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Predicate abstraction is a key enabling technology for applying 
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level C code. Although model checking was originally designed for 
analysing concurrent systems, there is little evidence of fruitful 
applications of predicate abstraction to shared-variable concurrent 
software. The goal of the present thesis is to close this gap. 
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Abstract

Predicate abstraction is a key enabling technology for applying model checkers to
programs written in mainstream languages. It has been used very successfully for
debugging sequential system-level C code. Although model checking was origi-
nally designed for analysing concurrent systems, there is little evidence of fruitful
applications of predicate abstraction to shared-variable concurrent software. The
goal of the present thesis is to close this gap. We propose an algorithmic solution
implementing predicate abstraction that targets safety properties in non-recursive
programs executed by an unbounded number of threads, which communicate via
shared memory or higher-level mechanisms, such as mutexes and broadcasts. As
system-level code makes frequent use of such primitives, their correct usage is crit-
ical to ensure reliability.

Monotonicity is a natural and common feature of human-written concurrent
software. It is also useful: if every thread’s memory is finite, monotonicity often
guarantees the decidability of safety properties even when the number of running
threads is unspecified. In this thesis, we show that the process of obtaining finite-
data thread abstractions for model checking is not always compatible with mono-
tonicity. Predicate-abstracting certain mainstream asynchronous software such as
the ticket busy-wait lock algorithm results in non-monotone multi-threaded Boolean
programs, despite the monotonicity of the input program: the monotonicity is lost
in the abstraction. As a result, the unbounded-thread Boolean programs do not give
rise to well quasi-ordered systems [1], for which sound and complete safety check-
ing algorithms are available. In fact, safety checking turns out to be undecidable
for the obtained class of abstract programs, despite the finiteness of the individual
threads’ state spaces. Our solution is to restore the monotonicity in the abstraction,
using an inexpensive closure operator that precisely preserves all safety properties
from the (non-monotone) abstract program without the closure.

As a second contribution, we present a novel, sound and complete, yet empiri-
cally much improved algorithm for verifying abstractions, applicable to general well
quasi-ordered systems. Our approach is to gradually widen the set of safety queries
during the search by program states that involve fewer threads and are thus easier
to decide, and are likely to finalise the decision on earlier queries. To counter the
negative impact of “bad guesses” the search is supported by a engine that generates
such states; these are never selected for widening.

We present an implementation of our techniques and extensive experiments on
multi-threaded C programs, including device driver code from FreeBSD and So-
laris. The experiments demonstrate that by exploiting monotonicity, model check-
ing techniques—enabled by predicate abstraction—scale to realistic programs even
of a few thousands of multi-threaded C code lines.
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1 Introduction

Multi-threading is becoming the premier technology for accelerating computations
in a post frequency-scaling era. The widespread availability of thread libraries for
mainstream languages including C and Java, as well as for all major operating sys-
tems, makes this technology easily accessible, which can in turn entrap the inex-
perienced programmer to create code with puzzling and irreproducible behaviour.
The programming language community is called upon to help prevent a renewed
software crisis, by providing formal technology that reliably analyses concurrent
programs, and exposes potential bugs before deployment.

The object of study in this thesis are non-recursive procedures executed by
multiple threads (e.g. dynamically generated, and possibly unbounded in number),
which communicate via shared variables or higher-level mechanisms such as mu-
texes, and broadcasts on condition variables. OS-level code, including Windows,
UNIX and Mac OS device drivers, makes frequent use of such concurrency APIs,
whose correct use is therefore critical to ensure a reliable programming environ-
ment. An example of thread communication via mutexes and POSIX-style broad-
casts in the FreeBSD operating system is shown in Figure 1.

static u_int
akbd_read_char(keyboard_t ∗kbd, ...) {

//...
sc = (struct adb_kbd_softc ∗)(kbd);
mtx_lock(&sc−>sc_mutex);
if (!sc−>buffers && wait)

cv_wait(&sc−>sc_cv,&sc−>sc_mutex);
if (!sc−>buffers) {

mtx_unlock(&sc−>sc_mutex);
return (0); }

adb_code = sc−>buffer[0];
for (i = 1; i < sc−>buffers; i++)

sc−>buffer[i−1] = sc−>buffer[i];
sc−>buffers−−;
key = adb_code;
mtx_unlock(&sc−>sc_mutex);
return (key); }

static u_int
adb_kbd_receive_packet(device_t dev, ...) {

struct adb_kbd_softc ∗sc;
sc = device_get_softc(dev);
if (command != ADB_COMMAND_TALK)

return 0;
if (reg != 0 || len != 2)
{

return (0);
}
mtx_lock(&sc−>sc_mutex);
kbd = kbd_get_keyboard(/∗...∗/);
//...
mtx_unlock(&sc−>sc_mutex);
cv_broadcast(&sc−>sc_cv);
//...
return (0); }

Figure 1: Apple Bus protocol — Code fragment of a recent implementation of an Apple
Bus protocol in the FreeBSD OS, involving kernel thread synchronisation via mutexes and
POSIX-style broadcasts; functions mtx_(un)lock, cv_wait and cv_broadcast

1



2 Introduction

Based on the celebrated success achieved with sequential programs, we propose
in this thesis an extension of predicate abstraction to multi-threaded programs that
enables thread-specific reasoning about intricate data relationships. The utility of
predicate abstraction is known to depend critically on the choice of predicates: the
consequences of a poor choice range from inferior performance to flat-out unprov-
ability of certain properties. Our abstraction method permits predicates expressing
constraints between shared (global-scope) variables, the active (executing) thread’s
local variables, and local variables of a passive (non-executing) thread. Our predi-
cate language hence supports

(i) shared-variable relationships, e.g. “shared variables s and t are equal”,
(ii) single-thread relationships, e.g. “local variable m of thread i is less than shared

variable s”, and
(iii) inter-thread relationships, e.g. “local variable m of thread i is less than vari-

able m in all other threads”.

Why such a rich predicate language? For many mainstream concurrent algo-
rithms such as the widely used ticket busy-wait lock algorithm (the default locking
mechanism in the Linux kernel since 2008; see Figure 5), the verification of elemen-
tary safety properties requires such single- and inter-thread relationships. Another
example is the pattern exhibited by the CUDA program in Figure 2. Many CUDA
programs operate correctly only if every thread identifier idx is unique among the
threads (otherwise some entries may accidentally be operated on multiple times).
The uniqueness property is an inter-thread relationship. As we demonstrate, the
ticket lock algorithm can in fact be verified by predicate abstraction with respect
to inter-thread predicates, at this point for a finite number of threads. Similarly,
tracking the success of compare-and-swap primitives requires single-thread rela-
tionships, namely through predicate s = m in the implementation in Figure 3; the
same predicate is needed to prove that the assertion in the atomic counter in Figure 4
cannot fail.

In the first main part of the thesis, we address the problem of full parame-
terised (unbounded-thread) program verification with respect to our rich predicate
language. Such reasoning requires first that the n-thread abstract program P̂n, ob-
tained by existential predicate abstraction, is rewritten into a single template pro-
gram P̃ to be executed by (any number of) multiple threads. A consequence of the
use of single- or inter-thread predicates in the abstraction is that the obtained pro-
grams P̂n are no longer asynchronous. In order to capture the semantics of these
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#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float ∗a, int N) {

int idx = blockIdx.x ∗ blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] ∗ a[idx]; }

//main routine that executes on the host
int main(void) { //...

int num_threads = get_num_threads(); //how many thread shall execute
int n_blocks = N/num_threads + (N%num_threads == 0 ? 0:1);
//do calculation on device
square_array <<< n_blocks, num_threads >>> (a_d, N);
//...

Figure 2: CUDA program — The program squares every element of a matrix using
num_threads concurrent threads

programs in the template P̃ , the template programming language must itself permit
variables that refer to the currently executing or a generic passive thread; we call
such programs dual-reference (DR). We describe how to obtain P̃ , namely essen-
tially as an overapproximation of P̂b, for a constant b that scales linearly with the
number of inter-thread predicates used in the predicate abstraction.

Given the Boolean dual-reference program P̃ , and with classical results on well
quasi-ordered transition systems in mind [2], we then expect the absence of recur-
sion in the unbounded-thread replicated program P̃∞ to guarantee decidability of
safety properties. Somewhat surprisingly, however, this is not the case: the expres-
siveness of dual-reference programs renders parameterised program location reach-
ability undecidable, despite the finite-domain variables. The root cause is the lack
of monotonicity of the transition relation with respect to the standard partial order
over the space of unbounded thread counters. That is, adding passive threads to the
source state of a valid transition can invalidate this transition. Note that, in contrast,

// executes atomically
__atomic bool CAS(volatile natural& s, natural m, natural l) {

if (s = m) { s := l; return true; }
else { return false; }}

Figure 3: Compare-and-swap function (CAS) — The function compares the value of the
shared variable s to a given local value m and, only if they are equal, modifies s to l
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volatile natural s := 0; //shared counter
natural inc() { //executed by an unbounded number of threads

natural m, l; //local
`1: do { m := s;
`2: if(m = 0u−1) return 0; //overflow, increment failed
`3: l := m + 1;
`4: } while (!CAS(s, m, l));
`5: assert(s > m); //property to be checked
`6: return l; } //increment succeeded

Figure 4: Atomic counter using CAS [154] — The assertion checks whether the shared
counter is increased by each call to function inc that returns a non-zero value (inc is exe-
cutable by an unbounded number of concurrent threads); the program is safe

the input C programs are asynchronous and thus perfectly monotone; we say the
monotonicity is lost in the abstraction. As a result, our abstract programs are in fact
not well quasi-ordered.

We address this problem by restoring the monotonicity using a simple closure
operator, which enriches the transition relation of the abstract program P̃ such that
the obtained program P̃m engenders a monotone (and thus well quasi-ordered) sys-
tem and has the same safety properties as P̃: the closure introduces no spurious
error traces. The closure operator essentially terminates passive threads that block
transitions allowed by other passive threads. This technique resembles earlier ap-
proaches that enforce (rather than restore) monotonicity in genuinely non-monotone
systems [27, 3, 4, 136, 91], at the cost of overapproximating the transition relation.
In contrast, we exploit the fact that the asynchronous input programs do feature
monotonicity, with the result that the monotonicity closure P̃m is safety-equivalent
to the intermediate program P̃ .

Safety checking the enriched transition relation is decidable by reduction to the
coverability problem for well quasi-ordered systems. In program terms, coverability
of a given n-thread program state e consisting of shared variable values plus n
valuations of the local variables, asks for the existence of a number n′ ≥ n and the
reachability of a state v in the n′-thread instantiation that differs from e only in that
it contains n′−n additional threads. Coverability thus allows us to express precisely
the types of assertion or synchronisation failures we are after:

(i) “can a thread violate an assertion?”, or
(ii) “can a critical section be concurrently accessed by two or more threads?” etc.



5

Coverability for the class of well quasi-ordered systems, which subsumes pop-
ular concurrency models such as various forms of Petri nets, is known to be Acker-
mann-hard. For example, for plain Petri nets and vector-addition systems, the
problem was shown to be complete in exponential space [35]. Extensions such
as transfer transitions or our (equivalent) monotone Boolean DR program model
increase the complexity of the problem further [164]. These daunting computa-
tional costs, and the significance of the coverability problem in practical concurrent
program verification, have led to a flurry of activity in crafting solutions viable in
practice [75, 88, 86].

In the second main part of the thesis, we introduce a new solution to the cover-
ability problem in well quasi-ordered systems that shares soundness and complete-
ness with existing methods, but follows a fundamentally different search strategy:
before a state is selected for expansion, the set of target elements is widened by its
downward closure, thus adding to the target set many smaller (in the partial state or-
der) elements whose coverability has not yet been decided. The motivation behind
this approach is two-fold: (i) the coverability of smaller elements, which involve
fewer threads, is often less costly to decide, and (ii) uncoverability of smaller el-
ements immediately implies uncoverability of any larger elements, including the
original query target. The strategy to first settle the coverability of smallest-possible
elements, side-stepping the original query, not only accelerates the search, but also
makes the search structure more compact, as we will demonstrate.

“Bad guesses”, i.e. elements in the widening that end up coverable, permit no
conclusion about the coverability of the original query elements. In this case we
backtrack out of the widening: all elements found to be coverable are purged from
the search structure, and the search continues with another smallest-possible and
currently undecided element. Such backtracking can impair the algorithm’s effi-
ciency. As a countermeasure, the backward search can be assisted by an engine
that generates coverable elements; none of these are ever selected for widening. All
we require of such an engine is that it soundly report coverability of elements. It
does not need to be complete, as its job is only to accelerate the backward search
by flagging coverable states early. An ideal candidate is a Karp-Miller like forward-
directed search for Petri nets with transfer arcs, which generates (possibly incom-
plete) coverability information quickly.
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Contributions∗. To summarise, the central contribution of this thesis is a fully au-
tomated predicate abstraction strategy for unbounded-thread asynchronous C pro-
grams, with respect to the rich language of inter-thread predicates. This language
allows the abstraction to track properties that are essentially universally quantified
over all passive threads. To this end, we first develop such a strategy for a fixed
number of threads. Second, in preparation for extending it to the unbounded case,
we describe how the abstract model, obtained by existential predicate abstraction for
a given thread count n, can be expressed as a template program that can be multiply
instantiated. Third, we show a sound and complete algorithm for reachability analy-
sis for the obtained parameterised Boolean dual-reference programs. We overcome
the undecidability of the problem by building a monotone closure that enjoys the
same safety properties as the original abstract dual-reference program. Fourth, we
present a novel, sound and complete, yet empirically much improved algorithm for
verifying monotone Boolean DR programs, applicable to general well quasi-ordered
systems.

We have implemented our techniques in the publicly available infinite-state
model checker monabs for concurrent C programs and the breach (back-end) model
checker, and show extensive experimental results on system-level concurrent soft-
ware and synchronisation algorithms. We make two observations: first, our tool is
able to verify certain parameterised programs, such as the ticket lock algorithm, that
are principally beyond all existing tools we are aware of [100, 37, 47, 176, 40, 95,
58, 69, 71]. The reasons vary from their inability to deal with unbounded threads,
to the lack of support for inter-thread predicates. Second, our tool is, still for un-
bounded threads, often more efficient than other tools for fixed and small thread
counts.

The tools and all benchmarks used in this work are publicly available:

• monabs (integrated with satabs∗) at www.cprover.org/satabs and
• breach (aka. bfc) and all benchmarks at www.cprover.org/bfc, or

alternatively at www.akaiser.net/bfc.

∗Major contents of this thesis were previously presented in [59, 58, 117, 118, 119].
∗Although monabs has been fully integrated with version 3.2 of the (originally sequential pro-

gram) verifier satabs [43], and is not further maintained, we retain the initial name to avoid confusion.

http://www.cprover.org/satabs
http://www.cprover.org/bfc
http://www.akaiser.net/bfc
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struct Spinlock {
natural s := 1; // ticket being served
natural t := 1; }; // next free ticket

struct Spinlock lock; // shared

void spin_lock() {
natural m := 0; // local

`1: m := fetch_and_add(lock.t);
`2: while (m 6= lock.s)

/∗ spin ∗/; }

void spin_unlock() {
`3: lock.s++; }

Figure 5: The ticket algorithm — Shared variable lock has two integer components: s
holds the ticket currently served (or, if none, the ticket served next), while t holds the ticket
to be served after all waiting threads have had access. To request access to the locked region,
a thread atomically retrieves the value of t and then increments t. The thread then busy-
waits until local variable m agrees with shared s. To unlock, a thread increments s. Our
goal is to verify “unbounded-thread mutual exclusion”: no matter how many threads try to
acquire and release the lock concurrently, no two of them should simultaneously be between
the calls to functions spin_lock and spin_unlock





2 Background and Notation

In this section, we provide background on well-quasi-orderings, transition systems,
the coverability problem, strictly asynchronous programs and predicate abstraction.
A reader familiar with these concepts could well skip this section.

Well-quasi-orderings. The theory of well-quasi-orderings was pioneered by Gra-
ham Higman [101] and later by Erdos and Rado. The theory has become a funda-
mental (and frequently discovered [125]) concept in computer science and, if de-
fined over the infinite set of states of system, provides termination arguments for
many algorithmic methods.

A binary relation ≤ over a set Σ is a quasi-ordering if for any elements v1, v2
and v3 from Σ, v1 ≤ v1 is true (reflexivity), and v1 ≤ v2 ≤ v3 implies v1 ≤ v3
(transitivity). Any quasi-ordering induces an equivalence relation (a quasi-ordering
that is symmetric), namely v1 ≡ v2 if and only if v1 ≤ v2 ≤ v1, and induces a partial
ordering between the equivalence classes. As usual, we write v2 ≥ v1 for v1 ≤ v2,
and v1 < v2 for v1 ≤ v2 6≤ v1. An example of a quasi-ordering is (Zk,�), the
set of vectors of k integer numbers, Z = {. . . ,−1, 0, 1, . . .}, with component-wise
ordering �, i.e.

(x1, . . . , xk) � (y1, . . . , yk) if and only if xi ≤ yi for all i = 1, . . . , k .
(1)

A well-quasi-ordering is a quasi-ordering such that every infinite sequence of ele-
ments contains an increasing pair:

Definition 1. A well-quasi-ordering is a quasi-ordering ≤ such that every infinite
sequence of elements v1, v2, v3, . . . contains an increasing pair, i.e. vi ≤ vj for some
i < j.

This is tantamount to saying that every infinite set of elements has at least one
but no more than a finite number of (non-equivalent) minimal elements (see [101,
125] for more alternative definitions). The set of vectors of k integer numbers
with component-wise ordering, (Zk,�), is not well (notice the existence of infi-
nite strictly descending sequences). Yet, (Nk,�), the set of vectors of k natural
numbers, N = {0, 1, . . .}, with the component-wise ordering from eq. (1) is well by
Dickson’s lemma [54]; Figure 6 illustrates the ordering for k = 4.

9
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Figure 6: Component-wise ordering � over N4 — An upward line from v to t indicates
that v � t, and no state r satisfies v ≺ r ≺ t; only vectors (a, b, c, d) with a + b = 1 and
c+ d ≤ 3 are shown

Upward and downward closed sets. We write ↑P for the ≥-upward closure of
a set P ,

↑P = {r : ∃v ∈ P . r ≥ v} .

An element v of P is minimal if there is no r ∈ P such that r < v. Two minimal
elements of a set are either incomparable or equivalent; the well-quasi-orderedness
ensures that the equivalence relation ≡ has a finite index.

We denote by minP a set of canonical representatives for each subset of equiv-
alent minimal elements of P ; note that with this definition, minP is always finite.
Set P is upward closed if ↑P = P ; in that case minP is a minimal subset M of P
such that ↑M = P . Every upward-closed set P is representable as ↑minP , for the
finite set minP . We abbreviate ↑{v} by ↑ v.

The concept downward closed and the symbol ↓P are defined analogously
(although, in contrast, not every downward-closed set can be represented by a fi-
nite set of maximal elements). For the set of vectors of 4 natural numbers, N4,
with component-wise ordering, the set {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 0, 2), . . .} is
upward-closed, and {(1, 0, 0, 0), (1, 0, 0, 1)} = ↓(1, 0, 0, 1) is downward-closed.

Well quasi-ordered systems. A transition system is a pair (Σ,�), where Σ is a
set of elements called states, and� ⊆ Σ×Σ is the set of transitions. Equipped with
an ordering ≤, we call the system monotone if larger states have larger successors:
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v v′

r r′
∃

≤ ≤

Figure 7: Monotonicity — Larger states have larger successors

Definition 2 ([2]). A transition system (Σ,�) is monotone with respect to an or-
dering ≤ if for all states v, v′, r, if v ≤ r and v′ is a successor of v, i.e. v � v′,
then there exists a successor r′ of r such that v′ ≤ r′ (Figure 7).

We write Pre(X) for the set of direct predecessors of states in X , i.e. the set
{r ∈ Σ : r � v ∈ X}, or simply Pre(v) if X = {v}. An immediate con-
sequence of Definition 2 is that for monotone transition systems operator Pre pre-
serves upward-closedness, and hence the set of predecessors of an upward-closed
set of states is again upward-closed and can precisely be characterised by its (non-
equivalent) minimal elements.

Definition 3 ([2]). A transition system (Σ,�) with a decidable ordering (Σ,≤) is
said to be well-quasi ordered if

(i) ≤ is a well-quasi-ordering (Definition 1),
(ii) the transition system is monotone with respect to ≤ (Definition 2), and

(iii) for each state v ∈ Σ, the set min Pre(v) is computable.

Coverability problem. Let (Σ,�) be a transition system with ordering (Σ,≤),
and I ⊆ Σ be a set of initial states (downward-closed). We write Cover ⊆ Σ for
the set of coverable states, i.e. those “covered” by some reachable state: Cover =
{v : i �∗ r ≥ v for some i ∈ I and r ∈ Σ}. The reachability problem for
upward-closed sets is frequently referred to as the coverability problem:

Definition 4. Given a transition system ordered by ≤, initial states I ⊆ Σ (down-
ward-closed), and error states E ⊆ Σ (upward-closed). The coverability problem
asks for the existence of a reachable state v ∈ E.
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Reachability of a state in E (and thus the coverability problem) can be checked
by computing the set of states that are backward-reachable from E, i.e. have an
emanating execution leading to a state in E. Hence, by computing Pre∗(E), the
limit of sequence

E = E0 ⊆ E1 ⊆ · · · with Ei+1 = Ei ∪ Pre(Ei) for i ≥ 1 . (2)

The crux of combining both the theory of well-quasi-ordering (Definition 1)
with monotonicity (Definition 2) into well quasi-ordered systems (Definition 3) is
that together they are sufficient to ensure convergence and computability of the limit
of eq. (2), and thus decidability of the coverability problem (Definition 4) [2]. We
will see next, why this is useful for verifying (strictly asynchronous) programs.

Strictly asynchronous programs. We model a strictly asynchronous program P ,
designed for execution by n ≥ 1 concurrent threads, as follows. The variable set V
of a program P is partitioned into sets S and L. The variables in S, called shared,
are accessible jointly by all threads, and those in L, called local, are accessible by
the individual thread that owns the variable. We assume the statements of P are
given by a transition formula R over unprimed (current-state) and primed (next-
state) variables, V and V ′ = {v′ : v ∈ V}. Further, the initial and error states
are characterised by the initial and error formulas, I and E , respectively, over V.
We assume these formulas are expressible in reasonable logics for which existential
quantification is computable.

As usual, the computation may be controlled by a local program counter pc, and
involve non-recursive function calls. If we represent programs as “code fragments”
like in Figures 4 and 5, threads are assumed to interleave with line-level granularity;
see the discussion in Section 8 on this subject. Moreover, we write “=” for the
equality operator on program variables, “::” to define relations, “:=” for the parallel
assignment operator [21] (e.g. m, l := l, m swaps the value of variables m and l),
and “∗” to denote the nondeterministic choice expression, i.e. ∗ nondeterministically
evaluates to true (T) or false (F).

Example 5. The transition relation for the compare-and-swap instruction in Fig-
ure 3 is

R :: (m′ = m) ∧ (l′ = l) ∧
(
(s = m)⇒ (s′ = l)

)
∧
(
(s 6= m)⇒ (s′ = s)

)
.

The initial formula of the atomic counter in Figure 4 is I :: pc = `1 ∧ s = 0, and
the error formula induced by the assertion is E :: (pc = `5) ; (s ≥ m).



13

When executed by n threads, P gives rise to n-thread program states consisting
of the valuations of the variables in Vn = S∪L1∪. . . Ln, whereLi = {mi : m ∈ L}.
Call a variable set uniquely-indexed if its variables either all have no index, or all
have the same index. For a formula f and two uniquely-indexed variable sets X1
and X2, let f{X1.X2} denote f after replacing every occurrence of a variable in
X1 by the variable in X2 with the same base name, if any; unreplaced if none. We
write f{X1..X2} short for f{X1.X2}{X1

′.X2
′}. As an example, given S = {s}

and L = {m}, we have

(m′ = m + s){L..La} = (m′a = ma + s) .

Finally, let ∃∃X abbreviate ∃X,X ′, and X ◦= X ′ stand for ∀x ∈ X .x = x′.
The n-thread instantiation Pn is defined for n ≥ 1 as

Pn = (Rn, In, En) (3)

=
(∨n

a=1
R(a)n,

∨n

a=1
I(a)n,

∨n

a=1
E(a)n

)
(4)

with

R(a)n :: R{L..La} ∧
∧
p:p6=a

Lp
◦= L′p (5)

I(a)n :: I{L.La} ∧
∧

p:p6=a
I{L.Lp} (6)

E(a)n :: E{L.La} . (7)

Applied to n-thread program states, formula R(a)n encodes that the shared
variables, and the variables of the executing (active) thread a are updated according
to R, while the local variables of other (passive) threads p 6= a are not modified.
Analogously, a state is initial (erroneous) if all threads are (some thread is) in a state
satisfying I (E). An n-thread execution is a sequence of n-thread program states,
starting in In and pairwise related byRn. An erroneous execution is one ending in
a state satisfying En. We call P safe if no erroneous execution exists, and unsafe
otherwise. For brevity, we sometimes omit the error component.

We note that “parameterised concurrency”, via an n-thread instantiation Pn of
a single template program P , is elegant and conveniently formalisable, but does
not directly reflect the more common case of dynamic thread creation at runtime.
The latter scenario is, however, easily supported in the parameterised model using
standard techniques. All our benchmark programs spawn threads during program
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execution. Also note that the atomicity of local computation steps, i.e. of instruc-
tions that involve only local variables, is unimportant for safety reasoning [14, 13].
Different threads could just as well perform local computation simultaneously as
in a multi-core system rather than being interleaved with one another in a single
instruction stream.

A strictly asynchronous program P induces an infinite-state transition system
(Σ,�) and sets I and E as follows:

(i) Σ is the set containing arbitrary-thread program states,
(ii) v � v′ if and only if v and v′ are pairwise related by formula Rn for some

n, and
(iii) I andE contain states satisfying formulas In and En for some n, respectively.

Notice that the induced sets I and E are downward- and upward-closed, and hence
coverability problem suffices to exactly decide classical safety properties like pro-
gram location reachability and program assertions in strictly asynchronous pro-
grams.

