
Partial Orders for Efficient BMC
of Concurrent Software

Jade Alglave1, Daniel Kroening2, and Michael Tautschnig2

1 University College London 2 University of Oxford

Abstract. The vast number of interleavings that a concurrent program
can have is typically identified as the root cause of the difficulty of auto-
matic analysis of concurrent software. Weak memory is generally believed
to make this problem even harder. We address both issues by modelling
programs’ executions with partial orders rather than the interleaving se-
mantics (SC). We implemented a software analysis tool based on these
ideas. It scales to programs of sufficient size to achieve first-time formal
verification of non-trivial concurrent systems code over a wide range of
models, including SC, Intel x86 and IBM Power.

1 Introduction

Automatic analysis of concurrent programs is a practical challenge. Hardly any
of the very few existing tools for concurrency will verify a thousand lines of
code [12]. Most papers name the number of thread interleavings that a concur-
rent program can have as a reason for the difficulty. This view presupposes an
execution model, namely Sequential Consistency (SC) [23], where an execution
is a total order (more precisely an interleaving) of the instructions from different
threads. The choice of SC as the execution model poses at least two problems.

First, the large number of interleavings modelling the executions of a pro-
gram makes their enumeration intractable. Context bounded methods [29, 26, 21]
(which are unsound in general) and partial order reduction [28, 14] can reduce
the number of interleavings to consider, but still suffer from limited scalabil-
ity. Second, modern multiprocessors (e.g., Intel x86 or IBM Power) serve as a
reminder that SC is an inappropriate model. Indeed, the weak memory models
implemented by these chips allow more behaviours than SC.

We address these two issues using partial orders to model executions. This
differs radically from partial order reduction, which uses partial orders to reduce
the number of total orders to examine. We also aim at practical verification
of concurrent programs. Rarely have these two communities met. Exceptions
are [31, 32]. We show that the explicit use of partial orders generalises these
works to weak memory, without affecting efficiency.

Our method is as follows: we map a program to a formula consisting of two
parts. The first conjunct describes the data and control flow for each thread of
the program; the second conjunct describes the concurrent executions of these
threads as partial orders. We prove that for any satisfying assignment of this

formula there is a valid execution w.r.t. our models; and conversely, any valid
execution gives rise to a satisfying assignment of the formula.

Thus, given an analysis for sequential programs (the per-thread conjunct),
we obtain an analysis for concurrent programs. For programs with bounded
loops, we obtain a sound and complete model checking method. Otherwise, if
the program has unbounded loops, we obtain an exhaustive analysis up to a
given bound on loop unrollings, i.e., a bounded model checking method.

To experiment with our approach, we implement a symbolic decision proce-
dure answering reachability queries over concurrent C programs w.r.t. a given
memory model. We support a wide range of models, including SC, Intel x86 and
IBM Power. To exercise our tool w.r.t. weak memory, we verify 4500 tests used
to validate formal models against IBM Power chips [30, 25]. Our tool is the first
to handle the subtle store atomicity relaxation [2] specific to Power and ARM.
We show that mutual exclusion is not violated in a queue mechanism of the
Apache HTTP server software. We confirm a bug in the worker synchronisa-
tion mechanism in PostgreSQL, and that adding two fences fixes the problem.
We verify that the Read-Copy-Update mechanism of the Linux kernel preserves
data consistency of the object it is protecting. We analyse all examples for a
wide range of memory models, from SC to IBM Power via Intel x86.

We provide our proofs, the sources of our tool, our experimental logs and our
benchmarks at http://www.cprover.org/wpo.

Related Work Implementing an executable version of the memory models is an
important step of our work, but we go further than [15, 17, 33, 30, 25] by studying
the validity of systems code in C (as opposed to assembly or toy languages)
w.r.t. both a given memory model and a property.

Memory models roughly fall into two classes: operational and axiomatic. The
operational style models executions via interleavings, with transitions accessing
buffers or queues, in addition to the memory (as on SC). Thus this approach
inherits the limitations of interleaving-based verification. For example, [5] (re-
stricted to Sun Total Store Order, TSO) bounds the number of context switches.
The methods of [20, 19] have, in the words of [24], “severely limited scalability”.
The technique of [24] scales to 771 lines but does not aim to be sound: the tool
picks an invalid execution, repairs it, then iterates. Abdulla et al. [1] reason over
finite state transition systems instead of programs.

