Standardization.
C standard, 2011. ISO/IEC 9899:2011.

[23] O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and
G. Parlato. Lazy-CSeq: A context-bounded model
checking tool for multi-threaded C-programs. In ASE,
pages 807–812. IEEE, 2015.

[24] P. Joshi, M. Naik, K. Sen, and D. Gay. An effective
dynamic analysis for detecting generalized deadlocks.
In Foundations of Software Engineering, pages
327–336. ACM, 2010.

[25] P. Joshi, C. Park, K. Sen, and M. Naik. A randomized
dynamic program analysis technique for detecting real
deadlocks. In PLDI, pages 110–120. ACM, 2009.

[26] V. Kahlon, Y. Yang, S. Sankaranarayanan, and
A. Gupta. Fast and accurate static data-race detection
for concurrent programs. In CAV, pages 226–239.
Springer, 2007.

[27] J. Krinke. Static slicing of threaded programs. In
PASTE, pages 35–42. ACM, 1998.

[28] J. Krinke. Context-sensitive slicing of concurrent
programs. In ESEC/FSE, pages 178–187. ACM, 2003.

[29] D. Kroening, D. Poetzl, P. Schrammel, and
B. Wachter. Sound static deadlock analysis for
C/Pthreads (extended version). CoRR,
abs/1607.06927, 2016.

[30] D. Kroening and M. Tautschnig. Automating software
analysis at large scale. In MEMICS, volume 8934 of
LNCS, pages 30–39. Springer, 2014.

[31] J. K. Lee, J. Palsberg, R. Majumdar, and H. Hong.
Efficient may happen in parallel analysis for
async-finish parallelism. In SAS, volume 7460 of
LNCS, pages 5–23. Springer, 2012.

[32] Z. D. Luo, R. Das, and Y. Qi. Multicore SDK:
A practical and efficient deadlock detector for
real-world applications. In International Conference
on Software Testing, Verification and Validation,
pages 309–318. IEEE, 2011.

[33] S. P. Masticola and B. G. Ryder. Non-concurrency
analysis. In PPoPP, pages 129–138. ACM, 1993.

[34] M. Naik, C. Park, K. Sen, and D. Gay. Effective static
deadlock detection. In International Conference on
Software Engineering, pages 386–396. IEEE, 2009.

[35] M. G. Nanda and S. Ramesh. Slicing concurrent
programs. In ISSTA, pages 180–190. ACM, 2000.

[36] G. Naumovich and G. S. Avrunin. A conservative data
flow algorithm for detecting all pairs of statement that
may happen in parallel. In FSE, pages 24–34. ACM,
1998.

[37] M. C. Rinard. Analysis of multithreaded programs. In
SAS, volume 2126 of LNCS, pages 1–19. Springer,
2001.

http://valgrind.org/info/tools.html#helgrind
http://developers.sun.com/solaris/articles/locklint.html
http://developers.sun.com/solaris/articles/locklint.html

[38] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V.
Marianiello, J. G. Edenhofner, M. B. Dwyer, and
M. S. Rogers. CIVL: The concurrency intermediate
verification language. In SC, pages 61:1–61:12. ACM,
2015.

[39] F. Sorrentino. PickLock: A deadlock prediction
approach under nested locking. In SPIN, volume 9232
of LNCS, pages 179–199. Springer, 2015.

[40] The Open Group and IEEE. The open group base
specifications issue 7, 2013. IEEE Std 1003.1-2008/Cor
1-2013.

[41] E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and
G. Parlato. Verifying concurrent programs by memory
unwinding. In TACAS, LNCS, pages 551–565.

Springer, 2015.
[42] C. von Praun. Detecting Synchronization Defects in

Multi-Threaded Object-Oriented Programs. PhD thesis,
2004.

[43] M. Weiser. Program slicing. In ICSE, pages 439–449.
IEEE, 1981.

[44] A. Williams, W. Thies, and M. D. Ernst. Static
deadlock detection for Java libraries. In European
Conference on Object-Oriented Programming, volume
3586 of LNCS, pages 602–629. Springer, 2005.

[45] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and
S. F. Siegel. CIVL: formal verification of parallel
programs. In ASE, pages 830–835. IEEE, 2015.

	Introduction
	Overview
	Analysis Framework
	Program Representation
	Analysis Framework – Overview
	Analysis Framework – Details
	Pointer Analysis
	Lockset Analysis

	Dependency Analysis
	Non-Concurrency Analysis
	Lock Graph Analysis
	Lock Graph Construction
	Checking Cycles in the Lock Graph

	Experiments
	Threats to Validity
	Related Work
	Conclusions
	Acknowledgments
	References