Well-quasi-orderedness. We write an n-thread program state v ∈ Σ in the form

(s | c1, . . . , cn) ,

emphasising v’s valuation of the shared variables S ofP (here s), and listing the val-
uations of the local variables in v for each of the n threads (components c1, . . . , cn);
if the variable ordering is unambiguous we sometimes omit their names. As an
example, for Boolean-type variables S = {s} and L = {b}, (¬s ∧ ¬b1 ∧ b2 ∧
¬b3), (¬s | ¬b, b,¬b) and (F | F, T, F) characterise the same 3-thread program state.
Specifically, for our case of local state tuples we choose for minP the lexicograph-
ically least among all equivalent minimal elements in the set as representative, such
that min{(F | F, T), (F | T, F)} = {(F | F, T)}, and min{(F | T, F)} = {(F | T, F)}.

Let all variables ofP be Boolean-type. A well-quasi-ordering on program states
is the covered relation, which is defined as follows (illustrated in Figure 8):

Definition 6. Given two program states v and r from Σ. State v = (s | c1, . . . , cn)
is covered by r = (t |m1, . . . ,mn′), written v ≤ r, if and only if (i) n ≤ n′, and
(ii) there exists a permutation π of 1, . . . , n′ such that v = (t |mπ(1), . . . ,mπ(n)).

In order to see that (Σ,≤) is a well-quasi-ordering, observe that each program state
can be characterised as a vector of 2|S| + 2|L| natural numbers (all variables are
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(F | F, F, F)

(F | F, F, T) ≡ (F | F, T, F) ≡ (F | T, F, F) (F | T, T, F) ≡ (F | T, F, T) ≡ (F | F, T, T)

(F | T, T, T)

(F | F, F) (F | F, T) ≡ (F | T, F) (F | T, T)

(F | F) (F | T)

(F | )

<

<

<

<

<

<

<

<

<

<

< <

Figure 8: Covered relation for variables L={b ∈ B} and S={s ∈ B}— States that
are identical up to permutations (“≡”) are grouped; only states (s | c1, . . . , cn) for n ≤ 3
and s = F are shown

Boolean-type): of the first 2|S| components, a unique non-zero component encodes
the shared state s, and the remaining components store the Parikh vector [153] of
the sequence c1, . . . , cn, i.e. the vector that counts the occurrences of the respective
local states in some order.

Example 7. Consider the Boolean-type variables S = {s} and L = {b}, and
let the “component-mapping” be (s ?=F, s ?=T,#b=F,#b=T). The 1 and 3-thread
program states (T | F) and (F | F, T, F) then yield vectors (0, 1, 1, 0) and (1, 0, 2, 1)
from N4, respectively.

The crux is that for two states v and r with associated vectors x and y, v ≤ r
if and only if x � y. Observe how Figure 8 morphs into Figure 6, and vice versa.
Hence, (Σ,≤) is a well-quasi-ordering by Dickson’s lemma. Since, on the other
hand, (Σ,�,≤) is clearly a monotone transition system according to Definition 2
we obtain that strictly asynchronous Boolean programs can be encoded as well
quasi-ordered systems.

Predicate abstraction for sequential programs. Let P be a strictly asynchro-
nous program, yet assume a single thread of execution (n = 1). Further, let {Q[c] :
1 ≤ c ≤ m} be a set of predicates defined over the program variables V. In the
presence of multiple instructions, we assume that there exists a predicate pc = ` for
each instruction label `.
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Concrete transition (n = 1) Abstract relation R̂

v w v′ w′ b[1] b[2] b[1]′ b[2]′

2 0 0 0 F T F T
2 1 0 1 F T T T
2 3 0 3 T T T T
3 0 1 0 F F F F
3 2 1 2 F F T F
3 4 1 4 T F T F

Table 1: Abstraction of a decrement instruction on integer variables v and w — Each
row lists a concrete transition for instruction v := v−2, and the abstract transition it induces
with respect to predicates v < w and (v mod 2) = 0, tracked by Boolean variables b[1]
and b[2], respectively

For sequential programs, the goal of existential predicate abstraction [42, 93] is
to derive an abstract program P̂ by treating the equivalence classes induced by the
predicates as abstract states. The m Boolean variables of P̂ are

V̂ = {b[1], . . . , b[m]} .

Variable b[c] tracks the truth of predicate c.
Formula D below specifies the correspondence between concrete thread states

(valuations of V) and abstract thread states (valuations of V̂):

D ::
m∧
c=1

(b[c]⇔ Q[c]) . (8)

For a formula f , let f ′ denote f after replacing each variable by its primed version;
the components of P̂ are

R̂ :: ∃∃V . R∧D ∧D′ (9)

Î :: ∃V . I ∧ D (10)

Ê :: ∃V . E ∧ D . (11)

Example 8. Consider the assignment v := v − 2 in the presence of integer vari-
ables v and w (w is not modified), and the two predicates Q[1] :: v < w and Q[2] ::
(v mod 2) = 0. Plugging both into eq. (9), we get 6 abstract transitions, which are
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typedef struct cell {
int val;
struct cell* nex;

} *list;

list c, p, newl, nexc;
list partition(list *m, int l) {

c := *m;
p := NULL;
newl := NULL;
while (c 6= NULL) {

nexc := (*c).nex;
if ((*c).val > l) {

if (p 6= NULL) {(*p).nex := nexc;}
if (c = *m) {*m := nexc;}
(*c).nex := newl, newl := c; }

else {p := c;}
c := nexc; }

return newl; }

(a)

//Q[1] :: c = NULL
//Q[2] :: p = NULL
//Q[3] :: (*c).val > l
//Q[4] :: (*p).val > l

bool b[1], b[2], b[3], b[4];
void partition() {

b[1],b[3] := ∗,∗;
b[2],b[4] := true,∗;

while(¬b[1]) {

if (b[3]) {
if (¬b[2]) {skip;}
if (∗) {skip;}

}
else {b[2],b[4] := b[1],b[3];}
b[1],b[3] := ∗,∗;}

return; }

(b)

Figure 9: Abstraction of a sequential list algorithm (from [17]) — (a) function that sep-
arates the list m points to into one with cells strictly greater than l, and one for others; (b)
Boolean program-characterisation of the existential abstraction obtained for the predicates
on top

listed in Table 1. Equivalent characterisations as parallel assignment and formula
are b[1], b[2] := b[1] ∨ ∗, b[2] and R̂ :: (b[1] ⇒ b[1]′) ∧ (b[2] ⇔ b[2]′), respec-
tively. The first conjunct in R̂ reflects that v < w is true after executing assignment
v := v−2, if it was true previously (Table 1, rows 3 and 6), and otherwise it is either
true or false. The second conjunct reflects that v’s parity is preserved. Analogously,
if I :: v = 1∧ w = 5 and E :: v = 0 are the initial and error formulas, respectively,
then Î :: b[1] ∧ ¬b[2] and Ê :: b[2].

Figure 9 illustrates the process for a sequential list algorithm. The key is that ex-
istential abstraction is conservative for reachability properties [42]: For every exe-
cution in P1 there exists a safety-equivalent execution in P̂1. Safety of P̂1 hence
implies safety of P1.





3 Lost in Abstraction:
Monotonicity in Multi-Threaded Programs∗

In this section, we present our abstraction strategy for unbounded-thread strictly a-
synchronous programs with respect to predicates tracking certain relationships that
are quantified over local variables of all threads. To this end, we first present such
a strategy for fixed thread numbers, then show how to compute an abstract program
template that can be instantiated for any thread number, much like strictly asynchro-
nous programs, and finally illustrate a natural extension to programs with condition
variables, which are more expressive than strictly asynchronous programs when
every thread’s memory is finite.

3.1 Inter-Thread Predicate Abstraction

We introduce single- and inter-thread predicates, with respect to which we then
formalise existential predicate abstraction. Except for the predicate language, these
concepts are mostly standard, but lay the technical foundations for the contributions
of this thesis.

3.1.1 Predicate Language

We extend the predicate language from [58] to allow the use of the passive-thread
variables LP = {mP : m ∈ L}, each of which represents a local variable owned by
a generic passive thread. We classify our predicates as follows.

Definition 9. A predicate Q over S, L and LP is shared if it solely contains vari-
ables from S, local if it solely contains variables from L, single-thread if it contains
variables from L but not from LP , and inter-thread if it contains variables from L
and from LP .

In the ticket algorithm (Figure 5), with shared variables S = {s, t} and local
variable L = {m}, examples of shared, local, single-thread and inter-thread predi-
cates are: s = t, m = 5, s = m and m 6= mP , respectively.

∗The main content of this chapter was previously presented in [59, 58].
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Semantics. Let {Q[c] : 1 ≤ c ≤ m} be a list of m predicates (any class). The
truth of predicate Q[c] in a given n-thread state v (n ≥ 2) is defined with respect to
a choice of active thread a:

Ca(c) ::
∧
p:p6=a

Q[c]{L.La}{LP .Lp} . (12)

The predicate is true in v if and only if v ⇒ Ca(c) is valid, and hence captures
whether the predicate evaluates to true for all thread pairs (a, p), a 6= p. Notice that
for single-thread and shared predicates (= without LP variables), we have

Ca(c) = Q[c]{L.La} and Ca(c) = Q[c], respectively. (13)

Evaluation of eq. (12) in a state for all predicates and threads yields the abstrac-
tion function α, a mapping of n-thread program states to n × m-dimensional bit
matrices:

α(v)a,c =
{

T if v ⇒ Ca(c) is valid

F otherwise .
(14)

Function α partitions the n-thread program state space via m predicates into 2n×m
equivalence classes. As an example, consider the inter-thread predicates m ≤ mP ,
m > mP , and m 6= mP for a local variable m. Then

α(


m1 = 4
m2 = 4
m3 = 5
m4 = 6

) =


T F F
T F F
F F T
F T T

 . (15)

In the matrix, column c ∈ {1, 2, 3} lists the truth of predicate c for each of the four
threads in the active role. Predicate m ≤ mP captures whether a thread owns the
minimal value for local variable m and thus evaluates to true exactly for a = 1, 2;
m > mP tracks whether a thread owns the unique maximum value and thus evaluates
true only for a = 4; finally m 6= mP captures the uniqueness of a thread’s copy of m,
which applies to both a = 3 and a = 4.

Due to the universal nature of inter-thread predicates our predicate language
is not closed under negation. We can observe this phenomenon in the previous
example with predicates Q[1] and Q[2], which syntactically are negations of each
other, yet both evaluate to false for thread a = 3. For single-thread predicates,
however, Q[c] = ¬Q[c′] means αa,c = ¬αa,c′ .
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Inter-thread predicates are essential. To emphasise the need for our abstraction
strategy to handle inter-thread predicates, we show that proof methods that cannot
reason about them (such as [70, 58, 176]) are bound to fail for the ticket algorithm in
Figure 5 when threads concurrently and repeatedly (e.g. in an infinite loop) request
and release lock ownership.

Lemma 10. Given the parameterised ticket algorithm where threads call spin_lock

and spin_unlock arbitrarily often. Then no Hoare/Floyd-style correctness proof with
single-thread predicates exists.

Proof sketch. We write pci for the pc of thread i, 1 ≤ i ≤ n. We first state some
easy-to-prove invariants of the ticket algorithm:

s ≤ t ≤ s+ n (16)

pci = `1 ⇒ li = 0 (17)

pci = `2 ⇒ s < li < t (18)

pci = `3 ⇒ li = s (19)

#(pc = `2) + #(pc = `3) = t− s (20)

We can think of `1, `2, and `3 as the non-critical, trying, and locked region of a
standard mutex lock. The total number of threads in the trying and locked regions
is t − s (Section 3.1.1). If all threads are “non-critical”, we have s = t, and the li
are all zero.

Let now

E =
n⋃
i=1

Es,t,li (21)

be the disjoint union of sets of predicates formulated over the shared variables s
and t and any one of the li ; in particular, no predicate may refer to several of the li.
Suppose I is an invariant expressible over E that is strong enough to prove mutual
exclusion. Then

∀i, j : i 6= j : I ∧ pci = pcj = `2 ⇒ li 6= lj , (22)

since otherwise threads i and j can, once s reaches the value li (= lj), escape the
busy-wait loop and simultaneously proceed to the critical section.
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For any c, there exists a reachable global state satisfying pc1 = pc2 = `2 and
(s, l1, l2) = (c, c, c + 1) (that is, thread 1 proceeds to the trying region first, then
thread 2), and a reachable global state satisfying pc1 = pc2 = `2 and (s, l1, l2) =
(c, c+ 1, c) (vice versa). Since c is unbounded, there thus exist infinitely many such
assignments that satisfy invariant I .

Let now {I1, . . . , Iw} be the cubes in the DNF representation of I . Since this set
is finite, one can extract a single cube Ik that satisfies both (s, l1, l2) = (c, c, c+ 1)
and (s, l1, l2) = (c, c+ 1, c), for some c. We split Ik into the sub-cubes that belong
to Es,t,l1 , and those that belong to Es,t,l2 : Ik = I1

k ∧ I2
k ; note that these sub-cube

sets are disjoint (sub-cubes that refer to neither l1 nor l2 are apportioned to either
side). Then (s, l1, l2) = (c, c, c+1) satisfies I1

k , which does not contain l2, so in fact
(s, l1) = (c, c) satisfies I1

k . Symmetrically, one obtains that (s, l2) = (c, c) satisfies
I2
k . Hence (s, l1, l2) = (c, c, c) satisfies I1

k ∧ I2
k = Ik and hence satisfies I , which

contradicts eq. (22).
The argument also indicates that, for a finite number n of threads, the set of

predicates depends on n: there is no c such that, for every n, c predicates suffice to
prove the protocol correct for n threads.

3.1.2 Existential Inter-Thread Predicate Abstraction

Embedded into our formalism, the goal of existential predicate abstraction [42, 93]
is to derive an abstract program P̂n by treating the equivalence classes induced by
eq. (14) as abstract states. The n×m Boolean variables of P̂n are

V̂n = {b[1]1, · · · , b[m]1,
...

...

b[1]n, · · · , b[m]n} .

Variable b[c]a tracks the truth of predicate c for active thread a.
Formula Dn below specifies the correspondence between concrete n-thread

states (valuations of Vn) and abstract n-thread states (valuations of V̂n):

Dn ::
n∧
a=1

m∧
c=1

(b[c]a ⇔ Ca(c)) . (23)

For a formula f , let f ′ denote f after replacing each variable by its primed version;
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Concrete transition (n = 2) Abstract relation R̂(1)2

m1 m2 m′
1 m′

2 b1 b2 b′
1 b′

2

1 0 0 0 F T F F
1 1 0 1 F F T F
1 2 0 2 T F T F
2 0 1 0 F T F T

Table 2: Abstraction for n = 2 — Rows list concrete transitions for instruction m := m−1
when executed by thread 1, i.e. valuations of R(1)2, and the abstract transitions it induces
with respect to predicate m < mP

the components of P̂n are

R̂(a)n :: ∃∃Vn . R(a)n ∧ Dn ∧ (Dn)′ (24)

Î(a)n :: ∃Vn . I(a)n ∧ Dn (25)

Ê(a)n :: ∃Vn . E(a)n ∧ Dn . (26)

As an example, consider the decrement operation m := m− 1 on a local integer
variable m, and the inter-thread predicate m < mP . Plugging both into eq. (24) with
n = 2, we get 4 abstract transitions, which are listed in Table 2. Now observe that
strict asynchrony is lost in the abstraction: while the transitions in the 2-thread con-
crete relation R(1)2 satisfy m2 = m′2 (the input program is strictly asynchronous),
this is no longer the case in R̂(1)2: in the first row in Table 2 (highlighted), both the
pc (not shown) of thread 1 and the value of local variable b of thread 2 change.

The key is that existential abstraction is conservative for reachability properties.

Corollary 11. [42] For every thread number n and every execution in Pn there
exists a safety-equivalent execution in P̂n. Safety of P̂n hence implies safety of Pn.

Proving the ticket lock for fixed threads. To illustrate the approach, we use the
ticket algorithm [10], a busy-wait lock that prevents starvation by processing waiting
threads in FIFO-order. This has been the default lock in the Linux kernel since
2008 [48]. Figure 5 shows the slightly simplified C code. Consider the predicates

Q[1] :: m 6= mP , (27)

Q[2] :: t > max(m, mP ) , and (28)

Q[3] :: s = m . (29)
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(`1/FTF)
(`1/FTF)

(`2/TTF)
(`2/TTF)

(`2/TTF)
(`2/TTT)

(`1/TTF)
(`2/TTT)

(`1/TTT)
end

(`2/TTF)
end

(`2/TTF)
(`3/TTT)

(`1/TTF)
end

(`1/TTF)
(`2/TTF)

(`2/TTT)
end

(`3/TTT)
end

end
end

(`1/TTF)
(`3/TTT)

Figure 10: Abstract reachability tree for the ticket lock for 2 threads — Each node
represents a 2-thread program state (stacked), with edges being labelled by the inducing
transition. The initial state is in bold

The first two predicates are inter-thread, while the third is single-thread. They cap-
ture the uniqueness of a ticket (eq. (27)), that the next free ticket is strictly larger
than all the tickets that are currently owned by threads (eq. (28)), and whether a
thread’s ticket is currently being served (eq. (29)).

Figure 10 shows the abstract reachability tree (modulo symmetry) for P̂2 ob-
tained for this set of predicates according to eqs. (24) to (26) and n = 2.∗ It has 13
reachable states for n = 2 threads; the tree grows exponentially in n. As an exam-
ple, initially the program counters both point to the fetch_and_add operation (line `1),
both threads have a non-unique ticket (m1 = m2 = 0), which are furthermore strictly
smaller than the next free ticket (mi < t = 1 for i ∈ {1, 2}), and finally neither of
the threads is being served (mi 6= s = 1 for i ∈ {1, 2}). For example, the root’s
successor in the middle

(`1/TTF)
(`2/TTT)

abstracts the 2-thread concrete states satisfying∧
i=1,2

(pci = `i ∧ b[1]i ∧ b[2]i) ∧ ¬b[3]1 ∧ b[3]2 .

Notice that the abstraction is no longer strictly asynchronous with respect to the
argument a of a predicate, as the changes of passive-thread variables reveal. As an

∗As usual, we assume the existence of a predicate pc = `i for i ∈ {1, 2, 3}. The abstraction
therefore retains the control-flow.
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example, if the thread with a = 1 executes from the initial state, this also implies a
change of the other thread’s predicates, as is evident from the outgoing transition of
root node in Figure 10: the state of the thread that is passive in the transition changes
in both successors from (`1/FTF) to (`1/TTF). The loss of asynchrony cannot be
blamed on the use of inter-thread predicates; instances of this effect without such
predicates are reported in [58].

3.2 From Existential to Parametric Abstraction

Classical existential abstraction incurs a high verification cost: because of the ex-
ponential (in the number of threads) space complexity, techniques that exhaustively
explore the state space of P̂n will not scale beyond a very small number of threads.
Moreover, such abstractions need to be computed for every n individually, rendering
parametric reasoning about threads impossible.

To overcome these problems, we now derive an overapproximation of P̂n via
a program template P̃ that can be instantiated for any n, much like the strictly
asynchronous input program P can via eqs. (5) to (7). As we have seen, predicate-
abstracting strictly asynchronous programs gives rise to programs that themselves
cannot in general be expressed in the asynchronous language defined in Section 2.
Instead, our abstract programming language is the richer class of dual-reference
programs.

3.2.1 Dual-Reference Programs

In contrast to strictly asynchronous programs, the variable set Ṽ of a dual-reference
(DR) program P̃ is partitioned into two sets, L̃ (the local variables of the active
thread, as before) and L̃P = {mP : m ∈ L̃}. The latter set contains passive-thread
variables, which are owned by some generic thread that is passive in a transition.
To simplify reasoning about DR programs, we exclude classical shared variables
from the description: they can be easily simulated, as we show below after the
introduction of the program semantics.

As before, we assume the statements of P̃ are given by a transition formula R̃
over Ṽ and Ṽ ′, now potentially including passive-thread variables. Similarly, Ĩ and
Ẽ may contain variables from L̃P .
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The n-thread instantiation of a DR program P̃n is defined for n ≥ 2 via

R̃(a)n ::
∧

p:p 6=a
R̃{L̃..L̃a}{L̃P ..L̃p} (30)

Ĩ(a)n ::
∧

p:p 6=a
Ĩ{L̃.L̃a}{L̃P .L̃p} (31)

Ẽ(a)n ::
∨
p:p 6=a

Ẽ{L̃.L̃a}{L̃P .L̃p} (32)

Unprimed and primed variables of L̃ and L̃P encode the effect of a transition on the
single active thread a, and n − 1 passive threads p 6= a, respectively. As we can
see from the conjunction in, e.g., eq. (30), for a valuation to be a valid transition,
formula R̃ must be satisfied no matter which thread p 6= a takes the role of the
passive thread. The semantics of passive-thread variables thus resembles that of
inter-thread predicates.

We can now also demonstrate how active- and passive-thread variables can sim-
ulate shared variables (which we have excluded, to simplify the notation). To elim-
inate shared variable s, we instead introduce a fresh local variable m ∈ L̃, and
replace a statement like s := 5 by the atomic statement m := 5, mP := 5, i.e., each
thread keeps a local copy of what used to be the shared variable; the semantics of
passive-thread variables ensures that the values are synchronised across all threads.

3.2.2 Computing an Abstract Dual-Reference Template

From the existential abstraction P̂n we derive a Boolean dual-reference program P̃
(the “template”) such that, for all n, the n-fold instantiation P̃n overapproximates
P̂n. We begin with an example: a template characterisation of the abstract transition
relation enumerated in Table 2 is given by the Boolean DR program with variables
b and bP , and transition relation

(¬b ∧ bP ∧ ¬b′) ∨ (¬bP ∧ b′ ∧ ¬b′P ) . (33)

More specifically, we obtain the transition relation listed in Table 2, which is for the
first thread in a 2-thread instantiation (hence a = 1 and n = 2), by plugging into
eq. (30) as R̃ the relation from eq. (33). Hence, we can use DR programs to exactly
capture the abstraction, despite the loss of strict asynchrony.

In general, the variables of P̃ are L̃ = {b[c] : 1 ≤ c ≤ m} and L̃P = {b[c]P :
1 ≤ c ≤ m}. Intuitively, P̃ is obtained by exhaustively enumerating states and
transitions that are feasible in P̂2, P̂3, . . . from the perspective of an active and a
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m1 m2 m3 m′
1 m′

2 m′
3 b1 b2 b3 b′

1 b′
2 b′

3

1 0 0 0 0 0 F F F F F F
1 1 0 0 1 0 F F T F F F
2 1 0 1 1 0 F F T F F T

Table 3: Abstract transitions for n = 3 — The abstract 2-thread transition (highlighted)
cannot be observed for n = 2 threads

passive thread. For fixed n, the components of P̃n are

R̃n :: ∃∃L̂3, . . . , L̂n . R̂(1)n{L̂1..L̃}{L̂2..L̃P } (34)

Ĩn :: ∃L̂3, . . . , L̂n . Î(1)n{L̂1.L̃}{L̂2.L̃P } (35)

Ẽn :: ∃L̂3, . . . , L̂n . Ê(1)n{L̂1.L̃}{L̂2.L̃P } (36)

Lemma 12. (P̃n)n overapproximates P̂n: For every n ≥ 2, Î(a)n ⇒ Ĩn(a)n,
Ê(a)n ⇒ Ẽn(a)n, and R̂(a)n ⇒ R̃n(a)n.

Proof. For the initial states, we have by eq. (35):

∀a, p . p 6= a⇒ (Î(a)n ⇒ Ĩn{L̃.L̃a}{L̃P .L̃p}) .

Hence Î(a)n implies each conjunct of eq. (31), and thus Î(a)n ⇒ Ĩn(a)n. Similar
reasoning proves the two other cases.

An obstacle is that Lemma 12 depends on P̃n, which needs to be computed for
every n individually. In order to illustrate that this dependence is crucial, let us
revisit the decrement operation m := m− 1 and predicate m < mP . We have already
seen the corresponding transition relation R̃2 obtained according to eq. (34), namely
in eq. (33). As we increase n from 2 to 3, the relation, however, changes to

R̃3 :: R̃2 ∨ (¬b ∧ ¬bP ∧ ¬b′ ∧ ¬b′P ) . (37)

The inducing concrete transitions are listed in Table 3. We thus cannot use P̃2 as
template to check safety of Pn for n ≥ 3.

To enable parameterised reasoning in the abstract, we derive a tight “saturation
bound”, i.e. a thread count b such that, for any n, the n-fold instantiation of P̃b
overapproximates P̂n. Such bounds are guaranteed to exist as P̃’s data domain
(Boolean) is finite (note that P’s data domain may well be infinite).
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Theorem 13. Suppose there are #IT inter-thread predicates. Then the abstract
dual-reference program stabilises at b = 4 × #IT + 2, i.e. P̃n = P̃b for every
n ≥ b.

Proof. Let Q[1], . . . , Q[m] be a list of predicates, #IT of which are purely inter-
thread, and let R̃∞ denote the formula characterising

∨∞
n=1 R̃n (the existence of a

finite encoding is guaranteed). We show that stabilisation occurs at b = 2+4×#IT ,
i.e., R̃∞ ⇒ R̃b. The proof for stabilisation of Ĩ and Ẽ is analogous (factor 4 then
reduces to 2). We first show that stabilisation occurs for m inter-thread predicates
at b, and then prove that this value is insensitive to the number of single-thread
predicates.

Let m = #IT = 1 and i = (b1, b2, b′1, b
′
2) ∈ B4 be a transition in R̃∞, and

Dna (c) :: (b[c]a ⇔ Ca(c)). Then by definition of R̃∞, eqs. (24) and (34) there exists
a thread number n ≥ 2, and a valuation v of variables Ṽn, Ṽ ′n, Vn and V ′n such that
v satisfiesR(1)n ∧

∧2
a=1(ba ⇔ Ca ∧ b′a ⇔ Ca′) ∧

∧n
a=3Dna ∧ Dna ′. Let

v = (b1, . . . , bn, b′1, . . . , b
′
n, s, m1, . . . , mn, s′, m′1, . . . , m

′
n) (38)

be that valuation. Then there exists a number q ∈ [2, 6], and an index mapping π :
{1, . . . , q} → {1, . . . , n} such that (bπ1 , . . . , bπn , b

′
π1 , . . . , b

′
πn
, s, mπ1 , . . . , mπn ,

s′, m′π1 , . . . , m
′
πn

) satisfies Rn1 ∧ Dn ∧ Dn′, namely by defining π1 = 1, π2 = 2,
and letting π3, . . . , πq identify passive threads that falsify a conjunct in each of the
expanded C1, C2, C1

′, and C2
′ (if any)—recall that by eq. (12) formula Ca evaluates

false exactly if
∃p 6= a : ¬Q{L.La}{LP .Lp} . (39)

Then by eqs. (24) and (34) i satisfies R̃q (and thus R̃6). We generalise the argument
to one for arbitrary inter-thread predicates (case m = #IT ≥ 2 ) by extending π
accordingly (by 4 elements per additional predicate in the worst case). It follows
that stabilisation occurs at b = 2 + 4×#IT for any m = #IT ≥ 1.