Axiomatic specifications constrain relations over memory accesses. Our work
relates the most to [7, 13, 31, 32], which use axiomatic specifications of SC to
compose the distinct threads. CheckFence [7] models SC with total orders and
transitive closure constraints; [31, 32] use partial orders like us; they note redun-
dancies in their constraints, but do not explain them; our semantic foundations
(Sec. 2) allow us both to explain and avoid them.

The encodings of [7, 31, 32] are O(N3) for N shared memory accesses to any
address; [13] is quadratic, but in the number of threads times the number of
per-thread transitions, which may include arbitrary many local accesses. Our
encoding is O(M3), with M the maximal number of events for a single address.

2

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 1

(b) r2← y (d) r4← x

Allowed? r1=1; r2=0; r3=1; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e) Wx1 (f) Wy1

po po

rf

fr

rf

fr

Fig. 1. Independent Reads of Independent Writes (iriw)

2 Context: Axiomatic Memory Model

We use the framework of [4], which provably embraces several architectures:
SC [23], Sun TSO/x86 [27], PSO and RMO, Alpha, and a fragment of Power.
We present this framework using a litmus test, shown in Fig. 1.

The keyword allowed asks if the architecture permits the outcome “r1=1;r2=0;
r3=1;r4=0”. This relates to the event graphs of this program, composed of rela-
tions over read and write memory events. A store instruction (e.g., x← 1 on P2)
corresponds to a write event ((e) Wx1), and a load (e.g., r2 ← y on P0) to a
read ((b) Ry0). The validity of an execution boils down to the absence of certain
cycles in the event graph. Indeed, an architecture allows an execution when it
represents a consensus amongst the processors. A cycle in an event graph is a
potential violation of this consensus.

If a graph has a cycle, we check if the architecture relaxes some relations. The
consensus ignores relaxed relations, hence becomes acyclic, i.e., the architecture
allows the final state. In Fig. 1, on SC where nothing is relaxed, the cycle forbids
the execution. Sun RMO relaxes the program order (po in Fig. 1) between reads,
thus a forbidding cycle no longer exists for (a, b) and (c, d) are relaxed.

Executions Formally, an event is a read or a write memory access, composed of
a unique identifier, a direction R for read or W for write, a memory address,
and a value. We represent each instruction by the events it issues. In Fig. 1, we
associate the store x← 1 on processor P2 to the event (e) Wx1.

We associate the program with an event structure E , (E, po), composed of
its events E and the program order po, a per-processor total order. We write dp
for the relation (included in po, the source being a read) modelling dependencies
between instructions, e.g., an address dependency occurs when computing the
address of a load or store from the value of a preceding load.

Then, we represent the communication between processors leading to the final
state via an execution witness X , (ws, rf), which consists of two relations over
the events. First, the write serialisation ws is a per-address total order on writes
which models the memory coherence widely assumed by modern architectures.
It links a write w to any write w′ to the same address that hits the memory
after w. Second, the read-from relation rf links a write w to a read r such that
r reads the value written by w.

We include the writes in the consensus via the write serialisation. Unfortu-
nately, the read-from map does not give us enough information to embed the

3

reads as well. To that aim, we derive the from-read relation fr from ws and rf. A
read r is in fr with a write w when the write w′ from which r reads hit the memory
before w did. Formally, we have: (r, w) ∈ fr , ∃w′, (w′, r) ∈ rf ∧ (w′, w) ∈ ws.

In Fig. 1, the outcome corresponds to the execution on the right if each
memory location and register initially holds 0. If r1=1 in the end, the read (a)
read its value from the write (e) on P2, hence (e, a) ∈ rf. If r2=0, the read (b) read
its value from the initial state, thus before the write (f) on P3, hence (b, f) ∈ fr.
Similarly, we have (f, c) ∈ rf from r3=1, and (d, e) ∈ fr from r4=0.

Relaxed or safe We model the weak behaviour permitted by modern architec-
tures by some relations being relaxed, i.e., not included in the consensus. When
a relation is not relaxed, we call it safe.

When a processor can read from its own store buffer [2] (the typical TSO/x86
scenario), we relax the internal read-from rfi. When two processors P0 and
P1 can communicate privately via a cache (a case of write atomicity relax-
ation [2]), we relax the external read-from rfe, and call the corresponding write
non-atomic. This is the main particularity of Power or ARM, and cannot happen
on TSO/x86. We write grfA for the read-from considered safe by A.

Some program-order pairs are relaxed (e.g., write-read pairs on x86), i.e.,
only a subset of po, written ppoA, is guaranteed to occur in this order.