It remains to show that stabilisation is not deferred by single-thread predicates.
By eq. (13) it follows that the truth of such predicates depends only on the variables
in Vn that are visible by the thread it is evaluated over, hence on variables V2 and
V ′2 for any transition in R̃∞. Now observe that these values are maintained in the
permutation (bπ1 , . . .) defined above—recall π1 = 1 and π2 = 2, which gives the
desired result.

Corollary 14. Let P̃ := P̃b, for b as in Theorem 13. The components of P̃ are thus
(R̃, Ĩ, Ẽ) = (R̃b, Ĩb, Ẽb). Then, for n ≥ 2, P̃n overapproximates P̂n.
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Concrete transition (n = 6) Abstract rel. R̃

s m1 m2 m3 m4 m5 m6 s′ m′
1 m′

i b bP b′ b′
P

F 1 2 3 4 5 6 T 7 mi F F F F
F 1 1 3 5 ∗ ∗ T 7 mi F F F T

Table 4: Tightness example for one inter-thread predicate: eq. (40) — The first abstract
transition (highlighted) requires n = 6 threads to be discovered, the second only n = 4

The bound established in Theorem 13 is asymptotically tight: consider the fol-
lowing concocted scenario with shared and local variables s ∈ B and m ∈ [1, 7]∩IN:

R ::(¬s ∧ m = 1) ∧ (s′ ∧ m′ = 7)
Q ::(¬s ∨ m 6= 7 ∨ mP 6= 5) ∧ (¬s ∨ m 6= 2 ∨ mP 6= 6)∧

(s ∨ m 6= 1 ∨ mP 6= 3) ∧ (s ∨ m 6= 2 ∨ mP 6= 4) . (40)

Equation (34) then does in fact not stabilise for less than 4×#IT + 2 = 6 threads.
The obtained DR program has two transitions, which are enumerated with an induc-
ing concrete transition in Table 4. The generalisation necessary to show tightness
for arbitrary numbers of inter-thread predicates is straightforward.

In practice, inspecting the actual structure of the given set of predicates often
allows us to reduce the number b of threads used to formalise the abstraction pro-
cess. For instance, if the set of predicates contains only local and shared predicates,
b = 1 is sufficient (one can exploit that the abstraction is guaranteed to be strictly
asynchronous). As another instance, if inter-thread predicates are symmetric or con-
tain no shared variables, then the factor 4 in Theorem 13 can be reduced to 3. All
inter-thread predicates we have seen so far have this property. Similar constraints
reduce the bound further: the abstraction for the decrement operation saturates at
n = 3 < b = 6, and the ticket lock at n = 4 < b = 10 (147, 429, and 552 abstract
transitions exist for n = 2, 3, 4, respectively).

As a consequence of losing asynchrony in the abstraction, many existing model
checkers for concurrent software become inapplicable, e.g. [167, 62, 69]. For a
fixed thread count n, the problem can be circumvented by forgoing the replicated
nature of the concurrent programs, as done in [58] for the model checker boom:
within 30 minutes, boom proves the ticket algorithm (Figure 5) correct up to n = 3.
This approach is not only inefficient, but in fact ruins any chance of a parametric
solution. Our solution to this problem first presents us with an unpleasant surprise.
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3.3 Unbounded-Thread Dual-Reference Programs

The multi-threaded Boolean dual-reference programs (P̃b)n resulting from predi-
cate-abstracting asynchronous programs against inter-thread predicates as shown
in Section 3.1 are symmetric and free of recursion. Each of the n threads acts as
a finite-state machine; their symmetry can therefore be exploited using classical
methods that “counterise” the state space [90]: a global state is encoded as a vec-
tor of local-state counters, each of which records the number of threads currently
occupying a particular local state.

In order to apply such fixed-thread solutions to the verification problem for un-
bounded thread numbers, the local state counters are extended to range over un-
bounded natural numbers [0,∞[. The fact that the program executed by each thread
is finite-state and in particular recursion-free now seems to suggest that the result-
ing infinite-state counter systems can be modelled as Petri nets or, more generally,
as well quasi-ordered transition systems [1]. This would give rise to sound and
complete (if worst-case expensive) algorithms for local-state reachability in such
programs.

This strategy is ultimately workable, but not straightforwardly so. In this sec-
tion, we illustrate the problem, and discuss a simple amendment to the abstraction
presented in Section 3.1 that enables us to overcome that problem.

3.3.1 Undecidability of Boolean DR Program Verification

As it turns out, the full class of Boolean DR programs is expressive enough to render
safety checking for an unbounded number of threads undecidable, despite the finite-
domain variables:

Theorem 15. Program location reachability for Boolean DR programs run by an
unbounded number of threads is undecidable.

Proof sketch. By reducing the halting problem for the Turing-powerful determinis-
tic 2-counter Minsky machines [146] with k control states, to the program location
reachability problem in DR programs with 3 program locations and a local variable
with k values. We demonstrate the reduction using a deterministic Minsky machine
that enumerates pairs in N2 (Figure 11; the formalism is from [163]). The machine
consists of five control states s0, . . . , s4 (s0 initial), two natural-number counters c1
and c2 (initially 0), and three increment, two decrement and two zero-test opera-
tions, denoted for a counter c by c++, c-- and c ?=0, respectively. Each operation
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s2

s0 s1s3 s4

m = mP = s2 ∧ m′ = m′P = s0∧
pc = c3 ∧ pc′ = c1∧

pc′P = pcP

c1++

. . .
c1--

. . .

c2++

m = mP = s0 ∧ m′ = m′P = s1∧
pc = pc′ ∧ pc′P = pcP∧

pcP 6= c1

c1
?=0

m = mP = s1 ∧ m′ = m′P = s4∧
pc = c2 ∧ pc′ = c3∧

pc′P = pcP

c2--

. . .

c1++

. . .
c2

?=0

Figure 11: Minsky machine and its DR program encoding — (In and outside labels of
control transitions, respectively.) The initial state I of the DR encoding is m = mP =
s0 ∧ pc = pcP = c3

changes the control state and counter value as indicated (the decrement and zero-test
operation freeze if c is zero and non-zero, respectively). Control states are encoded
in local variables, and counters in program locations of the DR program P such that
the counter value equals the number of threads in that location. Let further `e be
a special program location of P that is reached if and only if the a local variable
has the value that encodes the Minsky machine’s halting state. Let c3 be the single
initial program location, thus with an unbounded number of threads; control state
changes turn into local variable updates (for all threads), together with the following
program counter modifications: for c++ and c-- a thread moves from c3 to c and
vice versa, and for c ?=0 a thread in c3 tests for the absence of a passive thread in the
location associated with c. The machine halts if and only if program location `e is
reached in P . ∗

Theorem 15 implies that the unbounded counter systems obtained straightfor-
ward from strictly asynchronous programs are in fact not well quasi-ordered. Why
not? Can this problem be fixed, in order to permit a complete verification method?
If so, at what cost? We answer these questions in the rest of this section.

∗In the reduction used in the proof, neither the increment nor the decrement operations restrict
the passive-thread variables to specific values, but the simulation of the zero test does: the test on
variables c1 and c2 in the transition from s0 to s1 and s1 to s2 of Figure 11 are implemented through
the absence of a transition for a passive thread in c1 and c2, respectively.
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3.3.2 Monotonicity in Dual-Reference Programs

Recall that for a transition system (Σ,�) to be well-quasi ordered, we need two
conditions to be in place [76, 1, 2]:

well-quasi-orderedness: there exists a relation ≤ on Σ that is reflexive and transi-
tive, and such that for every infinite sequence v1, v2, . . . of states from Σ there
exist i, j with i < j and vi ≤ vj .

monotonicity: for any v1, v
′
1, v2 with v1 � v′1 and v1 ≤ v2 there exists v′2 such

that v2 � v2 and v′1 ≤ v′2.

We now consider the case of dual-reference programs. If we represent global states
of the abstract system R̃n defined in Section 3.1 as counter tuples, we can define ≤
as the component-wise application of ≤, as done in Section 2 for strictly asynchro-
nous programs.

We can now characterise monotonicity of DR programs as follows:

Lemma 16. Let R̃ be the transition relation of a DR program. Then the infinite-
state transition system ∪∞n=1R̃n is monotone (with respect to ≤) exactly if, for all
k ≥ 2, the following formula is valid:

(v, v′) ∈ R̃k ⇒ ∀lk+1 ∃l′k+1, π .
(
〈v, lk+1〉, π(〈v′, l′k+1〉)

)
∈ R̃k+1 . (41)

In eq. (41), the expression ∀lk+1∃l′k+1 . . . quantifies over valuations of the local
variables of thread k + 1. The notation 〈v, lk+1〉 denotes a (k + 1)-thread state that
agrees with v in the first k local states and whose last local state is lk+1; similarly
〈v′, l′k+1〉. Symbol π denotes a permutation on {1, . . . , k+ 1} that acts on states by
acting on thread indices, which effectively reorders thread local states.

Proof of Lemma 16. “⇒”: suppose ∪∞n=1R̃n is monotone. Let v = (l1, . . . , lk),
v′ = (l′1, . . . , l′k) with (v, v′) ∈ R̃k, and w = 〈v, lk+1〉. We have v ≤ w, hence
by the monotonicity of ∪∞n=1R̃n there exists w′ such that (a) (w,w′) ∈ ∪∞n=1R̃n
and (b) v′ ≤ w′. From (a) we conclude that in fact (w,w′) ∈ R̃k+1. From (b) we
conclude that w′ contains k threads in local states as in v′. Let l′k+1 be the local state
of the additional thread (not necessarily the k + 1st) in w′, and σ be a permutation
such that (l′1, . . . , l′k+1) = σ(w′). That is, σ reorders the local states of w′ such that
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the k local states in v′ come first, l′k+1 comes last. With π := σ−1, we then have

(
〈v, lk+1〉, π(〈v′, l′k+1〉)

)
=

(
〈v, lk+1〉, σ−1(〈v′, l′k+1〉)

)
= (w,w′) ∈ R̃k+1 .

“⇐”: suppose (v, v′) ∈ ∪∞n=1R̃n, say (v, v′) ∈ R̃k, so we write v = (l1, . . . , lk)
and v′ = (l′1, . . . , l′k). Let further v ≤ w. If w has k threads, like v, then v ≤ w
implies v ≥ w: the states are symmetry equivalent, sayw = π(v), for a permutation
π on {1, . . . , k}. In this case w′ := π(v′) satisfies the monotonicity conditions.

If w has k + 1 threads, then observe that w contains k threads in local states as
in v; let lk+1 be the local state of the additional thread (not necessarily the k + 1st).
Let further l′k+1 and π be as provided in eq. (41). With u = 〈v, lk+1〉 and u′ =
π(〈v′, l′k+1〉), we get (u, u′) ∈ R̃k+1 by eq. (41). Since u and w contain the same
local states, let σ be a permutation such that σ(u) = w. Define w′ = σ(u′). Then
w′ ∼ u′ = π(〈v′, l′k+1〉) ≥ v′, where∼ is symmetry equivalence. Further, (u, u′) ∈
R̃k+1 implies (σ(u), σ(u′)) ∈ R̃k+1 by symmetry, so (w,w′) ∈ R̃k+1 ⊆ ∪∞n=1R̃n,
demonstrating that the monotonicity conditions are satisfied.

The case that w has more than k + 1 threads follows by induction.

Asynchronous programs are trivially monotone (and DR): eq. (41) is satisfied
by choosing l′k+1 := lk+1 and π the identity. Table 5 shows instructions found
in non-asynchronous programs that destroy monotonicity, and why. For example,
the swap instruction in the first row gives rise to a DR program with a 2-thread
transition (F, F, F, F) ∈ R̃2. Choosing l3 = T in eq. (41) requires the existence of
a transition in R̃3 of the form (m1, m2, m3, m′1, m

′
2, m
′
3) = (F, F, T, π(F, F, m′3)), which

is impossible: by eqs. (4) and (30), there must exist a ∈ {1, 2, 3} such that for
{p, q} = {1, 2, 3} \ {a}, both “a swaps with p” and “a swaps with q” hold, i.e.

m′p = ma ∧ m′a = mp ∧ m′q = ma ∧ m′a = mq ,

which is equivalent to m′a = mp = mq ∧ ma = m′p = m′q. It is easy to see that this
formula is inconsistent with the state description (F, F, T, π(F, F, m′3)), no matter
what m′3.

More interesting for us is the fact that asynchronous programs (= our input lan-
guage) are monotone, while their parametric predicate abstractions may not be; this
demonstrates that the monotonicity is in fact lost in the abstraction. Consider again
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Dual-reference program Monotonicity

instruction variables mon.? assgn. violating eq. (42)

m, mP := mP , m m ∈ B no m = F, m′ = T
m, mP := m + 1, mP − 1 m ∈ N yes

mP := mP + m m ∈ N yes
m := m + mP m ∈ N no m = m′ = 1

mP := c m, c ∈ N yes

Table 5: Examples of monotonicity, and violations of it — Each row shows a single-
instruction program, whether the program gives rise to a monotone system and, if not, an
assignment that violates eq. (42). (Some of these programs are not finite-state.)

the decrement instruction m := m − 1, but this time abstracted against the inter-
thread predicate Q :: m = mP . Parametric abstraction results in the two-thread and
three-thread template instantiations

R̃2 =
(
¬b1 ∨ ¬b′1

)
∧ b1 = b2 ∧ b′1 = b′2

R̃3 =
(
¬b1 ∨ ¬b′1

)
∧ b1 = b2 = b3 ∧ b′1 = b′2 = b′3 .

Consider the two-thread transition from (F, F) to (T, T) and the three-thread state
w = (F, F, T) > (F, F) : state w clearly has no successor. It is in fact inconsistent:
the symmetry of predicate Q renders the role of the active thread immaterial; it is
Q1 = Q2 = Q3 = (m1 = m2 = m3), so w has an empty concretisation. We discuss
in Section 3.3.3 what happens to the instruction with respect to predicate m < mP .

3.3.3 Restoring Monotonicity in the Abstraction

Our goal is now to restore the monotonicity that was lost in the parametric abstrac-
tion. The standard covering relation ≤ defined over local state counter tuples turns
monotone and Boolean DR programs into instances of well quasi-ordered transi-
tion systems. Program location reachability is then decidable, even for unbounded
threads.

In order to do so, we first derive a sufficient condition for monotonicity that can
be checked locally over R̃, as follows.

Theorem 17. Let R̃ be the transition relation of a DR program. Then the infinite-
state transition system ∪∞n=1R̃n is monotone if the following formula over L̃× L̃′ is
valid:

∃L̃P L̃′P . R̃ ⇒ ∀L̃P∃L̃′P . R̃ . (42)
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Proof. We show monotonicity using Lemma 16. Suppose (v, v′) ∈ R̃k, and let
lk+1 be given. By eq. (4), there exists a ∈ {1, . . . , k} such that (v, v′) ∈ R̃(a)k. By
eq. (30), we have

∀p ∈ {1, . . . , k} \ {a} R̃{L̃..L̃a}{L̃P ..L̃p} . (43)

Since k ≥ 2, the quantification in eq. (43) is not empty and hence satisfies the left-
hand side of eq. (42). By the right-hand side, there exists a valuation l′k+1 of all L̃′P
variables such that, replacing the L̃P variables by the valuation lk+1, R̃ still holds,
i.e. R̃{L̃..L̃a}{L̃P ..L̃k+1}. Merging this with crefequation: instantiated lemma, we
obtain

∀p ∈ {1, . . . , k + 1} \ {a} R̃{L̃..L̃a}{L̃P ..L̃p} ,

and thus (〈v, lk+1〉, 〈v′, l′k+1, )〉 ∈ R̃(a)k+1 ⊂ R̃k+1, establishing the right-hand
side of eq. (41) with the identity permutation π.

Unlike the monotonicity characterisation given in Lemma 16, eq. (42) is for-
mulated only about the template program R̃. It suggests that, if R̃ holds for some
valuation of its variables, then no matter how we replace the current-state passive-
thread variables L̃P , we can find next-state passive-thread variables L̃′P such that R̃
is still valid. This holds for asynchronous programs, since here L̃P = ∅. It fails for
the swap instruction in the first row of Table 5: the instruction gives rise to the DR
program R̃ :: m′ = mP ∧ m′P = m. The assignment on the right in the table satisfies
R̃, but if mP is changed to F, R̃ is violated no matter what value is assigned to m′P .

Equation (42) is strictly stronger than monotonicity. To see this, we revisit again
the decrement operation abstracted against inter-thread predicate m < mP , and the
template R̃ of the abstraction, which we determined to be eq. (37). Condition (42)
is violated for b = b′ = T: this partial assignment can be continued via bP =
b′P = F to a valid assignment for R̃, yet for bP = T it cannot: (T, T, T, b′P ) 6∈ R̃
for any b′P . Intuitively, b = bP = T asserts that both threads have the unique
minimum, which is impossible. On the other hand, it is not difficult to see that
∪∞n=1R̃n is monotone, e.g. using Lemma 16. The reason is that the parametrization
of the existential abstraction (Section 3.2) has introduced spurious transitions, which
permit inconsistent states such as (T, T).
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We are now ready to modify the possibly non-monotone abstract DR program
P̃ into a new, monotone abstraction P̃m. Our solution is similar in spirit to, but
different in effect from, earlier work on monotonic abstractions [4], which proposes
to delete processes that violate universal guards and thus block a transition. This
results in an overappoximation of the original system and thus possibly spuriously
reachable error states. In contrast, exploiting the monotonicity of the concrete pro-
gram P , we can build a monotone program P̃m that is safe exactly when P̃ is, thus
fully preserving soundness and precision of the abstraction P̃ .

Definition 18. The non-monotone fragment (NMF) of a DR program with transi-
tion relation R̃ is the formula over L̃ × L̃P × L̃′:

F(R̃) :: ∃L̃P L̃′P : R̃ ∧ ¬∃L̃′P : R̃ . (44)

The NMF encodes partial assignments (m, mP , m′) that have no continuation (via
any m′P ) to a full assignment satisfying R̃, but do have a continuation for some
valuation of L̃P other than mP . We revisit the two non-monotone instructions from
Table 5. The NMF of m, mP := mP , m is m′ 6= mP : this clearly cannot be continued
to an assignment satisfying R̃, but when mP is changed so that m′ = mP , we can
choose m′P = m to satisfy R̃. The non-monotone fragment of m := m + mP is
m′ ≥ m ∧ m′ 6= m + mP .

Equation (44) is slightly stronger than the negation of eq. (42): the NMF binds
the values of the L̃P variables for which a violation of R̃ is possible. It can be used
to “repair” the transition relation:

Lemma 19. For a DR program with transition relation R̃, the program with tran-
sition relation R̃ ∨ F(R̃) is monotone.

Proof. We show that R̃ ∨ F(R̃) satisfies eq. (42), i.e.

∃L̃P L̃′P .(R̃ ∨ F(R̃)) ⇒ ∀L̃P∃L̃′P : (R̃ ∨ F(R̃)) . (45)

Monotonicity then follows using Theorem 17. Simplifying the right-hand side of
eq. (45) yields

∀L̃P∃L̃′P : (R̃ ∨ (∃L̃P L̃′P : R̃ ∧ ¬∃L̃′P : R̃))
= ∀L̃P : (∃L̃′P : R̃ ∨ (∃L̃P L̃′P : R̃ ∧ ¬∃L̃′P : R̃))
= ∀L̃P : (∃L̃′P : R̃ ∨ ∃L̃P L̃′P : R̃)
= ∀L̃P : (∃L̃P L̃′P : R̃)
= ∃L̃P L̃′P : R̃ .
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Equation (45) now becomes

∃L̃P L̃′P .(R̃ ∨ (∃L̃P L̃′P : R̃ ∧ ¬∃L̃′P : R̃))⇒ ∃L̃P L̃′P : R̃

which trivially reduces to true, in both cases of the disjunction.

Lemma 19 suggests to add artificial transitions to P̃ that allow arbitrary passive-
thread changes in states of the non-monotone fragment, thus lifting the blockade
previously caused by some passive threads. While this technique restores mono-
tonicity, the problem is of course that such arbitrary additions will generally modify
the program behavior; in particular, an added transition may lead a thread directly
into an error state that used to be unreachable.

In order to instead obtain a safety-equivalent program, we prevent passive threads
that block a transition in P̃n from affecting the future execution. This can be re-
alised by redirecting them to an auxiliary local sink state. Let `e be a fresh label
non-existent in P̃ .

Definition 20. The monotone closure of DR program P̃ = (R̃, Ĩ) is the DR pro-
gram P̃m = (R̃m, Ĩ) with transition relation R̃m :: R̃ ∨ (F(R̃) ∧ (pc′P = `e)) .

This extension of the transition relation has the following effects: (i) for any pro-
gram state, if any passive thread can make a move, so can all, ensuring monotonicity,
(ii) the added moves do not affect the safety of the program, and (iii) transitions that
were previously possible are retained, so no behavior is removed. The following
theorem summarises these claims:

Theorem 21. Let P be an asynchronous program, and P̃ its parametric predicate
abstraction. The monotone closure P̃m of P̃ is monotone. Further, (P̃m)n is safe
exactly if P̃n is.

Proof. Monotonicity of P̃m: appealing to Theorem 17, we prove that the following
formula is valid:

∃L̃P L̃′P . R̃m ⇒ ∀L̃P∃L̃′P . R̃m .

Let (l, l′) ∈ L̃ × L̃′ be arbitrary, and suppose there exist (lP , l′P ) ∈ L̃P × L̃′P
such that (l, lP , l′, l′P ) ∈ R̃m. Let further mP ∈ L̃P . We construct m′P ∈ L̃′P
such that (l, mP , l′, m′P ) ∈ R̃m. Since R̃m = R̃ ∨ (F(R̃) ∧ (pc′P = `e)), we
have either (l, lP , l′, l′P ) ∈ R̃ or (l, lP , l′, l′P ) ∈ F(R̃) ∧ (pc′P = `e). In both
cases, (l, lP , l′, l′P ) ∈ R̃ ∨ F(R̃). The latter relation is monotone by Lemma 19.
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Hence there exists some k′P such that (l, mP , l′, k′P ) ∈ R̃ ∨ F(R̃). This ele-
ment k′P is almost the element m′P ∈ L̃′P we are looking for: if (l, mP , l′, k′P ) ∈
R̃ ⊂ R̃m, then the choice m′P = k′P ensures (l, mP , l′, m′P ) ∈ R̃m. Otherwise
(l, mP , l′, k′P ) ∈ F(R̃). Formula F(R̃) does not contain L̃′P variables, however;
the latter can thus be replaced freely without affecting membership in F(R̃). Let
therefore m′P :: (∃pc′Pk′P ) ∧ (pc′P = `e). The latter expression denotes the replace-
ment of the value of pc′P in k′P by `e. Now we have (l, mP , l′, m′P ) ∈ F(R̃) and in
fact (l, mP , l′, m′P ) ∈ F(R̃) ∧ (pc′P = `e) ⊂ R̃m.

Safety-equivalence: from Definition 20 (applied to P̃) we conclude R̃ ⇒ R̃m
is valid, and thus every execution of P̃ is an execution of P̃m. Thus if P̃m is safe,
so is P̃ . For the converse argument observe that every infinite trace π of P̃m gives
rise to a sequence of j traces of P̃ as follows:

π = t1, . . . , r1, t2, . . . , r2, . . . , tj , . . .

such that for all i, subtrace ti, . . . , ri is pairwise related by R̃, (ri, ti+1) /∈ R̃, yet
(ri, ti+1) ∈ R̃m. (If π is finite it is of the form t1, . . . , r1, . . . , tj , . . . , rj ; the fol-
lowing remains valid.) Call a state safe if it has no emanating execution ending in
an error state. Observe that because the asynchronous input program P is monotone
(“fewer threads can do less”), state-safety is <-closed for P: if a state r is safe in P
and s < r then s is also safe. In order to see that the same is true for the (possibly
non-monotone) abstract DR program P̃ , letR be the concretisation of a state r of P̃ ,
i.e. a set of programs states of input program P . Then P̃’s conservativeness (Sec-
tion 3.1.2 and Corollary 14) guarantee the safety of states inR, and<-closedness of
state-safety in P implies the safety of states in the <-downward closure of R. From
the fact that s’s concretisation is in that closure we can conclude that state-safety is
also <-closed for P̃ .

Using the previous result we next show that if a subtrace ti, . . . , ri of π contains
no error state then ti+1, . . . , ri+1 also contains none, which (by induction) gives us
the desired results; t1, . . . , r1 contains no error state (otherwise P̃ cannot be safe).
The prove of the induction step goes by contradiction. Assume ti, . . . , ri contains
no error state, yet ti+1, . . . , ri+1 does so. Let r′i be a state such that r′i < ri and
(r′i, ti+1) ∈ R̃. Such a state is always guaranteed to exist.∗ Hence ri is safe,
r′i < ri, yet r′i not safe, which contradicts the property that state-safety is <-closed
for P̃ and gives the desired result.

∗Such a state can always be obtained from ri by removing the threads that were redirected to an
auxiliary state in transition (ri, ti+1) ∈ R̃m.
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Theorem 21 justifies our strategy for reachability analysis of an asynchronous
program P: form its parametric predicate abstraction P̃ described in Sections 3.1
and 3.2, build the monotone closure P̃m, and analyse (P̃m)∞ using any technique
for monotone systems.

Proving the parameterized ticket lock. We apply this strategy to the ticket lock
algorithm. The backward reachability method described in [1] returns “uncover-
able”, confirming that the ticket algorithm guarantees mutual exclusion, this time
for arbitrary thread counts. The search tree has 107 nodes. More compact proofs
can be obtained using the inductive model-checker breach, which we will present
in the second part of this thesis (Section 4); the reachability tree it generates has 16
vertices (shown in Figure 12) and thus only three states more than were obtained
earlier for a constant number of n = 2 threads (Figure 10).

Recall that the ticket lock is challenging for existing techniques: cream [95],
slab [62] and symmpa [58] handle only a fixed number of threads, and the re-
source requirements of these algorithms grow rapidly; none of them can handle
even a handful of threads. The recent approach from [71] generates polynomial-
size proofs, but again only for fixed thread counts.

(`3/???)
(`3/???)

(`3/FTF)(`3/TFF) (`3/FFF) (`3/TTF)(`3/FTT)

(`1/FFT)

(`3/TFT)(`2/FTT)

(`2/FTF) (`2/TFT)

(`1/FFF) (`1/TFT)(`1/TFF)

(`2/FFT)

(`3/FFT)

Figure 12: Minimal uncoverability proof for the ticket lock — The breach model-checker
attempts to prove uncoverability of smaller (<) undecided elements first, which is why some
(larger) elements are not expanded
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3.3.4 Expressiveness of Monotone Boolean DR Programs

We show that monotone Boolean DR programs are stricly more expressiveness than
strictly asynchronous Boolean programs, and illustrate why the latter are inadequate
as an abstract domain model for single- and inter-thread predicate abstractions.

Lemma 22. Monotone Boolean DR programs are strictly more expressive than
strictly asynchronous Boolean programs.

Proof. Reusing the reduction used in the proof of Theorem 15, we can conclude
that strictly asynchronous Boolean programs are exactly as expressive as vector
addition systems with states [121], which in turn are as powerful as zero test-free
Minsky machines. On the other hand, monotone Boolean DR programs are as ex-
pressive as transfer Petri nets [39], or equivalently zero test-free Minsky machines
with transfers operations. The latter atomically add the value of one counter to an-
other, and then clear the former. In order to illustrate the equivalence, let us first
consider the Minsky machine used in the proof of Theorem 15, yet assume the zero-
test c1

?=0 between s0 and s1 is replaced by a transfer operation from c1 to c2. The
corresponding transition has the monotone DR encoding

(l = lP = s0 ∧ l′ = l′P = s1)∧
(pc = c1 ⇒ pc′ = c2) ∧ (pc 6= c1 ⇒ pc′ = pc )∧
(pcP = c1 ⇒ pc′P = c2) ∧ (pcP 6= c1 ⇒ pc′P = pcP ) .

(46)

In this manner, every zero test-free Minsky machines with transfers operations can
be encoded as a monotone Boolean DR program. The other direction directly fol-
lows from the fact that every Boolean DR program can be transformed into one ex-
hibiting transitions that modify at most one valuation of passive-thread variables at
a time. Each of the passive-thread updates can then be represented by a transfer op-
eration in the constructed zero test-free Minsky machines with transfers operations.
The fact that transfer Petri nets are strictly more expressive than vector addition
systems with states [63] concludes the proof.

Why is this additional expressive power necessary for our abstract model? The
reason is that we must sometimes force a passive thread in an abstract transition to
leave its local state and move to another one. For example in the abstract reachabil-
ity tree of ticket lock abstraction shown in Figure 10 the local state of the passive
thread changes in all successors of the root state from (`1/FTF) to (`1/TTF). If
the number of executing threads in unbounded, this behaviour cannot be simulated
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p1 p2

p3 p4

(a)

p1 p2

p3 p4

(b)

p1 p2

p3 p4

(c)

Figure 13: Petri nets — (a) Petri net; (b) Petri net with transfer arc; (c) Petri with inhibitor
arc. Standard transitions move a finite number of tokens (here: from p1 to p2), transfer arcs
can additionally move all tokens between place (here: from p3 to p4), and inhibitor arcs can
block a transition depending on the existence of a tokens in some place (here: p3)

by a strictly asynchronous Boolean program. We therefore consider our monotone
Boolean dual-reference programs a “tight” abstract domain for single- and inter-
thread predicate abstractions.

In fact it is not difficult to show that strictly asynchronous Boolean programs can
at most simulate “optional” passive-thread updates, i.e. where every passive thread
is left with the possibility to retain its local state. For example all passive-thread
updates in the abstraction enumerated in Table 2 are in this sense optional.

The following example sketches the equivalence of (i) strictly asynchronous
Boolean programs and Petri nets, (ii) monotone Boolean DR programs and Petri
nets with transfer arcs, and (iii) non-monotone Boolean DR programs and Petri nets
with inhibitor arcs; we refer the reader to [39] for details on the Petri net formalisms.

Example 23. Figure 13 depicts for each of the three models a simple (1-transition)
net over places p1 to p4.∗ We can encode them as DR programs over two local
Boolean variables b[1] and b[2] (no shared variables), i.e. L = {b[1], b[2]} and
S = ∅. In particular, let the places be represented as valuations in this order:

p1 :: ¬b[1] ∧ ¬b[2]
p2 :: ¬b[1] ∧ b[2]
p3 :: b[1] ∧ ¬b[2]
p4 :: b[1] ∧ b[2]

∗More complex transitions can be split into uninterruptible sequences of such simple transitions
using fresh intermediate shared states.
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Equipped with these place encodings, Figures 13a to 13c have the following in
common: The active-thread variables b[1] and b[2] are updated in the same way,
and the passive-thread variable b[1]P does not change, which we record by the
following relation:

f :: (¬b[1] ∧ ¬b[2]) ∧ (¬b[1]′ ∧ b[2]′) ∧ (b[1]′P ⇔ b[1]P ) .

The influence of, and effect on the passive-thread variable b[2] is what distinguishes
the three transitions: For Figure 13a it does not change, hence

R :: f ∧ (b[2]′P ⇔ b[2]P ) . (47)

For Figure 13b passive threads residing in local state b[1]∧¬b[2] move to b[1]∧b[2],
hence

R :: f ∧ (b[2]′P ⇔ (b[1]P ∨ b[2]P )) . (48)

Finally, for Figure 13c the transition of the active thread is restricted to cases where
the passive-thread variable b[2] evaluates true (in that case b[2] does not change),
hence

R :: f ∧ (b[1]P ⇒ b[2]P ) ∧ (b[2]′P ⇔ b[2]P ) . (49)

Clearly, eq. (47) does not change passive-thread variables and hence is strictly a-
synchronous. Furthermore, it is not difficult to check via eq. (44) that eqs. (48)
and (49) are monontone and non-monotone, respectively.

3.4 Extension to Programs with Nonblocking Condition Variables

The key property that makes our approach work is the monotonicity of the input
programs. Strictly asynchronous programs are monotone, and many human-written
programs are naturally strictly asynchronous. However, the approach remains valid
with certain non-asynchronous monotone input programs, such as our monotone
DR programs; notice that the latter generalisation does not affect the proof of The-
orem 13. The shift from strictly asynchronous to monotone DR programs as input
has a benefit: It enables us to reason about programs with more complex synchro-
nisation primitives, notably condition variables [129].

Condition variables enable threads to wait until a designated condition occurs
(e.g., I/O completion), and permit the implementation of high-level synchronisation
mechanisms like bounded circular buffers. They are by now available in all major
operating systems, e.g. Windows, UNIX and Mac OS. A condition variable offers
the following routines:
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• cv_init for initialisation,
• cv_broadcast to wake up all passive threads that currently wait on it, and
• cv_wait to block the caller until the condition is broadcast.

To avoid race conditions, cv_wait is used in conjunction with a mutex that is re-
leased and reacquired on function entry and return, respectively. An example of
condition variables in action is shown in Figure 1. Calls to function cv_broadcast
are non-blocking: The calling thread does not relinquish control, yet as a side effect
“causes execution of [threads] waiting on the condition to resume at some conve-
nient future time” [129]. In particular, the call returns without side effect if no
thread currently blocks on the condition variable. Typically, they are implemented
via lists of waiting threads, where a call to cv_wait adds the executing thread to
the respective list, and cv_broadcast makes all threads runnable, before the list
is cleared. Notice that thread communication mechanisms such as locking and un-
locking operations on mutexes are blocking.

The non-blocking semantics of cv_broadcast makes them intricate to model.
In fact, if every thread’s memory is finite, yet the number of executing threads is
unbounded, it provably cannot in general be encoded in a strictly asynchronous
program [53]; note that in such a setting lists of thread identifiers could, e.g. be-
come arbitrarily long. On the other hand, modelling a condition variable using a
local Boolean variable in a dual-reference program is straightforward, as shown in
Figure 14:

(i) function cv_init sets the local flag of all threads to PEN (e.g. false), thereby
indicating that the condition has not yet been broadcast,

(ii) cv_broadcast sets the local flag of all passive threads to BRC (e.g. true), and
(iii) cv_wait is implemented by busy-waiting until the owned local flag is broad-

cast, i.e. set to BRC (i.e. true).

Modifications of passive-thread variables are required in function cv_init, and
again in cv_broadcast. However, since both DR instructions are monotone (cp.
Table 5) our approach remains valid. (We use this encoding for the programs with
broadcasts in Section 6.)
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enum SIG_t { PEN, /∗condition is pending∗/
BRC }; /∗condition has been broadcast∗/

struct cv{ thread_local SIG_t l; }; /∗local flag l∗/

void cv_init(struct cv ∗cvp, /∗...∗/) {
(∗cvp).l := PEN; /∗set active thread pending∗/
I (∗cvp).mP := PEN; } /∗set all passive threads pending∗/

void cv_wait(struct cv ∗cvp, struct mtx ∗mp) {
mtx_unlock(mp); /∗release protection mutex∗/
while((∗cvp).l 6= BRC)

; /∗wait on local flag∗/
(∗cvp).l := PEN; /∗thread is awake; reset flag∗/
mtx_lock(mp); /∗reacquire before return∗/}

void cv_broadcast(struct cv ∗cvp) {
I (∗cvp).mP := BRC; /∗wake up all passive threads∗/ }

Figure 14: Expressing broadcast operations in monotone DR programs — The local
flag l in structure cv stores whether the owning thread has been broadcast to or not (BRC and
PEN, respectively). The instructions accessing the passive-thread variable lP are marked



4 A Widening Approach to Multi-Threaded Program
Verification∗

In this section, we present an algorithmic solution for verifying safety properties
of monotone Boolean dual-reference programs, such as obtained by our predicate
abstraction technique introduced in Section 3 after applying the monotone closure
operator. The approach is, however, applicable to the more general class of well
quasi-ordered systems, which subsume many other concurrency models like Petri
nets [157] (or, equivalently Vector Addition Systems [121, 97]), Broadcast proto-
cols [65, 39] and Lossy counter machines [139]. Due to our focus on verifying
shared-memory programs, and despite the generality of our method, we will pri-
marily use strictly asynchronous programs to illustrate the concepts and intuition
behind our approach. We first recap relevant concepts [1], then we illustrate and
formalise our target set widening approach.

4.1 Coverability Analysis by Target Set Widening

The method presented in this section pursues a strategy that may seem counter-
intuitive at first: instead of focusing on the original input program state e, whose
coverability we wish to determine, the algorithm builds a hierarchy of elements
for which coverability is tested; state e itself may well never be directly investi-
gated. The motivation is that uncoverability of strictly covered elements, which
suffices to prove the uncoverability of e, is likely to terminate more quickly, as
it involves fewer threads. Our approach thus biases the search algorithm towards
proving uncoverability of elements. An external coverability generator, which will
typically trade in termination in favour of efficiency, intervenes in case the search
attempts to prove uncoverability of coverable states.

In the remainder of this section, we review the most general solution to cover-
ability analysis in well quasi-ordered systems [2], then we illustrate and formalise
the idea sketched above, and finally describe our algorithm in detail. We use the
program in Figure 15 as a running example; Figure 16 enumerates its transitions.

∗The main content of this chapter was previously presented in [117, 118, 119].

45
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shared s := 0; //shared; range {0,1,2,3}
local pc := 0; //(implicit) local instruction counter; range {0, 1, 2}

0: if (s 6= 0){ goto 0; } else { s := 3; }
1: if (s 6= 3){ goto 1; }
2: if (s = 2){ goto 2; } s = (s + 1) mod 4; goto 0;

Figure 15: Running example — A strictly asynchronous program with 3 atomic statements,
labelled 0, 1 and 2, and a finite-domain shared variable s. Each thread can perform only
one execution sequence: from the initial state (s, pc) = (0, 0) to (3, 1) to (3, 2), and finally
back to (0, 0). Hence, only states with s ∈ {0, 3} are reachable, and the jump instructions
goto 0, goto 1 and goto 2 in locations pc = 0, pc = 1 and pc = 2, respectively, are never
executed

Transition s pc pcP s′ pc′ pc′
P

t1 1 2 ` 2 0 `
t2 0 2 ` 1 0 `
t3 3 2 ` 0 0 `
t4 3 1 ` 3 2 `
t5 0 0 ` 3 1 `

Figure 16: Explicit dual-reference transitions — Transitions induced by the program in
Figure 15; because the input program is strictly asynchronous, the passive-thread variable
remain unchanged: ` ∈ {0, 1, 2}. The target state is (2 | ), i.e. we want to check if s = 2 for
some reachable state



4.1 Coverability Analysis by Target Set Widening 47

Algorithm 1 bc(I, e)
Require: initial state set I , query e 6∈ I

1: W := {e} ; U := {e}
2: while ∃w ∈W do
3: W := W \ {w}
4: for all p ∈ C-Pre(w) \ ↑U do
5: if p ∈ I then
6: return “e ∈ Cover”
7: W := min(W ∪ {p})
8: U := min(U ∪ {p}))
9: return “e /∈ Cover”

4.1.1 Review: Backward Coverability Analysis

Given a state v ∈ Σ, the set of all predecessors of elements in its upward closure ↑ v
is again upward-closed and can therefore be represented by its minimal elements.
We call these minimal elements the cover predecessors of v and denote them by
C-Pre(v):

C-Pre(v) = min
⋃
r≥v
{p ∈ Σ : p� r} .

We write p ↪→ v for p ∈ C-Pre(v). Note that the number of threads in a program
state and its cover predecessors can differ: we will see many examples later where a
thread can, for instance, enter a particular program state (s | c) only if another thread
in some other local state h “helps”, by setting the shared state to s. The 1-thread
state (s | c) then has a 2-thread cover predecessor.

Algorithm 1 shows a version of the classical backward search to decide cover-
ability for well quasi-ordered systems [2, 1]. Input is a set of initial states I ⊆ Σ,
and a target state e /∈ I . The algorithm maintains a set U ⊆ Σ of minimal encoun-
tered states, and a work set W ⊆ U of unprocessed states. It successively computes
cover predecessors, starting from e, and terminates either by backward-reaching an
initial state (thus proving coverability of e), or when no unprocessed vertex remains
(thus proving uncoverability; this will happen eventually since ≤ is a well-quasi-
ordering).
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4.1.2 Target Set Widening: The Idea

In case Algorithm 1 terminates in Line 9, set U contains the minimal program states
backward-reachable from ↑ e, i.e. the minimal elements of the set C-Pre∗(e) of
states that have a path to an element in ↑ e. Figure 17 shows an example of minimal
backward-reachable states computed by Algorithm 1. The uncoverability of e fol-
lows from the disjointness of C-Pre∗(e) and the initial states I; set C-Pre∗(e) thus
serves as an uncoverability proof for the target state e.

(2 | ) (1 | 2) (0 | 2, 2)

(3 | 1, 1, 1) (3 | 1, 1, 2) (3 | 1, 2, 2) (3 | 2, 2, 2)

(0 | 0, 1, 1) (0 | 0, 1, 2)

t1 t2

t3
t4t4t4

t5 t5

Figure 17: Uncoverability proof of the classical backward search — Shown are the
states in the final set U computed by Algorithm 1 for the strictly asynchronous program in
Figure 15. The target set is {(2 | )}, i.e. we wish to check whether shared state s = 2 is
reachable in the program in Figure 15. Edges denote cover predecessor relations and are
labelled by the inducing thread transition (from Figure 15).

Instead of computing this set we can, however, also prove q uncoverable using
an overapproximation of C-Pre∗(e) that is closed under C-Pre and does not inter-
sect with the initial states. The potential benefit of proving uncoverability via such
an overapproximation is that overapproximating C-Pre∗(e) by appropriately push-
ing down (“<”) its minimal elements leads to more compact, or ideally, minimal
uncoverability proofs.

Definition 24. An uncoverability proof for e is an upward-closed set UCP that

(i) contains e;
(ii) is closed under pre-images; and

(iii) is disjoint from the initial state set I .

Further, the uncoverability proof is minimal if

(iv) for any r ∈ min UCP and any v < r, v is coverable; and
(v) no proper subset of UCP satisfies the foregoing conditions (i)–(iv).
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Figure 18: Monotonicity upside down — Smaller states have smaller cover predecessors

The first three conditions imply that all elements of UCP are uncoverable. The con-
ditions capture the fact that, to prove uncoverability of e, it suffices to compute an
overapproximation of C-Pre∗(e) that is disjoint from I . For example, if e is uncov-
erable, then the upward closure of C-Pre∗(e) is an uncoverability proof, as is the
complement of the set Cover of coverable states. Condition (iv) of a minimal un-
coverability proof UCP states that every minimal element of UCP is also a minimal
element of the complement of Cover: min UCP ⊆ min(¬Cover).

The notion of an uncoverability proof is sound, in that UCP∩Cover = ∅; in par-
ticular, the query state e is uncoverable. The notion is also complete: our algorithm
can construct a minimal uncoverability proof (if e is uncoverable). In contrast to the
set C-Pre∗(e), which is unique for a given e, multiple minimal uncoverability proofs
may exist, and the upward closure of C-Pre∗(e) and the complement of Cover do
not in general represent minimal uncoverability proofs.

Example 25. We illustrate these claims with an example. Consider the well quasi-
ordered system with states {i, e, x1, x2}; i and e are the initial and query states,
respectively. The ordering ≤ is the reflexive closure of {(x1, e), (x2, e)}. Further,
the system has no transitions (hence condition (ii) holds trivially). Query e is there-
fore uncoverable. There are four uncoverabililty proofs of this fact:

• ↑{e} = {e} is the upward closure of C-Pre∗(e); it violates condition (iv) for
v ∈ {x1, x2} and r = e and is hence not minimal.

• ↑{x1} = {x1, e} and ↑{x2} = {x2, e} both satisfy conditions (iv) (vacu-
ously) and (v), and are therefore minimal uncoverability proofs for e.

• ↑{x1, x2} = {x1, x2, e} is the complement of Cover; it satisfies (iv) but vio-
lates (v) by the previous item.
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Uncoverability proof construction. The idea underlying our widening approach
is that “cover predecessors of smaller elements are smaller” (an observation that
also appears in [1]):

Lemma 26. For states r, r′, v′, if r is a cover predecessor of r′ and v′ ≤ r′, then
there exists a cover predecessor v of v′ such that v ≤ r. (Figure 18)

Proof. Let C1 = {w : w ↪→ v′} and C2 = (↓ r)∩C1. The latter set is non-empty,
since r ∈ C2. Let therefore v be a minimal element of C2. Then v ∈ ↓ r, so v ≤ r.
Also, v ∈ C1. It remains to be shown that v is a minimal element of C1, since then
v ∈ C-Pre(v′). To this end, let w ∈ C1 be arbitrary. If w < v, then w ≤ r, hence
w ∈ ↓ r, hence w ∈ C2. This is not possible, however, since v (supposedly > w) is
a minimal element of C2. Thus w 6< v. Since w ∈ C1 was arbitrary, it follows that
v is minimal in C1.

The lemma suggests: before expanding an element, we first select smaller ele-
ments for expansion; the resulting cover predecessors will be smaller as well. Since
smaller elements have fewer (cover) predecessors, this leads to earlier termination
along the path and thus faster decisions.

We can observe the impact of these observations on the performance of Algo-
rithm 1, using the program in Figure 15. Let the query target be (2 | ), i.e. we want
to determine whether shared state 2 is reachable. Figure 19 sketches the process.

Example 27. We start at target e = (2 | ). Before expanding it into cover pre-
decessors, we check whether a widening candidate exists. As this is not the case
(↓ e = {e}), we proceed by obtaining cover predecessor (1 | 2), which covers (1 | ),
a widening candidate. From (1 | ) we obtain cover predecessor (0 | 2), which cov-
ers (0 | ). The latter state is not considered for expansion, as it is initial and hence
coverable. Thus we expand (0 | 2) to obtain (3 | 2, 2), which covers (3 | ); the latter
becomes a new target state and is expanded. We now find that (3 | ) is coverable,
with initial cover predecessor (0 | 0). We thus have to cancel the backward search
from (3 | ) and mark it as coverable. Similarly, trying to add (3 | 2) as a new target
fails, since its cover predecessor (3 | 1) is coverable.

The algorithm thus resorts to expanding (3 | 2, 2) to (3 | 1, 2). All 3 states strictly
covered by (3 | 1, 2) have previously been shown coverable and are thus not added to
the target set. The same is true for its predecessor (3 | 1, 1), which is hence expanded
to (0 | 0, 1); the latter state strictly covers (0 | 1). The only cover predecessor of
(0 | 1) is (3 | 1, 2), which is not new, so the search terminates.
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(2 | )

(1 | ) (0 | 2)

(0 | )

(3 | 2, 2)

(3 | 2)

(3 | ) (0 | 0)

(3 | 1)

(3 | 1, 2) (3 | 1, 1)

(0 |1)<
<

<

<
<

(1 | 2)

(0 | 0, 1)

<

<

<

< < <

<

Figure 19: Minimal uncoverability proof construction — The initial stateset is given by
(0 | 0∗) = {(0 | 0i) : i ∈ N}. We write t ↪99K v if p ↪→ v for some p > t. The (initially
singleton) set of coverability targets is widened on-the-fly by so far undecided elements of
the downward closure of encountered states (indicated via edges ↪99K). If an element turns
out coverable we backtrack and mark it and other coverable states, so they are not reselected

(2 | ) (1 | ) (0 | 2)

(3 | 1, 1) (3 | 1, 2) (3 | 2, 2)

(0 |1)

t1 t2

t3
t4t4

t5

Figure 20: Minimal uncoverability proof — States in the widened target set in bold
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Figure 20 shows the uncoverability proof that is actually generated for the ex-
ample of Figure 15 and target (2 | ). State (2 | ) is expanded to (1 | 2) followed by
widening to (1 | ). Comparing this proof with that in Figure 17, we observe re-
ductions in the number of minimal states (9 vs. 7), in the longest traversed path (7
vs. 6), and in the maximum thread count (3 vs. 2). The uncoverability proof is even
minimal: every proper subset is not an uncoverability proof, and every state that is
strictly covered by one of the 7 states in Figure 20 turns out to be coverable.

We can think of the cancellation of the backward search from a state that turns
out coverable as backtracking out of the widening: we made a bad choice that needs
to be rolled back. In contrast, if the termination condition is satisfied for a state v
obtained by widening p (such as for state (0 | 1) above), v ∈ ↓ p, we do not need
to go back to the pre-widening query state p: any cover predecessor of p is also a
cover predecessor of v and would thus have been “caught” while expanding v.

In Section 6 we present experimental evidence showing the potential of com-
pressing the proof size by target set widening in practice: for our concurrent C
program benchmarks we observed reductions in the numbers of proof nodes, in the
longest traversed paths, and in the maximum thread counts across the proofs by
95%, 67% and 50%, respectively.

4.1.3 The Target Set Widening Algorithm

We now present our algorithm in detail. In addition to the data structures used by
Algorithm 1, namely a set U ⊆ Σ with vertices that are labelled and identified with
encountered states, and a work set W ⊆ U of unprocessed vertices, our algorithm
maintains

(i) a set E of directed edges between vertices: E ⊆ U × U ,
(ii) a function ζ : U → U , and

(iii) a downward-closed set D ⊂ U of states that have been shown coverable:
D ⊆ Cover.

We write u ↪→E r for (u, r) ∈ E, and ↪→∗E for the reflexive transitive closure
of ↪→E . Intuitively, E stores cover predecessor relationships that were expanded:
↪→E⊆↪→. For a vertex r, ζ(p) = r indicates that r was either present initially (if
e = r), or otherwise during target set widening—we call such a vertex a (widening)
candidate vertex—and p was encountered after backward-expanding r. We have
ζ(v) = v precisely for candidate vertices v; other vertices are called predecessor
vertices. Graph structure (U,E) gives rise to paths ending with a candidate vertex,
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i.e. a vertex in ζ(U) = {ζ(u) : u ∈ U}. The mapping ζ defines an equivalence
relation: vertices v and r are equivalent if ζ(v) = ζ(r); there is one equivalence
class (partition) per candidate vertex. The set D stores states that were shown to be
coverable, and hence is an underapproximation of the coverability set: D ⊆ Cover.

Example 28. We illustrate these definitions using the graph in Figure 19. The set
U contains 9 elements: e = (2 | ) is the query candidate vertex, (1 | ) and (0 | 1) are
widening candidates, and (1 | 2), (0 | 2), (3 | 2, 2), (3 | 1, 2), (3 | 1, 1) and (0 | 0, 1)
are predecessor vertices; (1 | 2) and (0 | 0, 1) are non-minimal in U . (All other ver-
tices in the figure have turned out coverable and have been removed from U .) Solid
harpoon arrows determine the edges in the setE. The mapping ζ induces three par-
titions, one for each of the candidate vertices (2 | ), (1 | ) and (0 | 1) (with 2, 6 and 1
element(s), resp.); e.g. (1 | 2) was encountered after backward-expanding (2 | ), and
hence ζ (1 | 2) = (2 | ). The set D is ↓{(3 | 1), (3 | 2)} ∪ (0 | 0∗), witnessing failed
widening attempts, which slow down the algorithm. (We discuss in Section 4.3.1
how we remedy this problem.)

The algorithm takes a set of initial states I , and a non-initial target e /∈ I as
input and maintains the invariant that the subgraph of (U,E) over vertices from the
same partition forms a tree, with the candidate vertex as root. Each tree represents
an attempt to prove the corresponding candidate uncoverable. The algorithm con-
sists of three routines: widen tries to add new candidate vertices, backtrack prunes
partitions whose candidate vertex proved coverable, and Cat is the main routine.

Widening. The widen routine takes a vertex n and tries to widen the target set by
an element in ↓n. More precisely, if the set C(n) = (↓n) \ ({n} ∪D) of candidate
elements is non-empty, we select a minimal element u from it; note that candidates
must not come from the set D of elements known to be coverable. If u is new
(u /∈ U ), it is inserted in the work and vertex sets; we set ζ(u) := u. Otherwise, u’s
new role as candidate vertex and partition root must be acknowledged: the graph is
repartitioned by modifying ζ for all vertices in the subtree with root u, i.e. the set

Λ(u) = {r ∈ U | r ↪→∗E u ∧ ζ(r) = ζ(u)} .

All vertices in u’s subtree are removed from their old partition and form a new
partition with u as root: we set ζ(r) := u for all r ∈ Λ(u). For the example in
Figure 19, the widen routine is successfully called four times, with vertices (1 | 2),
(3 | 2, 2), (3 | 2, 2) again (D has changed in the meantime), and (0 | 0, 1) as input.
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Note that in the definition of the widen routine we assume that the downward
closure of a finite set is finite (which ensures that the candidates set C(·) is finite).
This is guaranteed for the well quasi-ordered systems induced by strictly asynchro-
nous programs according to Section 3.2.1, and generally for Petri nets, Broadcast
protocols and Lossy counter machines.

Backtracking. The backtrack routine (Algorithm 2) prunes partitions represented
by candidate vertices from a set P ; this happens whenever some vertex in such
a partition is found coverable. An obstacle is that some edges may point from
the partiton to be removed into another partition. Such edges (and the adjacent
vertices) must be preserved, since otherwise paths generated by the other partition
are destroyed.

Definition 29. Given a set P of candidate vertices, an edge (r, s) ∈ E is called
P -conflicting if ζ(r) ∈ P and ζ(s) /∈ P .

The backtrack routine first resolves all conflicts (Lines 1–3): for a conflicting edge
r ↪→E s, we re-associate vertices in Λ(r) to ζ(s). Remaining vertices and edges of
partitions in P can now be pruned (Lines 4–7). It suffices to prune edges ending in
ζ(r): edges starting from ζ(r) are pruned when their target vertices are processed;
note that, after resolving P -conflicts, those target vertices also have their roots in
P . Figure 21 illustrates both steps. In the example in Figure 19, routine backtrack
is called on candidate vertices (3 | ) and (3 | 2): the former is pruned alone, while
the latter is pruned along with its cover predecessor (3 | 1) (in both cases no P -
conflicting edges exist).

Algorithm 2 backtrack(P )
Require: Set P with states to be removed, P ⊆ ζ(U)

1: for all (r, s) ∈ E such that (r, s) is P -conflicting do
2: for all t ∈ Λ(r) do
3: ζ(t) := ζ(s)
4: for all r ∈ U : ζ(r) ∈ P do
5: W := W \ {r} ; U := U \ {r}
6: for all (t, r) ∈ E do
7: E := E \ {(t, r)}
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Figure 21: Backtracking — (a) A partitioned graph structure with three candidate vertices,
s, r and t, each with a single cover predecessor (primed states) in its partition. The partition
underneath r is to be pruned, but edge r′ ↪→E s′ is {r}-conflicting. (b) The structure
obtained after calling backtrack({r}). Node r′ belongs to s’s partition, and r was pruned

Main routine. We introduce some terminology. A state v is u-minimal if it covers
none of the vertices in u’s partition, nor any immediate predecessor of such a vertex
(the predecessors may lie outside of this partition):

Definition 30. Let v ∈ Σ and u ∈ ζ(U). State v is u-minimal if v 6≥ u and for all
s, t ∈ U such that s ↪→E t and ζ(t) = u, we have v 6≥ s.

A set is lower successor-closed if it is closed both under ↪→E successors and down-
ward:

Definition 31. Let X ⊆ Σ. Set X is lower successor-closed if, for every p ∈ X , all
vertices in ↓ p and all ↪→E successors of p belong to X .

We write � v for the least lower successor-closed set containing v. This set is ob-
tained by closing {v} downward and under ↪→E successors until fixed point. The
point of this definition is that, if v is coverable, so is every vertex in � v: the set
Cover is lower successor-closed.

Algorithm 3 shows the main routine Cat (for “Coverability Analysis via Target
set widening”). Input is a set I of initial states (downward closed by definition),
and a non-initial target query e 6∈ I . At the outset, W and U contain one candidate
vertex, the target e. The setD of elements found coverable contains the initial states,
the set E of edges is empty, and ζ maps e to itself (Line 1). Then we try to widen
the target set by elements smaller than e.

The algorithm terminates with “e uncoverable” if no minimal unprocessed ver-
tex remains. Otherwise it selects and removes a minimal such vertex w. The for
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Algorithm 3 Cat(I, e): Coverability Analysis by Target Set Widening
Require: Set I of initial states, query target e 6∈ I

1: W := {e} ; U := {e} ; D := I ; E := ∅ ; ζ : e 7→ e
2: widen(e) // add smaller candidate if possible
3: while W ∩minU 6= ∅ do
4: select w ∈W ∩minU // select minimal unprocessed vertex
5: W := W \ {w}
6: for all p ∈ C-Pre(w): p is ζ(w)-minimal do
7: if p ∈ D then
8: if e ∈ � p then
9: return “e coverable”

10: else
11: D := D ∪ � p // mark coverable states
12: backtrack(ζ(� p)) // call backtrack routine
13: for all u ∈ minU do
14: widen(u)
15: break // skip forward to next iteration of while in Line 3
16: else
17: E := E ∪ {(p, w)}
18: if p 6∈ U then
19: W := W ∪ {p} ; U := U ∪ {p} ; ζ(p) := ζ(w) // add
20: widen(p) // add smaller candidate if possible
21: return “e uncoverable”
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loop in Line 6 now steps through all cover predecessors p ofw that are ζ(w)-minimal,
and processes them as follows:

Line 7 If p is inD, then p and all elements in � p are known to be coverable.
We distinguish:

Lines 8–9 If the query e is among the elements in � p, it is coverable; the algo-
rithm terminates.

Lines 10–15 If e is not among the elements in � p, then the search must go on.
We add all of � p to D and invoke the backtrack routine to remove
partitions of coverable candidate vertices. Since this may remove
candidate vertices of remaining predecessor vertices, we have to en-
sure that their downward closure is further searched for candidates.
We therefore create new minimal candidate vertices (Lines 13–14).
The break instruction then skips forward to the next iteration of the
while loop (Line 3). As a consequence of backtracking, unprocessed
vertices that were previously not minimal may now be.

Lines 16–20 If p is not in D and hence not currently known to be coverable,
then the graph is expanded. If p is new (Line 18), then we add it
to our work and undecided lists, and add it as predecessor vertex to
w’s partition. We also call the widen routine to (try to) add smaller
target elements.

4.2 Correctness, Complexity and Efficiency

We prove our target set widening algorithm correct, study its time complexity, and
give a preview of its compact operation. We begin with a classical termination +
partial correctness argument.

4.2.1 Correctness

Algorithm 3 manipulates a node set U by adding elements to it in Line 19 and
during widening, but also by pruning elements from it during backtracking. As a
result, set U does not grow monotonically. We will first prove termination of a
variant of Algorithm 3 without backtracking. Let therefore Algorithm 3’ be the
same as Algorithm 3, except that Line 12 is replaced by a no-op.



58 A Widening Approach to Multi-Threaded Program Verification

Theorem 32. Algorithm 3’ terminates on all inputs.

We first show the following property:

Lemma 33. Line 4 of Alg. 3’ never selects an element twice.

Proof. In this proof, we write “∈t” for “element of, at time t”. Let w be an element
selected in Line 4—say at time t0; we show it will never be selected again. In
Line 5, w is removed from W . Since Line 4 selects from W ∩ minU , element w
needs to be added back into W—say at time t1 > t0—before it can be selected a
second time. Element w can be added to W in Line 19, or during widening. In both
cases, only elements not in U are added toW . Since w ∈0 U (in fact, w ∈0 minU ),
and—in Algorithm 3’—elements are never removed from U , we have w ∈1 U , so
the addition of w to W at time t1 is not possible.

Now the proof of Theorem 32.

Proof (Theorem 32). The only loop that could cause non-termination is the while
loop in Line 3. We show that the set minU will eventually be depleted, terminating
the loop. Consider the sequence p1, p2, . . . of elements p added to U (keep in mind
that, in Algorithm 3’, these are never removed from U ). Let J = {j ∈ N : ¬(∃i :
i < j ∧ pi ≤ pj)}. The elements pj with j ∈ J constitute a “bad” sequence of
states: one that never increases. Since ≥ is a well-quasi-ordering, J is finite, and
since 1 ∈ J , it is also non-empty. Let therefore j = max J . After adding element
pj , only elements pk (k > j) that satisfy pk ≥ pi for at least one previously added
element pi (i < k) are added to U . We now distinguish: (i) If there exists i < k
such that pk > pi, then minU is not changed by the addition of pk: pk is guaranteed
not to be a minimal element of U . (ii) Otherwise we have, for all i < k, pk 6> pi.
By the definition of >, this means that, for all i < k, pk 6≥ pi ∨ pi ≥ pk. Now
pick i < k such that pk ≥ pi (existence guaranteed since k > j). For this i,
we have pk ≡ pi. This in turn implies that pi ∈ minU : otherwise there would
exist pr ∈ U with pr < pi ≤ pk, contradicting the condition leading to case (2).
Element pk is thus equivalent to (≡) some minimal element (pi) of U . The addition
of elements pk to U thus either does not modify minU (1), or at most modifies
minU by adding elements to minU whose local state vector is a permutation of
the local state vector of some existing element of minU (2). The latter can happen
only finitely many times, as there are only finitely many permutations of elements
in minU . Eventually minU therefore stops changing. By Lemma 33, the while
loop in Line 3 of Algorithm 3’ eventually terminates.
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Corollary 34. Algorithm 3 terminates on all inputs.

Proof. We need to determine the impact (on termination) of the backtracking. Algo-
rithm 2 mostly removes elements that are also contained in D, namely all elements
in � p ⊆ D, for some p ∈ D (cf. Line 12). Set D grows monotonically: elements
are never removed from it. Further, elements in D are never added to U , this is
guaranteed both in Line 19, and in the calls to the widening routine. As a result, the
elements in D that fall victim to pruning during backtracking will never be added
into U again, so pruning these elements can only accelerate termination.

On the other hand, Algorithm 2 may also remove some element s 6∈ D, whose
coverability has not been decided yet. Element s’s root, in contrast, does belong
to D: in Line 12 of Algorithm 2, we have ζ(� p) ⊆ � p, and all elements in � p
were added to D in Line 11. Root ζ(s), which is removed in the same call to
Algorithm 2, will thus never be added to U again. When and if s later reappears
in U , it must therefore be associated with another root node (s may itself be a root
at that time). Element s can therefore be removed from and reintroduced into U
only finitely many times, namely at most whenever we add query elements during
widening, which happens finitely often.

Intuitively, pruning and reintroducing an element s 6∈ D causes finite delay of
the termination of the algorithm, but keeps the search graph compact. We continue
by proving partial correctness.

Theorem 35. If control reaches Line 9 in Algorithm 3, the query target e is cover-
able.

Proof. We show that D ⊆ Cover is an invariant of the algorithm. The theorem then
follows: in Line 9, we have p ∈ D (hence p ∈ Cover) and e ∈ � p ⊆ Cover (since
p ∈ Cover, and coverability is closed under ↪→E successors and downward).

We proveD ⊆ Cover by induction over the number of modifications made toD
in Line 11. Before any such modifications, we have, as per Line 1, D = I ⊆ Cover.
Now assume D ⊆ Cover. In Line 11, we have p ∈ D, hence p ∈ Cover by
the induction hypothesis. Again by the above closure property of coverability, we
obtain D′ = D ∪ � p ⊆ Cover, which completes the step.
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Theorem 36. If control reaches Line 21 in Algorithm 3, the query target e is uncov-
erable.

Proof. We show that, if control reaches Line 21, the upward-closed set ↑Ufin is an
uncoverability proof for e (Definition 24), for the final value Ufin of variable U at
Line 21. The fact that e is uncoverable then follows immediately by that definition:
all elements of Ufin are uncoverable.

We prove the first three conditions of Definition 24: Condition (i): ↑Ufin con-
tains e, in fact e ∈ Ufin ⊆ ↑Ufin : e is added to U in Line 1, and the call to backtrack
(the only chance for e to be removed) is guarded by the condition e 6∈ � p (Line 10),
which implies e = ζ(e) 6∈ ζ(� p), so e is never removed. Condition (ii): ↑Ufin is
closed under pre-images: (i) We show: cover predecessors of elements of minUfin
are in Ufin : C-Pre(minUfin) ⊆ Ufin : Suppose w ∈ minUfin , hence w ∈ Ufin . At
the time w was added to U , it was also added to W (this is true in Line 19, and for
all calls to the widening routine). When the algorithm terminates in Line 21, we
have W ∩ minUfin = ∅. Hence w was, at some point, removed from W but not
from U , which only happens in Line 5, following which w’s cover predecessors p
are processed. If p 6∈ D (and new to U ), it is added to U . If p ∈ D and e ∈ � p,
then the algorithm terminates in Line 9; this case does not apply to Theorem 36. If
let p ∈ D and e 6∈ � p (Line 10), then p is not added to U , but we backtrack: we
also remove the successor w, so the closure property is preserved. (ii) Let now (i)
w ∈ ↑Ufin and (ii) p � w; we show p ∈ ↑Ufin : Due to (i), there exists v ∈ Ufin
such that v ≤ w. Let further t ∈ minUfin such that t ≤ v. Due to (ii), there exists
o ∈ C-Pre(w) such that o ≤ p. Applying Lemma 26 to o, w and t(≤ w) tells us
that there exists m ∈ C-Pre(t) such that m ≤ o. By (i), we conclude m ∈ Ufin .
Since p ≥ m, we also have p ∈ ↑Ufin . Condition (iii): ↑Ufin is disjoint from the
initial state set I: we first show Ufin ∩ I = ∅: (i) By Algorithm 3’s precondition,
e 6∈ I . Hence U0 ∩ I = ∅, for the initial value U0 = {e} of U . (ii) Only elements
not inD are ever added to U (this is true in Line 19, and for all calls to the widening
routine); since I ⊆ D is an invariant of the algorithm, such additions exclude initial
states. Let now y ∈ ↑Ufin , i.e. there exists x ∈ Ufin with y ≥ x. Since Ufin ∩ I = ∅,
x 6∈ I . This implies y 6∈ I , since I is downward closed. As a result, ↑Ufin ∩ I = ∅.
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4.2.2 Complexity and Space Efficiency

The coverability problem is decidable for transfer and rendezvous Petri nets (see
for example [63, 2]), and more generally for well quasi-ordered systems provided
some natural conditions on the computability of the well-quasi-ordering relation
hold [130]. The misery is in the complexity: coverability over transfer Petri nets
or, equivalently monotone Boolean DR programs, was shown to be Ackermann-
complete [164], which means that the complexity grows as fast as the Ackermann
function. If the Petri net is hard-wired into the algorithm (the input consists only of
the query), then the complexity subsides gracefully to primitive-recursive [164, 72].

In the following, for states v ∈ V let |v|∞ denote the infinity norm

|(s | l1, . . . , ln)|∞ =
{

1 if n = 0
max{#i : li = l} otherwise.

Hence, the infinity norm of a state is the largest number of threads that reside in
the same local state, or one if no thread exists. Examples: |(2 | )|∞ = 1 and
|(2 | 0, 3, 3, 4)|∞ = 2.

We use the so-called Fast Growing Hierarchy [133], (Fk)k for finite ordinals k
for comparing the order of growth of functions. For the rest of this section we fix
a monotone Boolean DR program P over shared variables S and local variables L.
Furthermore, recall from Definition 1 that every infinite sequence x = x0, x1, . . .
over V then contains an increasing pair xi ≤ xj for some i < j. The following
theorem from [72] plays the central role in our complexity analysis, as it permits us
to establish bounds on the length of paths traversed by both Algorithms 1 and 3.

Theorem 37 (adapted from [72]). Given a sequence x = x0, x1, . . . over V with no
increasing pair, a natural number t ∈ N, and a linear function f : N→ N such that
|xi|∞ < f(i+ t) for all i. Then xi ≤ xγ+1 for some i ≤ γ, where γ is bounded by
a function in Fk for k = 2|S| + 2|L|.

Theorem 37 bounds the length of state sequences under certain conditions. In order
to use it to derive complexity bounds for our algorithms, it remains to establish a
constant t, and a linear function f that meet the imposed requirements. This can
easily be done by exploiting the fact that due to Line 6 of Algorithm 3 paths cannot
“jump” to arbitrarily large thread dimensions: xi ∈ min C-Pre(xi+1) for all i of a
traversed path x. Moreover, it is not difficult to show that the infinity norm for two
neighbours in x can differ at most by one, i.e. |xi+1|∞ ≤ |xi|∞+1. This estimation
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gives us the desired t and f , namely

t = |x0|∞ and f(x) = x+ 1 . (50)

Equipped with t and f from eq. (50), Theorem 37 implies (i) the existence of
a bound γ in Fk such that xi ≤ xγ+1 for some i ≤ γ, and hence the maximum
length of a sequence with no increasing pair is bounded by γ, and (ii) that γ is
primitive-recursive for fixed k, but Ackermannian when k is part of the input. We
derive complexity bounds for our algorithm.

Lemma 38. The complexity of Algorithm 3 is primitive-recursive for fixed S and L,
and Ackermannian when S and L are part of the input.

Proof. We establish a bound on the number of iterations that Algorithm 3 performs
in the worst case. Let |R| for the transition relation of the monotone Boolean DR
program P denote the the number of valuations that satisfy R. First note that for a
DR transition t and a state v the set of cover predecessors C-Pre(v) obtained with
respect to t contains at most |v| + 1 states. Hence, the partition of a (widening)
candidate q has at most gi = gi−1 × (mi−1 + 1) × |R| vertices at level i, where
mi = |q|+ i denotes the maximum size of a state at level i, or equivalently

gi = |R|i ×
i∏

n=1
(|q|+ n) ≤ |R|i × (|q|+ i)i. (51)

Now observe that value γ from Theorem 37 bounds the maximum height of the tree
Λ(q) rooted in q: |Λ(q)| ≤ g0 + g1 + . . . + gγ . By using estimations |R| ≤ γ and
|q| ≤ γ the bound further simplifies to

|Λ(q)| ≤
γ∑
i=0

gi ≤ γ × |R|γ × (|q|+ γ)γ ≤ 2γ2γ+1. (52)

Treating all candidates q, of which no more than γ can be introduced during widen-
ing, separately then gives the desired space and time upper bound.

The complexity result is not surprising: the coverability problem for the equiv-
alent transfer Petri nets was shown to be Ackermann-complete [164, 162], and Al-
gorithm 1 is well-known to actually operate in Ackermannian time (see, e.g. [72]).
Note also that these complexity results permit no conclusion about practical advan-
tages. In fact, a general comparison of Algorithms 1 and 3 with this aim is doomed
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to fail: there exist instances where the former converges faster, and instances where
the opposite is true. A program that illustrates the former case is the one we have
seen in Figure 15. As can easily be seen from Figures 17 and 19, Algorithm 1 re-
quires 9 iterations—one less than Algorithm 3. In the sequel we will see that in
practice this unfavorable case is very rare.

Space efficiency. We give a preview of our algorithm’s compact operation, by
comparing the widening and backtracking strategy to the classical backward explo-
ration without it (a comprehensive empirical evaluation of the algorithm, including
runtime performance, is presented in Section 6). The example at hand concerns
a mutual exclusion property for an implementation of an Apple Bus protocol in
the FreeBSD operating system (benchmark BSD-AK2; a code fragment was shown
earlier in Figure 1).

Example 39. Figure 22 plots the size of U on the vertical axis against the iterations
of the main while loop. The backtracking nature of the widening approach is evident
from the fact that the curve occasionally drops, namely whenever candidates with
large partitions in their backward expansion were found to be coverable and pruned.

2,310 24,212

3,943

23,472

# iterations

|U | Algorithm 1 (no widening)
Algorithm 3 (with widening)

Figure 22: Impact of widening on the number of iterations and graph vertices — The
target set widening strategy reduces the iteration count for the Apple Bus protocol bench-
mark from 24,212 to 2,310, with a maximum of 3,943 explored vertices compared to 23,472
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(a)

ζ(w)r w

u p>

ζ(w)r w

p

(b)

Figure 23: Consolidation steps — (a) consolidation step if w and u belong to the same
path; (b) consolidation if w and u reside on different paths. Each subfigure shows the
graph before and after the non-minimal vertex u is removed; vertex p was encountered by
backward-expanding w

Proof minimality. Algorithm 3 computes uncoverability proofs that satisfy mini-
mality requirement (iv) of Definition 24: for v 6∈ U and r ∈ U , if v < r then v is
coverable. To see this, note first that r ∈ U and v < r implies that, at some point
during the run of the algorithm, v was explored and therefore an element of U : the
widen routine is called eagerly on the entire downward closure of encountered states
such as r. Since at the end v 6∈ U , state v was removed some time thereafter. This
only happens in the backtrack routine, and only to elements found coverable.

Our current implementation does not satisfy requirement (v) of Definition 24,
stating that the uncoverability proof be “least”: no proper subset satisfies conditions
(i)–(iv) of that definition. It is easy to enforce this requirement, by adding redun-
dancy checks to the set U at certain points where the algorithm modifies it. We
found that this adversely affects the runtime of the algorithm, while the benefit in
reduced proof size does not compensate for this effect. As an example, whenever
the graph is expanded by adding the new cover predecessor p of w, we can purge
vertices u ∈ Λ(ζ(w)) satisfying u > p from the partition of candidate vertex ζ(w)
(together with their subtrees); illustrated in Figure 23.
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4.3 Optimisations

We describe two optimisations of our widening approach. First, we counter the
negative impact of “bad guesses”, i.e. states that turn out coverable by supporting
the search with a parallel engine that aims at reporting coverable states swiftly, and
then show how to obtain a compacter search structure by tracking only vertices that
are minimal with respect to all encountered vertices.

4.3.1 External Coverability Results

The widening employed in Algorithm 3 never adds candidates that have already
been found coverable. The reason is that coverable elements do not contribute to-
wards the coverability decision for larger elements; expanding them would only
thus waste time. The added candidates may, however, be found coverable later,
during the subsequent expansion, in which case we find in retrospect that we have
unnecessarily expanded those states, and now incur extra work to prune them.

The determination of what elements are coverable is, of course, the ultimate
goal of our algorithm, so we cannot assume to have such information when de-
ciding whether to add a potential widening candidate. If, however, we happen to
know that a particular element is coverable, we will not add it to the candidate
set. Such incidental information can come from an external source. We call such
a source a coverability oracle. It must (i) soundly report coverable states, but is
(ii) not required to report all coverable states. (i) suggests that the oracle perform
a forward-directed search, which generates coverability information on the fly. As
a consequence of (ii), our algorithm must be correct even in the presence of unre-
ported coverable elements: they will be pruned during backtracking.

The coverability oracle and Algorithm 3 run in parallel and synchronize via the
set D: the oracle populates this set with coverable elements. Receiving such up-
dates, Algorithm 3 terminates if the input query belongs to D, or otherwise invokes
the backtrack routine on now known-to-be-coverable candidate vertices in regular
intervals to restore disjointness of the sets U and D.

The flexibility afforded by the above two conditions allows us to use any fast
but possibly underapproximating forward-directed search: a random or enumerative
reachability analysis like boom [24] works just as well as generalizations of the
Karp-Miller procedure to broadcast synchronization. In our experiments we use
a version of Karp-Miller that never accelerates across broadcast transitions. As a
result, this version of the procedure is sound for broadcasts but may not terminate.
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In contrast, the standard Karp-Miller procedure is not suitable as an oracle,
since—in the presence of broadcasts—it may return an overapproximation of the
set of coverable states. This can be observed for the strictly asynchronous pro-
gram on the left of Figure 24; the corresponding Karp-Miller tree is shown on the
right. The acceleration that yields (0 | 0ω, 1ω, 2ω) introduces imprecision: due to
the broadcast transition, only one thread can reside in local state c = 2 at any time,
which the algorithm misses. As a result, it falsely reports e.g. state (0 | 2, 2) cov-
erable. Receiving this false report, Algorithm 3 will remove this state from U and
never expand it.

c = 0 c = 1 c = 2

s = 0

s = 1

s = 2

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

t1
t2

t3

t4

(a)

(0 | 0ω)

(2 | 0ω, 1ω)

(0 | 0ω, 1ω, 2ω)

(1 | 0ω, 1ω)

(2 | 0ω)

(1 | 0ω)

(b)

Figure 24: Karp-Miller overapproximates for broadcasts — (a) strictly asynchronous
program with initial thread state (0, 0) and broadcast transition t3; (b) the corresponding
Karp-Miller tree, which contains omega state (0 | 0ω, 1ω, 2ω) (gray) and thus falsely reports
(0 | 2, 2) as coverable

Example 40. Figure 25 presents a preview of how our algorithm benefits from ex-
ternal coverability results, again for the Apple Bus protocol benchmark. The plot
reveals a significant reduction in work related to coverable candidates. The oracle
reports roughly 90% of the coverable candidates ahead of our approach without
oracle.

These observations indicate that while forward directed search may not be com-
plete for checking programs with arbitrary thread numbers, it is good at reporting
coverable states rapidly, which in the context of our algorithm is all that is needed.
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1,444 2,310

2,520

3,943

# iterations

|U | Algorithm 3 (without oracle)
Algorithm 3 (with oracle)

Figure 25: Benefitting from external coverability results — Algorithm 3 without and
with support by a generalization of the Karp-Miller procedure as oracle (cf. Figure 22).
The oracle significantly reduces the work related to coverable candidates, both in terms of
iteration count and maximum graph size

4.3.2 Optimistic Backtracking

Given a minimal unprocessed vertex w, Algorithm 3 steps through those of w’s
cover predecessors that are ζ(w)-minimal and, if new, adds them to the node set U .
In contrast to the classical backward search (Algorithm 1), our widening algorithm
may therefore keep some vertices p that are not minimal in U . This is necessary
because vertices strictly smaller than p may belong to the partition of a bad candi-
date choice that later needs to be rolled back: a non-minimal cover predecessor p
may eventually become minimal in U . We call this strategy pessimistic since it
is effective if the algorithm makes a high number of bad candidate choices. On
the other hand, the worst case scenario for such an approach is that only good (i.e.,
uncoverable) candidates are selected for widening, and thus non-minimal cover pre-
decessors p are kept without ever being used.

We therefore propose an optimistic variant CatOpt of our widening approach
Cat: in agreement with the classical backward search, CatOpt only keeps mini-
mal vertices, i.e. it maintains the invariant minU = U . This reduces the node set
size, but takes more effort to achieve than for the classical backward search: sim-
ply discarding non-minimal predecessors p from U is not enough, for the reason
mentioned in the previous paragraph. Instead, CatOpt (i) maintains, in addition to
the work set, a list of processed vertices in the processing order, and (ii) after each
pruning step, marks as unprocessed those (unpruned) vertices that were discovered
after some pruned vertex. We experimentally compare both variants in Section 6.





5 Implementation

We implemented our abstraction technique from Section 3 in the CEGAR-driven
monabs verifier for C programs, and the two target set widening algorithms (Sec-
tion 4) in the infinite-thread model checker breach, which we use as back-end model
checker for monabs; both tools are available online, see Section 1. We provide a
short summary of both tools.

5.1 The monabs Verifier for Concurrent C Programs

For a non-recursive shared-memory program written in C, monabs automatically
generates and checks a variety of correctness conditions like absence of array bound
errors, division by zero, unlocks of not-locked mutexes and mutexes held by a dif-
ferent thread. Pthread-style thread creation and joining, and synchronisation objects
(mutexes and condition variables) are supported via designated wrapper functions
(function calls are handled by inlining). For mechanisation, monabs implements
counterexample-guided abstraction refinement-style reasoning [15, 126] in a way
that goes back to early work by Das and Dill [51], and has become known as transi-
tion refinement. It is by now standard in CEGAR techniques for sequential software
and, e.g. implemented in Microsoft’s slam verifier [16].

Monotonicity-aware Das/Dill-style refinement. Figure 26 depicts our monoton-
icity-aware Das/Dill-style refinement scheme for multi-threaded programs, which
operates as follows: À With a strictly asynchronous program P and a possibly
empty set of predicates as input, the algorithm constructs a Boolean DR program Ã
that overapproximates P’s existential inter-thread predicate abstraction template P̃ .
Á To facilitate coverability analysis of Ã, which may be hindered due to the loss of
monotonicity, the algorithm restores monotonicity using the closure operator intro-
duced in Section 3.3.3; the obtained program Ãm is monotone, and as suitable as Ã
for verifying or falsifying P’s safety. Â Then Ãm is model checked for unbounded
threads through coverability analysis, which is decidable. Ê,Ë If the abstract pro-
gram is provably safe, or an erroneous execution reported by a coverability checker
reveals a bug in the input program, the loop terminates with “P is safe” and “P is
unsafe”, respectively. Ì Otherwise the erroneous execution found in Ãm and thus
in Ã is an artefact of the abstraction, which is subsequently examined for the exis-
tence of infeasible transitions in the existential abstraction P̃ . Ã If such infeasible
transitions exist, we refine the transition relation appropriately and proceed with the

69
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Multi-threaded
program P

À Approximate P̃ by Ã Á Closure operation Â Coverability check Ãm

Ã Transition refinement Ê P is safe

Ä Adjust predicates Ì Ë P is unsafe

[safe]

[unsafe]

[otherwise][error in P̃] [error in P]

[otherwise]

Figure 26: Monotonicity-aware Das/Dill algorithm — The approach uses two nested
loops: the outer loop adjusts the predicate set, while the inner loop refines the transition
relation on-demand. Our extension applies the monotone closure operator right before cov-
erability checking the abstraction for unbounded threads (highlighted blocks)

more accurate, yet possibly non-monotone, approximation by re-applying the clo-
sure operator. Ä On the other hand, if all transitions are feasible in P̃ we adjust the
predicate set and enter the next iteration by regenerating an overapproximation.

Like any other technique, the loop may in general not terminate since checking
safety in strictly asynchronous programs, run by even a single thread, is undecid-
able [170]. Nonetheless, the method can successfully prove properties for a large
number of realistic programs. In fact, it is not difficult to prove that the algorithm is
(i) complete if in the input program every thread’s memory is finite, and (ii) may not
halt once we permit infinite-domain variables, yet terminate normally otherwise (no
false positives). Finally, for non-monotone DR programs as input (see Section 3.4),
the algorithm may not halt or terminate abnormally∗.

Design decisions. We briefly summarise the design decisions monabs makes:
À Medium-precision Cartesian abstractions [20] with cube length 3 are used to
approximate the existential inter-thread predicate abstraction (cube enumeration is
done with respect to abstract shared, active- and passive-thread variables). Á The

∗Abnormal termination occurs whenever the model checker reports an erroneous execution that
is feasible in Ãm but not in Ã (Theorem 21 guarantees safety-equivalence only if P is monotone).
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abstract monotone closure operation is performed symbolically. Â The monotone
abstraction is model checked for unbounded threads with the optimistic variant of
our widening approach sketched in Section 4.3.2 and implemented in our breach
tool (see details below). Ã Constraints on passive-thread variables are generated
during transition refinement only for transitions that are not spurious for all valua-
tions of passive-thread variables. Ä Predicates are discovered by weakest precondi-
tion propagation.

Preparing input programs. A software engineering practice that has nowadays
become standard in programming [80] is the specification of error conditions via
assertion predicates. These assertions allow programmers to instrument their code
with test probes indicating intended behaviour. The C language defines a header
file assert.h, which provides the macro assert(pred) for this purpose. When a
statement like assert(p! = NULL) is executed, the execution is aborted with an er-
ror message if the condition evaluates to false, e.g. if p is NULL in the previous case.
The monabs verifer can check the correctness of such code-annotations statically,
i.e. without explicitly executing the code. More specifically, monabs checks that
such assertions hold for any nondeterministic choice that the executing threads as
well as the scheduler can make.

Sources for nondeterministic input in monabs are volatile-qualified objects, un-
specified and indeterminate values, and several build-in library functions (nonde-
terminism can also be used to overapproximate the program behaviour). To restrict
nondeterministic choices made by a program, monabs provides the built-in func-
tion __CPROVER_assume(pred). As an example, if we wish to model a function
that nondeterministically returns a value between 50 and 60, this can be achieved
as shown in Figure 27. Although monabs performs counterexample-guided ab-
straction refinement and hence can prove many program fully automatically, it can
sometimes be useful to specify predicates manually. This can be achieved using the
following built-in functions:

(i) __CPROVER_predicate(cond) adds user-defined predicates;
(ii) __CPROVER_parameter_predicates() adds call-site parameter predicates;

(iii) __CPROVER_return_predicates() adds call-site relating return value pred-
icates.

In addition to these sequential primitives, monabs supports the following con-
currency features:



72 Implementation

unsigned int nondet_uint(); //undefined functions implement nondeterministic choice

unsigned int get_range() {
unsigned int r=nondet_uint();
__CPROVER_assume(r>=50 && r<=60);
return r; }

Figure 27: Modelling nondeterminism in monabs — The function nondeterministically
returns a value between 50 and 60; the side-effect of __CPROVER_assume(pred) in monabs
can equivalently be defined as ((pred)||(exit(0), 1)) in the C language

(i) Magic labels in the form of __CPROVER_ASYNC_1, __CPROVER_ASYNC_2 etc.
to dynamically spawn new threads.

(ii) __CPROVER_atomic_begin() and __CPROVER_atomic_end() functions to
declare transactions with strong atomicity semantics, i.e. executions of trans-
actions cannot interleave with non-transactional code [137].

(iii) Magic label __CPROVER_passive_broadcast to mark statements that shall
be evaluated over passive- instead of active-thread variables.∗

(iv) Storage-class specifier _Thread_local for declaring local variables at glo-
bal-scope.

The test-and-set lock shown in Figure 28 demonstrates how to use some of these
features. The lock employs a busy-wait to access the Boolean flag LOCK that indi-
cates whether the lock is already held by a thread. Notice how

(i) the keyword _Thread_local is used to define the variable LOCK as local,
(ii) an unbounded number of threads is spawned in the main function, the starting

point of execution of the single initial thread, by repeatedly calling function
thr1 from the magic label __CPROVER_ASYNC_1, and

(iii) atomicity of the test-and-set instruction is modelled by the enclosing calls
to functions __CPROVER_atomic_begin() and __CPROVER_atomic_end(),
i.e. no thread can interrupt the execution of the comma-separated assignments
in the macro.

Figure 29 illustrates how broadcasts can be modelled using an instruction with the
special label __CPROVER_passive_broadcast.

∗If __CPROVER_passive_broadcast is used, the program gives rise to a monotone dual-refer-
ence program rather than a strictly asynchronous program; see also Section 3.4.
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#define unlocked 0
#define locked 1
volatile int LOCK = unlocked; //shared lock
_Thread_local int delay = 1, COND; //local

variable

#define TAS(val,old) { \
__CPROVER_atomic_begin(); \
old = val, val = 1; \ //executed atomically
__CPROVER_atomic_end(); }

void acquire_lock(){
TAS(LOCK,COND);
while(COND == locked){

pause(delay);
if(delay∗2 > delay)

delay ∗= 2;
TAS(LOCK,COND); }

assert(COND != LOCK); }

void release_lock(){
assert(LOCK != unlocked); //check for

unlocks of not−locked mutexes
LOCK = unlocked; }

int c = 0; //auxiliary shared variable
void thr1(){

while(1){
acquire_lock(); //enter the critical section
c++;
assert(c == 1); //can the critical section be

accessed by two or more threads?
c−−;
release_lock(); }} //leave the critical

section

int main(){
while(1) {

__CPROVER_ASYNC_1: thr1(); }}

Figure 28: Test-and-set lock with exponential backoff [140] — Each thread repeatedly
calls the TAS instruction in an attempt to flip the flag LOCK from false to true, indicating
that acquisition of the lock has been achieved; the lock is released by resetting the flag
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_Bool s = false; //shared flag
_Thread_local _Bool l = false; //local flag

void thr(){
assert(!l || s);
s = s || true;
__CPROVER_passive_broadcast: l = true; } //execute assignment ‘‘mP =true’’, i.e. set

variable l of all passive thread to true

void main(){
while(1) __CPROVER_ASYNC_01: thr(); }

Figure 29: Modelling broadcasts — The local flag l indicates whether a thread has been
broadcast to (l = true) or not (l = false); the program assertion cannot be violated because
an attempt to set the flags passive-thread flags is preceded by the flip of s from false to true

Command line interface. For instructions on how to use monabs, execute:

monabs −−help

For example to check the user-specified assertions in the example in Figure 28, file
tsl.c say, with unbounded threads execute

monabs −−build−tts −−concurrency tsl.c

The first option activates the explicit monotone dual-reference program language
interface extension of monabs, while the second one selects our monotonicity-
aware Das/Dill algorithm (Figure 26) and hence enables the support for the above
concurrency primitives. In total, monabs requires 4 CEGAR iterations to cer-
tify program safety for an unbounded number of executing threads. In particular
four shared, one local and one single-thread predicates are discovered: predicates
c == 1, LOCK == false and COND == LOCK are added initially, while c == 0,
LOCK == true and COND == 1 are added in the last iteration (the two remaining
iterations give rise to 3 transition refinements).

Cartesian abstraction with maximum cube length approximation [20] can be
enabled by passing option −−abstractor cartesian; the maximum length of
cubes can then be adjusted via option −−max−cube−length (default: 3).
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〈#S〉 ::= ‘1’ | ‘2’ | . . .

〈#L〉 ::= ‘1’ | ‘2’ | . . .

〈s〉 ::= ‘0’ | ‘1’ | . . . | 〈#S〉
〈l〉 ::= ‘0’ | ‘1’ | . . . | 〈#L〉

〈trans〉 ::= 〈s〉 〈l〉 ‘->’ 〈s〉 〈l〉 [〈ptrans〉]*
〈ptrans〉 ::= 〈l〉 ‘~>’ 〈l〉

〈prog〉 ::= 〈#S〉 〈#L〉 [〈trans〉]*

Figure 30: The breach input language: EMDR programs — Syntax of explicit mono-
tone dual-reference programs

5.2 The Infinite-Thread Model Checker breach

The infinite-state model checker breach implements Algorithm 3 and the optimistic
variant as described in Section 4.3.2, equipped with an incomplete generalisation
of the Karp-Miller procedure as coverability oracle. The backward search runs in
parallel with the oracle, which reports coverability results to a shared data pool that
the backward search taps into at regular intervals.

In order to measure the impact of our new approach, the widening and oracle
can be deactivated, turning breach into the refined version of the classical backward
search (Algorithm 1). As a trade-off between efficiency and proof compaction,
breach does by default not add candidate vertices that involve two threads or more.
To store and manipulate upward-closed sets, breach uses a proprietary tree-based
data structure for Algorithm 3, while hash tables are used in the optimistic variant.
In the latter case, we implement the time-critical test for upward-closed set inclusion
by standard set inclusion tests on covered states.

Input format. As input, breach takes explicit monotone dual-reference (EMDR)
programs as defined by the grammar in Figure 30; this format is also generated by
monabs in step Á of our refinement algorithm shown in Figure 26.

An EMDR program declares the total number of shared and local states, fol-
lowed by a sequence of transitions. The first component of a transition speci-
fies a designated update of the shared and active-thread local state, i.e. in part
〈s〉 〈l〉 ‘->’ 〈s〉 〈l〉 of 〈trans〉, while the rest lists simultaneously executed passive-
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Abstract transition

b[1] b[1]P b[1]′ b[1]′P EMDR transition

false false true false
0 0 -> 0 1 0 ~> 0 0 ~> 1 1 ~> 0false false true true

false true true false

true false true false
0 1 -> 0 1true true true true

Table 6: DR transitions and their encoding — Transitions that modify the shared and
active-thread state in the same way (delimited by a horizontal line) are represented by a
single transition in the EMDR program

thread local state updates. A local state ‘l’, say, that does not appear on the left-hand
side of any of the rules in the second part is subject to special treatment: passive
threads residing in such states are not affected by the transition, i.e. they are treated
as if ‘l~>l’ appeared in the list. This treatment ensures that every EMDR pro-
gram characterises a monotone dual-reference program, and in particular one that is
strictly asynchronous if all 〈ptrans〉-parts are empty.

Table 6 illustrates how the format relates to our model introduced in Section 3.2.1.

Command line interface. For instructions on how to use breach, run

breach −−help

For example to check whether a program state in ↑(0 | 16, 16) can be reached in
the explicit monotone dual-reference program obtained for the ticket lock (shown
in Figure 31), file ticket.EMDR say, from an initial state in ↓(0 | 2, 2, . . .) execute

breach −−init ”0/2” −−target ”0|16, 16” ticket.EMDR

The argument to the first option indicates that an unbounded number of threads
initially reside in local state 2, while the second argument 0|16, 16 specifies the
minimal element of the target states. breach can generate the forward search tree
and the backward graph in the form of .dot files that serve as input for the graphviz
package [81].
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#init 0/2
#target 1|25,25
2 28
0 0->0 8 0~>0 0~>4 2~>27 3~>27 4~>0 4~>4 6~>27 7~>27 8~>8 8~>12 10~>27 11~>27 12~>8 12~>12 14~>27

15~>27 16~>16 16~>20 18~>27 19~>27 20~>16 20~>20 22~>27 23~>27
0 0->0 9 0~>0 0~>4 2~>27 3~>27 5~>1 6~>27 7~>27 8~>8 8~>12 10~>27 11~>27 13~>9 14~>27 15~>27 16~>16

16~>20 18~>27 19~>27 21~>17 22~>27 23~>27
0 0->0 10 0~>2 0~>6 1~>3 2~>27 3~>27 4~>2 4~>6 5~>7 6~>27 7~>27 8~>10 8~>14 9~>11 10~>27 11~>27

12~>10 12~>14 13~>15 14~>27 15~>27 16~>18 16~>22 17~>19 18~>27 19~>27 20~>18 20~>22 21~>23
22~>27 23~>27

0 0->0 11 0~>2 0~>6 1~>3 2~>27 3~>27 4~>6 5~>3 6~>27 7~>27 8~>10 8~>14 9~>11 10~>27 11~>27 12~>14
13~>11 14~>27 15~>27 16~>18 16~>22 17~>19 18~>27 19~>27 20~>22 21~>19 22~>27 23~>27

0 0->0 12 0~>0 0~>4 2~>27 3~>27 6~>27 7~>27 8~>8 8~>12 10~>27 11~>27 14~>27 15~>27 16~>16 16~>20
18~>27 19~>27 22~>27 23~>27

0 0->0 13 0~>0 0~>4 1~>27 2~>27 3~>27 5~>27 6~>27 7~>27 8~>8 8~>12 9~>27 10~>27 11~>27 13~>27 14~>27
15~>27 16~>16 16~>20 17~>27 18~>27 19~>27 21~>27 22~>27 23~>27

0 1->0 8 1~>1 1~>5 2~>27 3~>27 4~>0 4~>4 5~>27 6~>27 7~>27 9~>9 9~>13 10~>27 11~>27 12~>8 12~>12
13~>27 14~>27 15~>27 17~>17 17~>21 18~>27 19~>27 20~>16 20~>20 21~>27 22~>27 23~>27

0 1->0 9 2~>27 3~>27 5~>27 6~>27 7~>27 10~>27 11~>27 13~>27 14~>27 15~>27 18~>27 19~>27 21~>27 22~>27
23~>27

0 1->0 10 0~>2 1~>3 1~>7 2~>27 3~>27 4~>2 4~>6 5~>27 6~>27 7~>27 8~>10 9~>11 9~>15 10~>27 11~>27
12~>10 12~>14 13~>27 14~>27 15~>27 16~>18 17~>19 17~>23 18~>27 19~>27 20~>18 20~>22 21~>27
22~>27 23~>27

0 1->0 11 0~>2 1~>3 2~>27 3~>27 4~>6 5~>27 6~>27 7~>27 8~>10 9~>11 10~>27 11~>27 12~>14 13~>27 14~>27
15~>27 16~>18 17~>19 18~>27 19~>27 20~>22 21~>27 22~>27 23~>27

0 1->0 12 1~>1 1~>5 2~>27 3~>27 5~>27 6~>27 7~>27 9~>9 9~>13 10~>27 11~>27 13~>27 14~>27 15~>27
17~>17 17~>21 18~>27 19~>27 21~>27 22~>27 23~>27

0 2->0 14 0~>27 1~>27 2~>2 2~>6 4~>27 5~>27 8~>27 9~>27 10~>10 10~>14 12~>27 13~>27 16~>27 17~>27
18~>18 18~>22 20~>27 21~>27

0 2->0 15 0~>27 1~>27 2~>2 2~>6 3~>27 4~>27 5~>27 7~>27 8~>27 9~>27 10~>10 10~>14 11~>27 12~>27
13~>27 15~>27 16~>27 17~>27 18~>18 18~>22 19~>27 20~>27 21~>27 23~>27

0 3->0 14 0~>27 1~>27 3~>3 3~>7 4~>27 5~>27 7~>27 8~>27 9~>27 11~>11 11~>15 12~>27 13~>27 15~>27
16~>27 17~>27 19~>19 19~>23 20~>27 21~>27 23~>27

0 4->0 8 2~>27 3~>27 4~>0 4~>4 6~>27 7~>27 10~>27 11~>27 12~>8 12~>12 14~>27 15~>27 18~>27 19~>27
20~>16 20~>20 22~>27 23~>27

0 4->0 9 2~>27 3~>27 5~>1 6~>27 7~>27 10~>27 11~>27 13~>9 14~>27 15~>27 18~>27 19~>27 21~>17 22~>27
23~>27

0 4->0 10 0~>2 1~>3 2~>27 3~>27 4~>2 4~>6 5~>7 6~>27 7~>27 8~>10 9~>11 10~>27 11~>27 12~>10 12~>14
13~>15 14~>27 15~>27 16~>18 17~>19 18~>27 19~>27 20~>18 20~>22 21~>23 22~>27 23~>27

Figure 31: Ticket lock abstraction — To map variable valuations to integers, we pick
up our notation from the end of Section 3.1.2, and furthermore associate a local state
(`i/b[1]b[2]b[3]) with value 8(i−1)+4b[1]+2b[2]+1b[3], e.g. (`1/010) = 14. The initial
state is (0 | 2, 2), and the set of error states is given by {(0 | i, j) : i, j ∈ {16, . . . , 23}}
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0 4->0 11 0~>2 1~>3 2~>27 3~>27 4~>6 5~>3 6~>27 7~>27 8~>10 9~>11 10~>27 11~>27 12~>14 13~>11 14~>27
15~>27 16~>18 17~>19 18~>27 19~>27 20~>22 21~>19 22~>27 23~>27

0 4->0 12 2~>27 3~>27 6~>27 7~>27 10~>27 11~>27 14~>27 15~>27 18~>27 19~>27 22~>27 23~>27
0 4->0 13 1~>27 2~>27 3~>27 5~>27 6~>27 7~>27 9~>27 10~>27 11~>27 13~>27 14~>27 15~>27 17~>27 18~>27

19~>27 21~>27 22~>27 23~>27
0 4->0 14 0~>2 1~>3 2~>27 3~>27 4~>6 5~>7 6~>27 7~>27 8~>10 9~>11 10~>27 11~>27 12~>14 13~>15 14~>27

15~>27 16~>18 17~>19 18~>27 19~>27 20~>22 21~>23 22~>27 23~>27
0 4->0 15 0~>2 1~>27 2~>27 3~>27 4~>6 5~>27 6~>27 7~>27 8~>10 9~>27 10~>27 11~>27 12~>14 13~>27

14~>27 15~>27 16~>18 17~>27 18~>27 19~>27 20~>22 21~>27 22~>27 23~>27
0 5->0 8 1~>27 2~>27 3~>27 4~>0 4~>4 5~>27 6~>27 7~>27 9~>27 10~>27 11~>27 12~>8 12~>12 13~>27 14~>27

15~>27 17~>27 18~>27 19~>27 20~>16 20~>20 21~>27 22~>27 23~>27
0 5->0 10 0~>2 1~>27 2~>27 3~>27 4~>2 4~>6 5~>27 6~>27 7~>27 8~>10 9~>27 10~>27 11~>27 12~>10 12~>14

13~>27 14~>27 15~>27 16~>18 17~>27 18~>27 19~>27 20~>18 20~>22 21~>27 22~>27 23~>27
0 5->0 12 1~>27 2~>27 3~>27 5~>27 6~>27 7~>27 9~>27 10~>27 11~>27 13~>27 14~>27 15~>27 17~>27 18~>27

19~>27 21~>27 22~>27 23~>27
0 5->0 13 1~>27 2~>27 3~>27 5~>27 6~>27 7~>27 9~>27 10~>27 11~>27 13~>27 14~>27 15~>27 17~>27 18~>27

19~>27 21~>27 22~>27 23~>27
0 5->0 14 0~>2 1~>27 2~>27 3~>27 4~>6 5~>27 6~>27 7~>27 8~>10 9~>27 10~>27 11~>27 12~>14 13~>27

14~>27 15~>27 16~>18 17~>27 18~>27 19~>27 20~>22 21~>27 22~>27 23~>27
0 5->0 15 0~>2 1~>27 2~>27 3~>27 4~>6 5~>27 6~>27 7~>27 8~>10 9~>27 10~>27 11~>27 12~>14 13~>27

14~>27 15~>27 16~>18 17~>27 18~>27 19~>27 20~>22 21~>27 22~>27 23~>27
0 6->0 14 0~>27 1~>27 4~>27 5~>27 8~>27 9~>27 12~>27 13~>27 16~>27 17~>27 20~>27 21~>27
0 6->0 15 0~>27 1~>27 3~>27 4~>27 5~>27 7~>27 8~>27 9~>27 11~>27 12~>27 13~>27 15~>27 16~>27 17~>27

19~>27 20~>27 21~>27 23~>27
0 7->0 14 0~>27 1~>27 3~>27 4~>27 5~>27 7~>27 8~>27 9~>27 11~>27 12~>27 13~>27 15~>27 16~>27 17~>27

19~>27 20~>27 21~>27 23~>27
0 9->0 17 2~>27 3~>27 5~>27 6~>27 7~>27 10~>27 11~>27 13~>27 14~>27 15~>27 18~>27 19~>27 21~>27

22~>27 23~>27
0 11->0 19 0~>27 1~>27 4~>27 5~>27 7~>27 8~>27 9~>27 12~>27 13~>27 15~>27 16~>27 17~>27 20~>27 21~>27

23~>27
0 13->0 21 1~>27 2~>27 3~>27 5~>27 6~>27 7~>27 9~>27 10~>27 11~>27 13~>27 14~>27 15~>27 17~>27 18~>27

19~>27 21~>27 22~>27 23~>27
0 15->0 23 0~>27 1~>27 3~>27 4~>27 5~>27 7~>27 8~>27 9~>27 11~>27 12~>27 13~>27 15~>27 16~>27 17~>27

19~>27 20~>27 21~>27 23~>27
0 16->0 26 0~>0 0~>1 1~>0 2~>27 3~>27 4~>4 4~>5 5~>4 6~>27 7~>27 8~>8 8~>9 9~>8 10~>27 11~>27 12~>12

12~>13 13~>12 14~>27 15~>27 16~>16 16~>17 17~>16 18~>27 19~>27 20~>20 20~>21 21~>20 22~>27
23~>27

0 16->1 25 16~>25 17~>25 20~>25 21~>25
0 17->0 26 0~>0 0~>1 1~>0 2~>27 3~>27 4~>4 4~>5 5~>27 6~>27 7~>27 8~>8 8~>9 9~>8 10~>27 11~>27 12~>12

12~>13 13~>27 14~>27 15~>27 16~>16 16~>17 17~>16 18~>27 19~>27 20~>20 20~>21 21~>27 22~>27
23~>27

0 17->1 25 16~>25 17~>25 20~>25
0 18->0 26 0~>27 1~>27 2~>2 2~>3 3~>2 4~>27 5~>27 6~>6 6~>7 7~>6 8~>27 9~>27 10~>10 10~>11 11~>10

12~>27 13~>27 14~>14 14~>15 15~>14 16~>27 17~>27 18~>18 18~>19 19~>18 20~>27 21~>27 22~>22
22~>23 23~>22

0 18->1 25 18~>25 19~>25 22~>25 23~>25
0 19->0 26 0~>27 1~>27 2~>2 2~>3 3~>2 4~>27 5~>27 6~>6 6~>7 7~>27 8~>27 9~>27 10~>10 10~>11 11~>10

12~>27 13~>27 14~>14 14~>15 15~>27 16~>27 17~>27 18~>18 18~>19 19~>18 20~>27 21~>27 22~>22
22~>23 23~>27

0 19->1 25 18~>25 19~>25 22~>25
0 20->0 26 0~>0 0~>1 1~>0 2~>27 3~>27 4~>4 4~>5 5~>4 6~>27 7~>27 8~>8 8~>9 9~>8 10~>27 11~>27 12~>12

12~>13 13~>12 14~>27 15~>27 16~>16 16~>17 17~>16 18~>27 19~>27 20~>20 20~>21 21~>20 22~>27
23~>27

0 20->1 25 16~>25 17~>25 20~>25 21~>25
0 21->0 26 0~>0 0~>1 1~>27 2~>27 3~>27 4~>4 4~>5 5~>27 6~>27 7~>27 8~>8 8~>9 9~>27 10~>27 11~>27

12~>12 12~>13 13~>27 14~>27 15~>27 16~>16 16~>17 17~>27 18~>27 19~>27 20~>20 20~>21 21~>27
22~>27 23~>27

0 21->1 25 16~>25 20~>25
0 22->0 26 0~>27 1~>27 2~>2 2~>3 3~>2 4~>27 5~>27 6~>6 6~>7 7~>6 8~>27 9~>27 10~>10 10~>11 11~>10

12~>27 13~>27 14~>14 14~>15 15~>14 16~>27 17~>27 18~>18 18~>19 19~>18 20~>27 21~>27 22~>22
22~>23 23~>22

0 22->1 25 18~>25 19~>25 22~>25 23~>25
0 23->0 26 0~>27 1~>27 2~>2 2~>3 3~>27 4~>27 5~>27 6~>6 6~>7 7~>27 8~>27 9~>27 10~>10 10~>11 11~>27

12~>27 13~>27 14~>14 14~>15 15~>27 16~>27 17~>27 18~>18 18~>19 19~>27 20~>27 21~>27 22~>22
22~>23 23~>27

0 23->1 25 18~>25 22~>25

Figure 31 (continued)
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Implementation details. The breach tool is implemented in C++ 11 [113] and
was developed using Microsoft’s Visual Studio IDE; in addition, we provide a
makefile for Linux and Mac OS (gcc ≥ 4.7 required). The source code, as well
as binaries for Windows, Linux and Mac OS are available online (see Section 1 for
the link). In total the project consists of 37 files (8880 lines of code with a comment
ratio of 23.0%), 43 classes (avg. 5 methods per class) and 120 functions. The core
algorithm of the optimistic variant as described in Section 4.3.2 without data struc-
tures has 638 lines (comment ratio: 16.0%) and 11 functions, while the pessimistic
variant (Algorithm 3) is slightly larger: 1192 lines with comment ratio 28.5% and
24 functions.

The following libraries are used by breach: (i) Standard Template Library, no-
tably TR1’s unordered_set hash tables; (ii) Combination and Permutation library
by Howard Hinnant [31], a library to iterate over combinations or permutations
of a set of objects (it is used to implement our upward-closed set data structure);
(iii) Boost C++ library, a collection of free, peer-reviewed libraries. More specifi-
cally, we use these Boost libraries: a) DateTime for time-spent profiling of different
program blocks, b) Filesystem for portable file manipulation and path handling,
c) ProgramOptions to read user input from the command line, d) Thread for mul-
tiple threads of execution (one for the backward-directed search and one for the
oracle), e) Tokenizer to parse the input programs and f) Bimap, a bidirectional
map library, to implement our priority queues.

We employ the following testing methods to improve software quality: (i) Ran-
dom testing to check functional correctness; (ii) Regression testing to ensure that
code change do not reintroduce previously known bugs (58 regression tests at the
date of writing). Finally, we used Intel’s VTune∗ profiler for performance analysis
and tuning, and Intel’s ParallelInspector tool to do memory and thread checking
(memory leaks, dangling pointers, uninitialised variables, deadlocks etc.).

∗http://software.intel.com/en-us/intel-vtune-amplifier-xe

http://software.intel.com/en-us/intel-vtune-amplifier-xe




6 Experimental Evaluation

In this section, we evaluate our program verifier monabs and the (back-end) model
checker breach on a set of 37 non-recursive shared-memory C programs. Sec-
tion 6.1 provides a detailed performance analysis of monabs. A comparison of
monabs and breach against existing techniques is given in Section 6.2 and Sec-
tion 6.3, respectively.

The experiments are performed on a 3 GHz Intel Xeon machine with 20 GB
memory, running 64-bit Linux, with a timeout of 30 minutes. We first provide an
overview of the benchmark set.

Benchmark selection. For experimental evaluation, we selected a representative
set of multi-threaded C programs with the following characteristics: (i) parame-
terised and non-parameterised programs; (ii) programs that exhibit a variety of syn-
chronisation primitives; (iii) programs with intricate functional properties such as
the success of concurrent push operations on a stack, as well as more control-driven
properties such as to establish mutual exclusion; (iv) programs that exhibit basic
C features including flow of control primitives (if, while, switch, break, goto
etc.), arithmetical, logical and bit-level operators (+, ||, | etc.), assignments and
(non-recursive) function calls, arrays, and enumerated (enum) types.

Due to front-end limitations of monabs, we do not consider programs writ-
ten in other languages than C, and furthermore focus on intricate concurrency as-
pects, rather than intricate language features such as pointers. Finally, we avoid
to use too closely related programs, and exclude those with EMDR abstractions of
10 megabyte or more. Note that the latter restriction implicitly limits the number
predicates that can be used in a proof (this restriction can be avoided by applying
breach on symbolic EMDR encodings, which is one aspect of future work; see the
discussion in Section 8 on this subject). For example, our approach cannot handle
benchmark QRCU-4 from [96], which requires more than 10 predicates.

With this focus in mind, we finally selected 37 programs from these sources:
(i) classical text books on concurrency (e.g. [154] and [7]), (ii) open source projects
such as [9], (iii) Unix like operating system code [131], (iv) classical mutex algo-
rithms including [140, 155, 166]), and (v) recent works on the automated verifica-
tion of multi-threaded programs such as [96, 71, 95].

81
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Program benchmarks. In the 37 non-recursive concurrent C programs we use,
threads communicate through shared-memory and synchronise via locks, or in a
lock-free manner via atomic compare-and-swap instructions, and condition vari-
ables. For each program, we verify a safety property, specified as an assertion. To
measure performance for unbounded-thread verification, we chose primarily asser-
tions that hold. In total, the programs comprise 4583 lines of code, featuring 2.5
shared and 4.6 local variables on average. Five programs use broadcast operations
on condition variables; the programs are∗:

1–10: thread-safe algorithms ([154, 7, 9]): atomic counters (1–2); find the max-
imum element in an array (3–6); concurrent pseudo-random number gen-
erators (7–8); stack data structure with concurrent pushes and pops (9–10)
(STACK-C is adapted from an Open Source IBM implementation). For each
type, we consider a version with Locks, and a lock-free variant with Compare-
and-swap primitives (indicated in Table 7 by the suffix).

11–15: OS code ([131]): code from the FreeBSD (11–12), NetBSD (13) and So-
laris (14) open-source operating systems that is related to RDMA ZFS file
system support and interface/system monitoring (multiple kernel threads are
simultaneously unblocked via condition variables); Linux driver skeleton that
mimics concurrent open, close and ioctl calls (15).

16–26: mutex algorithms ([77, 140, 155, 166]): multiple locks control access to a
shared resource (16–18); the ticket algorithm as in Figure 5 (19); classical
algorithms due to Szymanski, Peterson and Dekker (20–22); a readers-writer
and timed mutex (23–24); high-contention ticket algorithm with proportional
backoff (25); test-and-set lock (26).

27–32: misc ([58, 78, 135, 118]): two programs that require single-thread predi-
cates (27-28); threads synchronise via broadcasts (29); a program amenable to
thread-modular verification (30); a vulnerability fix from the Mozilla reposi-
tory (31); a program used to illustrate incremental coverability proofs (32).

33–37: pthread programs ([118]): several programs that use the C POSIX Threads
library.

Of these, 34 were used for evaluation purposes in prior work [58, 118, 96, 71, 95].
The remaining programs are 25, 29 and 32, namely (i) a variant of the ticket algo-
rithm, where each thread acquires the lock infinitely often, and a thread waits the

∗They are available online (see Section 1 for the link), and were submitted as concurrency bench-
marks to the 3rd International Competition on Software Verification held at TACAS 2014 in Grenoble,
France.
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longer to check if access is granted, the more distant the served ticket is; (ii) a simple
program, where a thread can control a local Boolean variables of the passive threads;
(iii) our running example from Section 4. Most programs contain procedures ex-
ecuted by an arbitrary number of threads, which are dynamically spawned by the
(single) initial thread. Exceptions are 20–24 and 31 from [95], which are designed
for a fixed thread count of two; the program behaviour stabilises for n ≥ 2. These
examples do not even exploit the power of our approach to deal with unbounded
threads.

Program assertions. We briefly describe the properties we check:

1–10: thread-safe algorithms: each call to the increment function strictly increases
the counter (1–2); a function returns the maximum element of an array (3–6);
two subsequent calls to the generator never yield the same value (7–8); after
a push, the stack is non-empty (9–10).

11–15: OS code: routines are mutually accessed and a condition holds after broad-
casts (11–14); the device’s use counter is zero when it is unregistered (15).

16–26: mutex algorithms: mutual exclusion is correctly established (16–26).
27–32: misc: a shared and a local variable are equal after some local computation

(27–28); a property that depends on a condition variable (29); a shared flag is
not reset by another thread in a certain code region (30); two operations are
executed in the correct order (31); the value two is never assigned to a shared
variable (32).

33–37: pthread programs: values in a triple nested loop remain in a certain range
(33); two variables equal each other (34); a shared variable accessed concur-
rently by multiple functions remains in a certain range (35–37).

6.1 Detailed Evaluation of monabs

Table 7 shows detailed experimental results obtained for monabs. Within 187s and
at most 8 abstraction-refinement iterations, monabs succeeds in certifying correct-
ness of all 34 safe programs for arbitrary thread counts, and reporting counterex-
amples for the three remaining buggy instances BOOP, BS-LOOP and PTHREAD.
As usual, the model-checking time dominates the total run time. The cost of the
monotone closure operation is negligible and not shown.

Shared and single-thread predicates were required to succeed in 28 of the 37
cases, and inter-thread predicates for the two ticket lock algorithms. Roughly every
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other benchmark exhibits abstractions that are “truly DR”, i.e. they permit no strictly
asynchronous encoding. As a consequence, existing model checkers for concurrent
software become inapplicable. In five of these cases, passive-thread variable updates
are used in the input program to model broadcast operations. These are then passed
on to the abstraction via local predicates: programs with a mark in column Cnd.
For the other 11, originally strictly asynchronous programs, strict asynchrony is lost
after inter- or non-local single-thread predicates are discovered during refinement:
programs with IT 6= 0 or ST 6= L. Only 5 programs whose abstraction is “truly” DR
come out monotone; the clear majority, namely 11, require the application of the
closure operation from Definition 20 in order to be passed to the back-end model
checker. Single-thread predicates of the form s = l are, e.g., required to track the
success of the compare-and-swap primitive for programs INC-C, MAXSIMP-C and
MAXOPT-C. The bug in BOOP can be detected in depth 45 with at least 3 threads
and involves 4 context switches, that in BS-LOOP manifests in depth 17 and even
with a single executing thread, and that in PTHREAD emerges in depth 56 with at
least 3 threads and 5 context switches.

The results also demonstrate the adequacy of our predicate language: banning
any one of the predicate types supported by our approach renders some of our C pro-
grams unprovable. On the other hand, we are not aware of any program that would
require an even richer predicate language, underpinning the claim made in [44] that
“properties involving three or more [threads] at a time are rare”.

6.2 Comparison with symmpa and cream

Existing tools for source code programs with unbounded threads, such as duet, are
insufficient for our benchmarks; Section 7 has details. We therefore evaluate at
which point the search for monotone proofs pays off compared to checking increas-
ing constant thread counts. We do so using three recent fixed-thread approaches:

symmpa ([58, 57]): predicate abstraction for fixed threads.
cream−rely ([95, 94]): cream with rely-guarantee proofs.
cream−owicki ([96, 94]): cream with Owicki-Gries proofs.

Front-end capabilities of cream and symmpa are similar to that of monabs, facil-
itating a comparison. A notable difference is that cream relies on natural integers
for representing numeric C types, whereas monabs and symmpa support machine
integers. Neither cream nor symmpa support broadcasts, as used by 5 of our bench-
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n = 2; n = 3; n = 4; n = 5 (other tool); n =∞ (monabs)

5 10 15 20 25 30 35
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symmpa vs monabs
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cream−rely vs monabs

5 10 15 20 25 30 35

cream−owicki vs monabs

Figure 32: Comparison with fixed-thread tools — Cactus plots comparing monabs with
three recent fixed-thread proof methods; Table 8 provides the per-program run times

marks, which is why we instead apply them to slightly modified and broadcast-free
overapproximations.

Figure 32 plots the fraction of programs checked successfully by different meth-
ods for given thread numbers. Each subfigure shows five curves: one for monabs
and unbounded thread count (n = ∞), and four corresponding to the respec-
tive fixed-thread tool with n = 2, . . . , 5 concurrent threads: an entry of the form
(k, t) shows the time t it took to solve the k easiest (for the given method) of the
C programs. The results reveal the superiority of our unbounded approach over
each of the fixed-thread verifiers, even for trivial thread counts. For symmpa and
cream the proof time grows exponentially with the thread count. The single time-
out for symmpa with n = 2 is for the high-contention variant of the ticket lock
(TICKET-HC): symmpa is unable to track the uniqueness of a ticket, and as a result
times out while attempting to enumerate the possible ticket values. For the sim-
pler variant, where every thread acquires and releases the lock only once (TICKET),
symmpa succeeds for up to 3 threads.

6.3 Comparison with Coverability Checkers

To compare with existing coverability checkers, we focus on programs with strictly
asynchronous abstractions (no mark in column “DR?” of Table 7), and the OS code
(benchmarks 11–15), i.e. 25 of the 37 C programs in total. The monabs verifier
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Figure 33: Comparison for CEGAR abstractions — Cactus plot comparing our imple-
mentation of the target set widening algorithm in the breach tool with existing coverability
methods. An entry of the form (k, t) for some curve shows the time t it took to solve
the k easiest—for the method associated with that curve—predicate-abstracted C programs
(the order thus varies across methods). Four benchmarks feature transfer transitions, namely
those obtained from programs with condition variables (cf. Table 7). Tools supporting trans-
fers are marked ∗. The curves for the other tools start at k = 5, skipping the four transfer
benchmarks

requires 59 CEGAR iterations until the abstractions for this set of programs sta-
bilise; e.g. 3 iterations are necessary to prove the program in Figure 15 correct
(MINUCP-EX). Because we use a preliminary version of monabs this value differs
from the sum of the iteration counts, as listed in Table 7 for these programs.

The obtained abstractions feature up to 34880 thread states (for FUNC-P), and
746770 transitions (for DOUBLE-2). Figure 33 plots the total model checking run
times (scaled logarithmically) for all methods. The curves in the graph correspond
to the following checkers (∗ indicates that the tool supports transfer transitions):

Cat∗: Our Algorithm 3 with no coverability oracle (v1.0).
Cat+Or∗: Our Algorithm 3 equipped with the coverability oracle (v1.0).
CatOpt+Or∗: Optimistic variant of Algorithm 3 (Section 4.3.2) with oracle (v2.0).
petruchio∗ ([141]): Backward search with several heuristics (v0.1).
bc∗ ([2, 1]): Backward reachability analysis (Algorithm 1).
eec ([88]): Forward analysis with enumerative refinement (v1.03).
csc ([89]): A refined Karp-Miller procedure (v0.1).
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iic ([123]): Incremental, inductive coverability algorithm.
tina ([26]): The classic Karp-Miller tree construction (v3.0).
istbc∗ ([85]): Standard backward reachability analysis (v1.03).
tsi ([83]): A variant of eec with backward refinement (v1.03).

Our methods based on widening achieve significantly better results compared to
existing methods. The improvement of about two orders of magnitude over the best
previous method petruchio, which in turn is roughly two orders of magnitude faster
than the remaining methods, shows that our widening approach has far more impact
than, e.g. structural invariant heuristics. Particularly for program abstractions we
found that statically precomputed overapproximations tend to be irrelevant for the
safety property or too imprecise, underpinning the claim made in [75]. On the other
hand, the inferiority of the pure backward analysis bc compared to petruchio indi-
cates that the observed improvements are a consequence of our widening technique.

To measure the difference between standard and minimal uncoverability proofs,
we removed the self-imposed upper bound on the number of threads in candidate
vertices. In this setup, we observed the following reductions (averaged): the length
of the longest traversed path goes down from 28 to 14 (−50%), the thread count
appearing in the proof from 6 to 2 (−67%), and the number of minimal states (=
proof size) from 22,518 to 1,222 (−95%). While the classical backward approach
involves up to eight threads in a proof, our approach generates a minimal uncov-
erability proofs with 3 threads for MINUCP-EX (cf. Figure 19), and proofs with
no more than two threads for the other 24 programs. The bound on the thread
dimension in candidate vertices mentioned above diminishes these improvements
somewhat but marginally (we enforced the bound for the results in Figure 33 as it
results in much reduced runtimes).
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Characteristics Predicates CEGAR phases and times (in sec.)

Program S L LOCMtx?Cnd?Safe? SP ST L IT Its DR?Mon? Abs Ref Chk Total

1/INC-L

th
re

ad
-s

af
e

al
go

ri
th

m
s

2 1 46 l m l 2 2 1 0 4 l m .7 .1 .4 1.2
2/INC-C 1 3 57 m m l 0 5 4 0 8 l m 4.0 .1174.5187.1
3/MAXSIMP-L 3 3 59 l m l 1 1 0 0 2 l m .1 .0 .2 .3
4/MAXSIMP-C 2 5 79 m m l 0 3 2 0 3 l m .5 .0 .6 1.1
5/MAXOPT-L 3 4 69 l m l 1 2 1 0 2 l m .4 .1 .5 1.1
6/MAXOPT-C 2 6 86 l m l 0 4 3 0 3 l m 1.9 .1 2.4 4.6
7/PRNGSIMP-L 2 4 63 l m l 2 2 2 0 4 m – .0 .0 .2 .3
8/PRNGSIMP-C 1 5 95 m m l 0 2 2 0 2 m – .0 .0 .1 .1
9/STACK-L 4 2 79 l m l 2 1 1 0 3 m – .0 .0 .2 .2
10/STACK-C 3 3 89 m m l 1 2 2 0 3 m – .0 .0 .2 .2
11/BSD-AK2

O
S

co
de

1 7 516 l l l 1 1 1 0 1 l l .0 .0 4.8 4.8
12/BSD-RA2 2 21 413 l l l 1 1 0 0 1 l l .0 .0 1.8 1.8
13/NETBSD-SP2 1 28 1045 l l l 2 1 1 0 1 l l .0 .0 81.7 81.7
14/SOLARIS-SM2 1 56 616 l l l 4 1 1 0 1 l l .0 .0 2.3 2.4
15/BOOP 5 2 89 m m m 5 2 2 0 8 m – .0 .1 .7 .9
16/DOUBLE-1

m
ut

ex
al

go
ri

th
m

s

3 0 70 l m l 8 0 0 0 7 m – .7 .2 2.3 3.6
17/DOUBLE-2 3 0 73 l m l 7 0 0 0 7 m – 1.4 .2 1.5 3.3
18/DOUBLE-3 3 0 66 l m l 5 0 0 0 5 m – .2 .1 .5 .9
19/TICKET 3 1 46 m m l 0 1 0 2 4 l m .2 .1 3.9 4.2
20/SZYMANSKI 3 0 54 m m l 4 0 0 0 4 m – .0 .0 .3 .3
21/PETERSON 4 0 37 m m l 6 0 0 0 6 m – .0 .0 .3 .4
22/DEKKER 4 0 50 m m l 4 0 0 0 4 m – .0 .0 .2 .3
23/RW-LOCK 4 0 58 m m l 5 0 0 0 6 m – .0 .0 .4 .5
24/TIMED-MUTEX 5 0 63 m m l 5 0 0 0 4 m – .0 .0 .3 .3
25/TICKET-HC 3 1 61 m m l 0 1 0 2 4 l m .2 .0 5.1 5.3
26/TAS-L 2 2 58 m m l 4 2 1 0 4 l m .2 .0 1.5 2.1
27/UNVEREX

m
is

c

2 1 25 m m l 4 2 0 0 6 l l .9 .1 2.5 4.1
28/MIXEDASGN 1 1 16 m m l 0 2 1 0 3 l m .1 .0 .2 .3
29/CV-VAR 1 1 14 m l l 1 1 1 0 1 l m .0 .0 .0 .1
30/SPIN 2 0 37 l m l 2 0 0 0 2 m – .0 .0 .1 .1
31/MOZILLA-VF 4 3 82 l m l 5 0 0 0 6 m – .0 .0 .3 .4
32/MINUCP-EX 1 0 80 m m l 2 0 0 0 2 m – .0 .0 .1 .1
33/BS-LOOP

pt
hr

ea
d

pr
og

. 0 6 24 m m m 0 7 7 0 1 m – 7.3 .0 7.3 14.7
34/COND 1 3 56 l m l 0 2 2 0 2 m – .0 .0 .1 .1
35/S-LOOP 5 0 60 l m l 3 0 0 0 3 m – .0 .0 .1 .1
36/FUNC-P 2 1 67 l m l 2 4 4 0 6 m – .5 .2 1.0 1.8
37/PTHREAD 5 0 85 l m m 6 0 0 0 6 m – .1 .0 .6 .7

Table 7: Benchmark characteristics and results — S, L, LOC = # of shared vars, local
vars, lines of code; Mtx?, Cnd?, Safe? = presence of mutexes, condition variables, program
safety (black disc = “yes”); SP, ST, L(≤ST), IT = # of shared, single-thread, local, inter-
thread predicates; Its, DR?, Mon? = # of CEGAR iterations, abstractions are truly DR, if so
whether they are monotone; Abs, Ref, Chk, Total = abstraction, refinement, model checking
(breach), total time
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7 Related Work

We begin with a brief overview of the history of concurrent software verification,
and then compare with more recent works in the area.

7.1 A Brief Literature Survey

The origins of program verification research can be traced back to publications by
Turing [170] in 1936, whose undecidability results ruled out the existence of gen-
eral sound and complete algorithmic solutions for proving program correctness, and
Goldstine and Neumann [92] in 1947, who argued that programming “has to be
viewed as a logical problem” and saw the potential of assertional reasoning. The
first attempts that aimed at devising practical formal reasoning methods for sequen-
tial programs are due to Floyd and Hoare [79, 102], who also popularised research
in this area (see, e.g. [104]). In 1967, Floyd suggested to assign with each program
location a predicate or, to put it another way, annotate it with an assertion, that im-
plies the target property, and should be true whenever control reaches that location;
Hoare later gave a formulation in a logical framework. The conceptual idea of both
approaches is induction: one first shows that a target property is true initially, and
second, if it is true at some point of computation, it is also true after the next step.

In 1975, Ashcroft [12] generalised Floyd’s approach to multi-threaded programs
with a fixed number of threads. Ashcroft realised that in the presence of multi-
ple threads of execution, Turing’s observation [169] that checks of assertions can
be done independently in any order, no longer applies. As a counter measure, he
proposed a more complex induction step that ensures a thread cannot invalidate
predicates associated with other threads by executing an instruction. Technically,
Ashcroft achieved this by assigning shared predicates∗ with sets of instruction la-
bels rather than with the individual labels, as Floyd did.

Just one year later in 1976, Owicki and Gries [152], and independently Lam-
port [127], proposed to construct decompositions of such “global invariants” in
terms of vectors with inductive single-thread predicates. The decomposition came
at the price of a test for interference freedom, which additionally required proofs
for each of the single-thread predicates under interference from other threads, and
hence with respect to every other single-thread predicate in the vector. As such de-
compositions may not exist, Owicki and Gries introduced auxiliary shared variables
as a workaround, while Lamport preferred to enrich the predicate language such

∗Ashcroft did not consider programs with local variables other than the program counter.
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that predicates could be formulated over local variables of all the threads. Lamport
called such predicates “control predicates” as he considered—like Ashcroft, Owi-
cki and Gries—programs with no local variables other than the program counter
[152, 127, 128].

Both workarounds conflict with their initial objective of “thread modularity”,
and reveal the underlying machinery: Ashcroft’s global invariant method. For this
reason, Roever et al conclude in [52] that these methods can technically be seen as a
“mere reformulation” of Ashcroft’s method, yet their objective to exploit thread
modularity prepared the ground for compositional approaches, which were pio-
neered by Jones, the inventor of rely-guarantee reasoning [115, 116]. Jones pro-
posed a variant of Owicki and Gries’ approach that achieved compositionality by
associating with every (ideally) single-thread invariant in the vector a rely, and a
guarantee condition, which specify the interference a thread can tolerate from, and
imposes on other threads, respectively; one can think of such a condition as a stub
that soundly substitutes yet-to-be-developed, or more complex real code. These
condition pairs enable the decoupling of proof efforts, and hence compositional
proofs.

Already before Floyd published his work on systematic methods for program
verification, a somewhat distinct development took place in modelling, and analys-
ing communication and synchronisation in concurrent systems. In 1962 Petri intro-
duced a model to describe processes as concurrent and interacting machines, where
he used multisets over a finite alphabet (“places”) to represent system states [157,
156] (see also [67] and [52]). Later in 1969 Karp and Miller [120, 121] studied
an equivalent model∗ with the emphasis on decision procedures, and proposed an
algorithm to construct global inductive invariants for Petri nets, which is still fre-
quently used including by our coverability oracle. Much later in 1994, Ciardo [39]
extended Petri’s model with “transfer arcs”, which is the theoretical basis for the ab-
stract domain model we introduced in this thesis. The added expressiveness had its
price: Dufourd, Finkel and Schnoebelen [63] proved in 1998 that Karp and Miller’s
method could not be turned into a complete decision procedure for Ciardo’s exten-
sion by showing undecidability of the place-boundedness problem. A major break-
through, which solved this issue and made our widening approach possible, was the
discovery of a complementary decision procedure by Abdulla et al [2] in 1996.

Even until the mid-90s the two communities developed rather in isolation, but
∗The main difference is that Petri used multisets, whereas Karp and Miller preferred the equivalent

representation in terms of Parikh vectors [153], which count the occurrences of elements.
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since then have come closer. This change was particularly promoted by Finkel,
and later by Abdulla, Cerans, Jonsson and Tsay [73, 2] who formulated a unifying
framework. Today, both areas are linked by the theory of well quasi-ordered sys-
tems, which is based on a very simple, yet powerful concept, and that both Petri’s
model and Ciardo’s extension belong to. The strong technical connection between
Ashcroft’s concurrency model and that of Petri was nonetheless ignored for a long
time, despite the observation he made in [12]

“ Since [local] states are defined as subsets of [instruction labels]
we will consider a program “illegal” if it allows any [instruction to be
reached by two threads simultaneously]. [...] In fact it would not be dif-
ficult to remove this restriction and allow [local] states to be multisets
instead of sets of labels. ”

Ashcroft hence already knew about the advantages of using multisets (like Petri
did) to represent program states, which means a shift from finite to possibly infinite
threads of execution, and Karp and Miller had an algorithm to construct Ashcroft’s
global invariants even without the above restriction to finite thread numbers.∗ The
clue, why such a proof generalises to arbitrary thread numbers is the monotonicity of
Ashcroft’s model. But this property became a subject of academic research interest
only much later.

7.2 Comparison with Related Work

Algorithmic solutions for verifying safety properties of multi-threaded programs
with possibly infinite data and threads has been intensively studied in the last years.
We survey work related to concurrent program verification in general, coverability
analysis in various kinds of well quasi-ordered systems, restoring monotonicity, and
our dual-reference program model.

Concurrent program verification. Developers are offered a large choice of pro-
gramming approaches when it comes to designing concurrent software. The most
widespread paradigms can roughly be classfied on whether they permit communi-
cation through shared memory, or message passing. In shared memory programs
(the focus of this thesis), communication is done directly through variables that are

∗Technically, the shared predicates Ashcroft assigns to sets (or multisets) of instruction labels are
given by (largest) nodes of the tree generated by Karp and Miller’s algorithm.
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Table 9: Comparison with existing methods — Input features: ∞, CV, SM, ASSERT =
unbounded threads, condition variables, shared-memory, assertions; variable relationship in
the generated proofs: SP, ST, IT = shared, single-thread, inter-thread; Output: CEX, FP,
TA(n) = counterexamples, false positives, asymptotic run time for the ticket algorithm

Input Relationships Output

Verifier ∞ CV SM ASSERT SP ST IT CEX FP TA(n)

cream [95, 96] m m l l l l l l m exponential
symmpa [58] m m l l l l m l m exponential
iDFG (unimpl.) [71] m m l l l l l l m quadratic
duet [69] l m l l l m m m l false positive
boppo/satabs [47] l m l l l m m l l N/A
ddv/satabs [176] m m l l l m m l m N/A
blast [100] m m l m N/A N/A N/A l m N/A
magic [37] m m m l N/A N/A N/A l m N/A

monabs (this work) l l l l l l l l m constant

accessible by different threads of execution as e.g. in C, C++, C# and Java. On
the other hand, in message passing programs processes communicate by sending
and receiveing messages, e.g. signals and broadcast. Popular examples with direct
language support are Ada, Erlang and Occam. The link to more academic process
algebras is seamless, e.g. the Occam language developed by David May [138] builds
upon the CSP process algebra, originally proposed by Tony Hoare [103]. Finally, in
asynchronous programs tasks are interleaved in a single instruction stream.

Shared-memory programs. Existing approaches for verifying strictly asynchro-
nous programs that communicate through shared memory, such as [100, 37, 47,
176, 40, 95, 58, 69, 71], ignore the monotone structure multi-threaded programs
naturally exhibit. None of these methods shifts the exponential-space burden (in the
number of threads) towards a problem on well-founded orderings. Table 9 provides
a feature comparison with our work.

The approach in [95], implemented in cream, generates Owicki-Gries and rely-
guarantee type proofs. In contrast to our work, it uses predicate abstraction in a
CEGAR loop to generate environment invariants for fixed thread counts, whereas
our approach directly checks the interleaved state space and exploits monotonicity.
Whenever possible, cream generates thread-modular rely-guarantee proofs by pri-
oritising predicates that do not refer to the local variables of other threads. For
the parametric benchmarks we used in Section 6 this was never successful. A
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CEGAR approach for symmetric concurrent programs has been implemented in
symmpa [58]. It uses predicate abstraction to generate a Boolean Broadcast pro-
gram (a special case of DR program), which is then checked with the symmetry-
exploiting boom model checker [24, 25]. In contrast to our work, their technique
generates non-monotone abstractions, which cannot be approached with well quasi-
ordered systems technology to cope with unbounded thread counts. Moreover, their
approach cannot reason about relationships between local variables of different
threads, which are crucial for verifying well-known algorithms such as the ticket
lock. For cream and symmpa we observe the exponential time curve for the ticket
algorithm. We have compared monabs with both tools in Section 6.2.

Recent work on data flow graph representations of fixed-thread concurrent pro-
grams has been applied to safety property verification [71]. The inductive data flow
graphs can serve as succinct correctness proofs for safety properties; for the ticket
example they generate correctness proofs of size quadratic in n. Similar to [71],
the technique in [69] uses data flow graphs to compute invariants of concurrent pro-
grams with unbounded threads (implemented in duet). In contrast to monabs which
uses an expressive predicate language, proofs in duet are constructed from relation-
ships between either solely shared, or solely local variables. The consequence is
unprovability of most benchmarks we used in Section 6: duet reports false positives
on 15 of the 31 parametric benchmarks (including the ticket algorithm). In con-
trast, our approach is complete for strictly asynchronous programs, if every thread’s
memory is finite. Other model checkers with some support for concurrent software
(finite thread numbers only) include blast, which cannot handle general assertions
when concurrency is enabled [100], the tools ddv/satabs and boppo/satabs, which
restrict predicates to track either shared or local relationships and therefore fail (like
duet) for every second program used in Section 6, and magic [37], which does not
support shared variables.

Although the previous works deal with multi-threaded programs in general, their
implementations tackle subsets of C and C++. Since multi-threading features were
added in the latest C and C++ standards [112, 113] their concurrency features are
now comparable with those of C# and Java; e.g. all support mutexes, condition vari-
ables, thread creation and management, shared and thread-local storage, and atomic
primitives—hence all those used by our benchmark programs. Moreover, with the
language feature limitations of the above tools in mind, it is fair to say that con-
verting C# or Java code with similar constructs to C or C++ (and vice versa) is
straightforward. Approaches that directly operate on multi-threaded Java programs
include the Java Pathfinder tool developed by the NASA Ames Research Cen-
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ter [99], Bandera [98, 111], the spin model checker by Holzmann [105, 106, 107],
and the component-based method from [134]. Another Owicki-Gries based ap-
proach that operates on SMV models is [46].

The previous approaches have little or no support for unbounded data structures
on the heap. A promising approach in this area is concurrent separation logic [151],
an adaption of separation logic [160] for dealing with heap-manipulating programs;
separation logic is an extension of classical Hoare logic [102]. An advantage of
separation logic is the possibility to succinctly specify manipulations on parts of
a heap, which then permit to derive properties on the entire heap; Vafeiadis and
Parkinson [172] proposed a variant that adapts ideas from rely-guarantee methods.
The automation of concurrent separation logics is, however, still in its infancy [45].
In [55], Distefano et al present a memory safety checker for concurrent programs
with singly linked lists (implemented in SmallfootRG), and a fine-grained concur-
rency verifier was proposed in [34]. In [171], Vafeiadis evaluates the Cave tool, an
implementation of the extension from [172] that is able to verify memory safety of
intricate heap-manipulating data stuctures such as Treiber’s stack algorithm [168],
lock-free queues by Michael and Scott, and Doherty et al [143, 56], and set algo-
rithms [174]. None of these tools can handle general assertions, which preclude any
useful comparison.

Message passing programs. Methods for checking Ada programs have also been
proposed (see, e.g. [33, 68, 32, 64, 149, 165]). The major drawback of most of these
methods is that they are incapable of dealing with the precise program semantics.
For example the Quasar tool by Evangelista et al [68] extracts a synchronisation
skeleton [41] from an Ada program, which is subsequently checked using Petri
net techniques. Synchronization skeletons are program abstractions that suppress
details that are irrelevant to synchronization. Adapted to our setting, this means to
compute and check the predicate abstractions obtained by tracking, for every shared
(Boolean) mutex variable s, a shared predicate s = T, and for every local condition
flag l a local predicate l = BRC (cp. Figure 14). Only 4 of the programs we used in
the evaluation in Section 6 can be proved correct with such a simplistic approach.

Erlang is a declarative concurrent programming language, originally developed
by Joe Armstrong [175, 11]. The challenges in Erlang verification are similar
to those for shared-memory programs, such as infinite-data domains (though, no
shared state is accessible), recursion, unbounded concurrent threads of execution,
but also the communication over unbounded-buffer mailboxes makes them hard to
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check. Several approaches to verify Erlang programs have been proposed. In [110],
Fredlund and Svensson present the model checker mcerlang, which was greatly in-
spired by the spin tool by Holzmann [105]. A case-study that uses mcerlang to
verify an implementation of the supervisor behaviour of Erlang/OT is described
in [36]. Model checking-based approach are [108, 61]. In contrast to [108, 110],
the technique in [61] can cope accurately with unbounded-buffer mailboxes and an
unbounded number of concurrent threads. The idea is to encode Erlang program
abstractions as so-called Actor Communicating Systems, which have natural Petri
net encodings. Their approach has been realised in the soter tool [60], which uses
our breach tool as back-end model checker.

Links between well quasi-ordered systems and other concurrency formalisms
such as the π-calculus, or asynchronous programs, continuously evolve. The π-
calculus [144, 161] is a Turing-powerful process algebra, where threads communi-
cate via synchronous message exchange. In [142] Meyer et al present a polynomial-
size translation of finite control processes [50], a π-calculus fragment, into safe
Petri nets, i.e. nets where a place can contain at most one token. Safe Petri nets
are finite-state, and equivalent to strictly asynchronous programs with finite thread
data, where at most one thread can occupy a certain local state at a time (infinity
norm of reachable states is always 1; cp. Section 4.2.2). Very recently, Meyer et
al [109] proposed another reduction for a strictly larger π-calculus fragment, so-
called name-bounded processes, which yields bisimilar infinite-state Petri nets of
non-primitive recursive size in the worst case. Finally, a translation of asynchronous
π-calculus to transfer Petri nets, or equivalently monotone Boolean DR programs,
is presented in [8]. Translations of CSP into Petri nets have also been proposed, e.g.
in [122, 132].

Asynchronous programs. In asynchronous programs, threads interleave in a sin-
gle instruction stream and run until they explicitly relinquish control, e.g. by calling
a designated function like yield, or when their program stack becomes empty.
Hence, in contrast our model, threads are not suspended nondeterministically. For
certain finite-data asynchronous programs with unbounded program stack and un-
bounded task buffers, Ganty and Majumdar [84] recently proved the verification
problem to be complete in exponential space by providing a polynomial-time re-
duction to Petri Nets (and vice versa). A reduction for a more general class was
proposed in [124]. Several earlier approaches to programs with unordered message
buffers are [148, 147, 114].



98 Related Work

Coverability analysis. Algorithmic solutions to coverability analysis were first
proposed for vector addition systems in a landmark paper by Karp and Miller [121]
(implemented in tina [26]). The solution constructs a pseudo-reachability tree by
forward exploration and replaces newly discovered states that are strictly greater
than predecessors using an infinity measure. The approach has non-primitive recur-
sive worst-case complexity [158]. Due to the undecidability of the place-bounded-
ness problem [63], extensions to broadcast operations are inevitably incomplete. An
example is the Covering Graph procedure from [65], which was shown to fail to ter-
minate on certain systems [66]. An improvement of the Karp-Miller procedure that
computes minimal coverability sets is [89] (implemented in csc), and the Karp and
Miller algorithm with pruning from [159] (not available online). An approach that
constructs compact, yet not necessarily minimal coverability sets is [173]. Their
algorithm prioritises unexplored states with larger thread numbers to speed up con-
vergence (not available online). We experimented with various selection heuristics
for the Karp-Miller like coverability oracle. In our setup, treating states with small-
est thread numbers performed best by far. One explanation is that dealing with such
states is algorithmically easier, and that our widening algorithm does not benefit
from large states being reported by the oracle. In our experiments the largest thread
count that appeared in a standard uncoverability proof is 6.

To afford more flexibility in modelling parameterized programs, various algo-
rithms were later proposed for well quasi-ordered systems, originally in a pure back-
ward fashion [2] (implemented in istbc and petruchio [141]), later as forward ex-
ploration [74, 177], or as a backward and forward unfolding algorithm [6]. The
paradigm presented in [88] is also a pure forward algorithm; it constructs abstrac-
tions of increasing precision (implemented in eec). The recent approach from [5]
is based on cutoffs and exploits the fact that analysing a small number of threads
is often sufficient to expose errors (not available online). It performs parameterized
verification by inspecting a small set of instances of a system to show correctness.
Such an approach has two drawbacks. First, it is likely to fail when systems require
the inspection of large thread numbers. Second, performance degrades when many
transitions do not affect the correctness of a property, such as those induced by de-
tached processes that operated on a disjoint set of shared variables. As an example,
their approach fails for the Kanban system from [82], whereas Karp-Miller like ap-
proaches (including our coverability oracle) report the error almost instantaneously.

Solutions combining forward and backward exploration are rare; we are only
aware of the methods described in [75] and [86], and the very recent approach
from [123]. The authors of [75] propose to use a csc-like approach to compute
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overapproximations of the coverability set, which are then used in a subsequent
backward exploration to prune the search space. Our experimental results reported
in Section 6.3 demonstrate, however, that this approach cannot cope with programs
of the sizes we consider, simply because their computation is too expensive. In [86],
the authors combine overapproximations computed in a forward fashion, which
are refined by using backward underapproximations (implemented in tsi). On an
abstract level, our algorithm can be seen as the dual of this approach. Interest-
ingly, performance-wise tsi cannot benefit from this similarity; tsi performed worst
in our experimental comparison. Finally, the algorithm in [123] (implemented in
iic) computes an inductive invariant by maintaining a list of overapproximations
of forward-reachable states, and strengthening them (in a backward manner) using
counterexamples to inductiveness. Note that our uncoverability proofs introduced
in Definition 24 are inductive proofs of the backward-nonreachability of the initial
states from e.

Other work that, like ours, takes parameterized system level software as input
includes earlier work on multi-threaded Java programs [53], which in fact uses a
set of communication primitives and derived semantics very similar to ours, and
rewrites them into multi-transfer Petri nets using a form of counter abstraction.
Our earlier cutoff based approach [117] combines finite-state forward exploration
with infinite-state backward exploration. Recent work [69, 71] over data flow graph
representations of parameterized concurrent programs has been applied to safety
property verification. These methods do not explore, in a model checking fashion,
replicated finite-state procedures, but instead aim to find (possibly inductive) pro-
gram invariants. We have compared with petruchio, eec, csc, tina, istbc, tsi and iic
in Section 6.3.

Dual-reference programs. Boolean programs [18] are a popular abstract do-
main for model checking sequential software, as pioneered by the slam project
at Microsoft [19]. Various adaptions to the multi-threaded case have been pro-
posed. Geeraerts and Van Begin [87] introduce a formal language called Concurrent
Boolean Programs to describe predicate abstractions of concurrent programs with
atomic sections and broadcasts communication. In contrast to dual-reference pro-
grams, which capture the essence of such primitives in a “relational” way through
active- and passive-thread variable updates, their model features specific primitives
on designated lock, message and thread-type variables. A very similar but slightly
less expressive model that lacks support for broadcasts is proposed in [22, 47], and
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used as input format for the getafix, boom and duet model checkers [167, 23, 69].
All these attempts to adapt Boolean programs for proving multi-threaded pro-

grams share the same disadvantage: they cannot be used to verify elementary safety
properties requiring single-, or inter-thread predicates, and are therefore inadequate
as an abstract domain for model checking concurrent software. They are, e.g. insuf-
ficient for 16 out of the 31 parametric benchmarks we used in Section 6.

On the other hand, there exist only few works that deal with data-symbolic en-
codings of Petri net like formalisms (see, e.g. [28] for the relationship between Petri
nets and Boolean programs). For so-called safe Petri nets, i.e. nets where at most
one token can reside in each place, an approach is described in [150]. Adapted to
our setting, a restriction to safe Petri net means that every local state is only mutu-
ally exclusively accessible, and hence only the 6 non-parametric programs we used
in Section 6 can be encoded. Moreover, the authors encode each place using a sin-
gle Boolean variable, whereas we encode each place by a unique valuation of the
Boolean variables.

Restoring monotonicity. Our solution to restore monotonicity in predicate ab-
stractions is closely related to the reductions presented in [27, 3, 4, 136, 91], which
enforce monotonicity in certain protocols with conjunctive guards that are not well
quasi-ordered. Bingham and Hu deal with “global conditions”, i.e. guards that re-
quire universal quantification over (thread) indices, by transforming such systems
into Broadcast protocols [65]. This is achieved by replacing conjunctively guarded
actions by transitions that, instead of checking a universal condition, execute it as-
suming that any thread not satisfying it “resigns” by entering (through a broadcast) a
designated local state that isolates it from participation in future computation steps.
The same idea was further developed by Abdulla et al. in the context of monotonic
abstractions (see, e.g. [3, 4]); an application to array-based systems is [91].

All these approaches can be seen as adaptations of the stopping failures model,
which assumes that a thread can suddenly halt forever (originally intended to study
the consensus problem in the presence of unpredictable processor crashes) [136].
Despite technical similarities, our approach differs fundamentally: Instead of brute-
forcing monotonicity in genuinely non-monotone systems (and putting up with
the ensuing overapproximation), we restore the monotonicity that was originally
present in the input program, and are able to avoid introducing spurious errors.
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Although model checking was originally designed for analysing concurrent sys-
tems, there has been little evidence of fruitful applications of predicate abstraction
to realistic shared-variable concurrent software written in mainstream languages
such as C. The techniques presented in this thesis represent an initial step towards a
continuation of the success-story of predicate abstraction in sequential software.

We have introduced a novel algorithmic solution for verifying non-recursive
shared-memory programs executed by an unbounded number of threads, which syn-
chronise via higher-level mechanisms, such as mutexes, broadcasts and conditional
waits. System code, including UNIX and Mac OS device drivers, make frequent
use of such concurrency APIs, whose correct use is therefore critical to ensure
a reliable programming environment. Our method succeeds in putting the well-
established predicate abstraction technique to work by exploiting the characteristic
symmetry and monotonicity exhibited by these programs. We defined a new class
of concurrent programs called dual-reference programs, which we use to represent
abstractions of the shared-memory programs we are concerned with. In dual-ref-
erence programs, transitions of an active thread and its environment are specified
as actions over the executing active and a generic passive thread. We presented
the relevant concepts, a formalisation, and an implementation of a CEGAR strat-
egy applicable to strictly asynchronous programs run by arbitrarily many threads.
Our predicate abstraction strategy supports an adequately expressive predicate lan-
guage as is needed for verifying intricate properties such as mutual exclusion in
the ticket busy-wait lock algorithm. Predicate-abstracting such programs results in
Boolean dual-reference programs, for which we proved—despite the finite variable
domain—undecidability of even the simplest program reachability problems. We
have overcome this problem by defining a closure operator that restores monotonic-
ity (and thus decidability).

Checking safety in monotone Boolean dual-reference programs incurs a high
computational cost; it is Ackermann-complete. To alleviate this rise in complex-
ity, we have proposed a solution to the equivalent coverability problem in well
quasi-ordered systems that turns into account that (as we demonstrated empirically)
infeasible thread constellations tend to exhibit compact explanations of infeasibil-
ity in terms of constellations with fewer threads. To this end, our algorithm com-
bines forward propagation of underapproximations with backward propagation of
overapproximations (widenings). Namely, it identifies and compactly represents the
uncoverable elements backward-reachable from a given query target, by widening
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the target set by smallest-possible elements whose backward expansion can be ex-
pected to terminate quickly. The imposition to first settle the coverability of these
elements, side-stepping the original query, not only accelerates the search, but also
makes the search structure more compact.

We have implemented our techniques in the monabs program verifier, and the
widening algorithm in our breach tool. This allowed us to experimentally validate
the superiority (already for trivial thread numbers) of our unbounded thread analysis
over several existing fixed-thread verifiers on a large set of realistic shared-memory
C programs. Moreover, we demonstrated experimentally that our widening algo-
rithm, as implemented in breach, outperforms the best known coverability approach
by orders of magnitude, enabling the verification of programs currently well be-
yond the limits of existing tools. While the presented specific implementation of
our widening ideas in breach has proven to be very successful and efficient in solv-
ing real verification problems, the purpose of this thesis is also to propose our search
organisation and the cooperation between the backward and forward components of
the algorithm as a new general paradigm for tackling non-recursive shared-memory
programs executed by an unbounded number of threads.

We conclude by discussing several issues left open by this dissertation, and
outline possible approaches to enhance the practical potential and relevance of our
approach.

Open issues and future work. Programs with broadcast sychronisation such as
transfer Petri nets have been intensively studied in recent years from a theoretical
viewpoint. Practical solutions for tackling safety of such programs remain, how-
ever, rare. We presume the main reason is their rather limited practical importance:
compared with, e.g. mutexes and compare-and-swap operations they still represent
a rather “exotic” thread coordination method. Our verification approach sheds new
light on such programs, namely by promoting them as an abstract domain for model
checking mainstream, broadcast-free concurrent programs. It would be interesting
to study the performance of forward-directed methods that combine Karp-Miller
like search with the acceleration technique from [65] in such a setting; although the
basic technique has been around for more than a decade, we are not aware of any
implementation. Can these accelerations be computed efficiently? Does the incom-
pleteness matter in practice, or does it occur “just” in theory? If the answer to the
former question is yes, such a technique would also be an ideal candidate to speed
up our widening approach.



103

We have—for the purpose of this thesis’ objectives—used predicate abstraction
as the basis. Our approach can, however, just as well be applied on top of other
relational abstract domains, such as the polyhedral abstract domain by Cousot and
Halbwachs [49], or the octagon domain by Miné [145]. In such a setting, relational
abstract domains would track constraints between shared (global-scope) and local
variables of a given thread, or local variables of a thread and all local variables of
other threads. While the adaption of such domains is rather straightforward, the
question whether the resulting methods are compatible with monotonicity needs
clarification. Also unclear is whether one can come up with practical examples of
strictly asynchronous programs that require even more expressive predicates to be
proved correct than the ones we permit. If answered in the affirmative, a natural
extension of our approch would be to permit predicates to reference more than two
generic threads of execution. As an example, predicates like l = lT 6= lP could be
used to track for a given thread’s local variable l whether there exists exactly one
other thread with the same value, while all other threads have a different value for l.

A further aspect regards the encoding of program states in our breach and
monabs tools. In order to check Boolean DR programs, we reverted to an explicit
format that enumerates individual transitions. Devising coverability algorithms that
directly operate on our data-symbolic (Boolean) encoding will significantly improve
the scalability of our approach when many predicates are involved. We are, how-
ever, not aware of any coverability checker, or even a data structure for handling up-
ward closed sets that fits our demands. A possible starting point would be to adapt
BDD encodings similar to that proposed in [24], which uses propositional formu-
las to symbolically represent the shared state, and the local states of the respective
threads. Significant work remains to be done in order to adapt such techniques
to the coverability problem, such as to find effective and efficient mechanisms for
handling data-symbolic representations of upward closed sets, and exploiting lo-
cal computation paths through partial-order reduction strategies in the presence of
broadcasts.

We have assumed a very strict and unrealistic memory model that guarantees
atomicity at the statement level, although multiprocessors such as Intel x86 and
ARM implement more relaxed models that feature techniques like instruction re-
ordering, and store buffering to boost performance. One can work soundly with our
assumption by pre-processing input programs such that the shared state is accessed
only via word-length reads and writes, which guarantees that all computation is per-
formed using only local variables. To obtain a more accurate analysis one could,
however, also directly embed weak memory semantics into the program, or alter-
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natively encode the induced program executions via partial orders. Extending our
approach to such models would be a natural continuation of this thesis’ research. It
would be interesting to see, whether modelling the exact memory-level semantics
preserves the scalability of our approach.

In Section 4, we mentioned that smaller states have smaller cover predecessors,
and hence induce backward-reachability trees with smaller height. While our ex-
perimental results confirm that for the strictly asynchronous and monotone Boolean
DR programs we are concerned with, a decrease in height goes hand in hand with
faster overall convergence, we do not know if there exist programs where the op-
posite is true. In particular, for some well quasi-ordered systems such as Petri nets
this is not the case.∗ We conjecture, however, that for monotone Boolean DR pro-
grams smaller states in general yield smaller backward reachabililty trees, and hence
widening a backward-directed search by uncoverable states that are strictly smaller
than cover predecessors can at most speed up convergence.

The classical backward coverability algorithm due to Abdulla et al. [2] is well
known to operate in Ackermannian time for our monotone Boolean DR programs,
or equivalently, transfer Petri nets (see, e.g. [162] for a recent summary). Moreover,
for (plain) Petri nets recent results prove certain breadth-first backward methods to
operate in 2ExpTime [29]. It is unclear whether it is possible to come up with a
depth-first search of similar complexity. Recent developments in the complexity
analysis of well quasi-ordered system models and algorithms such as [38, 164, 72]
use bounds on the length of increasing-pair-free sequences that do not warrant such
a conclusion. Interestingly, our experience has shown that breadth-first methods are
tremendously faster in practice.

In order to construct minimal uncoverability proofs, we exploit the fact that
the downward closure of a finite set is finite, a property which holds for many
well quasi-ordered systems including Petri nets, Broadcast protocols, Lossy counter
machines and our monotone Boolean DR programs. We do not know, however,
whether minimal proofs are effectively computable for the entire class of well quasi-
ordered systems. An example, where our algorithm fails to construct such a proof
is the following (taken from [123]): the set of states is N ∪ {ω}, the transitions are
v � v′ if either v′ = v + 1, or v = v′ = ω, the ordering is 0 < 1 < . . . < ω,

∗Consider the 2-place Petri net with one transition that consumes a token from place two (no
production), and another that consumes two tokens from the second place, and produces two in the
first and one in the second. In this case, we get for x = ( | 0, 2), y = ( | 1, 1) and z = ( | 1, 0) cover
predecessors C-Pre({x, y}) = {x} and C-Pre({x, z}) = {x, y}; observe z < y. (Many thanks to
Stefan Kiefer for this example.)
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and the initial and target states are 0 and ω, respectively. The reason why our ap-
proach fails is that there exists an infinite number of coverable widening candidates
for target state ω, namely every natural number (the downward closure of ω is not
finite). Interestingly, for the same reason the incremental approach from [123] does
not terminate on this example.

A recent and very promising verification method for analysing sequential cir-
cuits is IC3 due to Aaron Bradley [30]. Much like our approach, IC3 incremen-
tally overapproximates the state space and, if an overapproximation is not inductive,
strengthens it to inductiveness. By replacing our notion of the “covers” relation by
implication (a formula f “covers” formula g if f ⇒ g is valid), our widening ap-
proach can directly be applied to sequential circuits. In this setting our approach
seems to operate much like the IC3 procedure. Finally, [71] shows that their notion
of inductive data flow graphs in the context of concurrent programs can serve as suc-
cinct correctness proofs for safety properties, much like the minimal uncoverability
proofs our algorithm tries to find. We will leave the precise relationship between
these recent works and ours for future investigation.
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