Architectures prevent weak behaviours using special fence (or barrier) in-
structions. We write abA for the relation induced by the fences of A. Follow-
ing [4], the relation fence ⊆ po induced by a fence is non-cumulative when it
orders events surrounding the fence, i.e., fence is safe. The relation fence is cu-
mulative when it makes writes atomic, e.g., by flushing caches. The relation fence
is A-cumulative (resp. B-cumulative) if rfe; fence (resp. fence; rfe) is safe. When
stores are atomic (i.e., rfe is safe), e.g., on TSO, we do not need cumulativity.

Architectures An architecture A determines ppoA, grfA and abA, i.e., the relations
embedded in the consensus. Following [4], we consider the write serialisation ws
and the from-read relation fr to be always safe. SC relaxes nothing, i.e., rf and po
are safe. TSO authorises the reordering of write-read pairs and store buffering
(i.e., poWR and rfi are relaxed) but nothing else.

Finally, an execution (E,X) is valid on A when the three following condi-
tions hold. 1. SC holds per address, i.e., the communication and the program
order for accesses with same address po-loc are compatible: uniproc(E,X) ,
acyclic(ws ∪ rf ∪ fr ∪ po-loc). 2. Values do not come out of thin air, i.e., there
is no causal loop: thin(E,X) , acyclic(rf ∪ dp). 3. There is a consensus on the
safe relations: consensus(E,X) , acyclic(ws ∪ grfA ∪fr ∪ ppoA ∪ abA). Formally:
validA(E,X) , uniproc(E,X) ∧ thin(E,X) ∧ consensus(E,X).

3 Symbolic Event Structures

For an architecture A and one execution witness X, the framework of Sec. 2
determines whether X is valid on A. To prove reachability of a program state,
we need to reason about all its executions. To do so efficiently, we use symbolic

4

representations capturing all possible executions in a single constraint system.
We then apply SAT or SMT solvers to decide if a valid execution exists for A,
and, if so, get a satisfying assignment corresponding to an execution witness.

As said in Sec. 1, we build two conjuncts. The first one, ssa, represents the
data and control flow per thread. The second, pord, captures the communica-
tions between threads (cf. Sec. 4). We include a reachability property in ssa; the
program has a valid execution violating the property iff ssa ∧ pord is satisfiable.

We mostly use static single assignment form (SSA) of the input program to
build ssa (cf. [18] for details). This SSA variant augments each equation with
a guard, which is the disjunction over all conjunctions of branching guards on
paths to the assignment. To deal with concurrency, we use a fresh index for each
occurrence of a given shared memory variable, resulting in a fresh symbol in the
formula. CheckFence [7] and [31, 32] use a similarly modified encoding.

main P0 P1 P2 P3
x0 = 0
∧ y0 = 0 ∧ r110 = x1 ∧ r320 = y2 ∧ x3 = 1 ∧ y3 = 1

∧ r210 = y1 ∧ r420 = x2
∧ prop

(i0)Wxx0
(i1)Wyy0

(a) Rxx1 (c) Ryy2 (e) Wxx3 (f) Wyy3
(b) Ryy1 (d) Rxx2

Fig. 2. The formula ssa for iriw (Fig. 1) with prop = (r11
0 =

1∧ r21
0 = 0 ∧ r32

0 = 1 ∧ r42
0 = 0), and its ses (guards omitted

since all true)

Together with ssa,
we build a sym-
bolic event structure
(ses). As detailed be-
low, it captures basic
program information
needed to build the
second conjunct pord
in Sec. 4. In Fig. 2,
the formula ssa on
top depicts the SSA
form for Fig. 1. We
print a column per
thread, vertically following the control flow, but it forms a single conjunction.
Each occurrence of a program variable carries its SSA index as a subscript. Each
occurrence of the shared memory variables x and y has a unique SSA index. Here
we omit the guards, as this program does not use branching or loops.

From SSA to symbolic event structures A symbolic event structure (ses) γ ,
(S, po) is a set S of symbolic events and a symbolic program order po. A symbolic
event holds a symbolic value instead of a concrete one as in Sec. 2. We define
g(e) to be the Boolean guard of a symbolic event e, which corresponds to the
guard of the SSA equation as introduced above. We use these guards to build
the executions of Sec. 2: a guard evaluates to true if the branch is taken, false
otherwise. The symbolic program order po(γ) gives a list of symbolic events per
thread of the program. The order of two events in po(γ) gives the program order
in a concrete execution if both guards are true.

Note that po(γ) is an implementation-dependent linearisation of the branch-
ing structure of a thread, induced by the path merging applied while constructing
the SSA form. We write po-br(γ) for this branching structure (i.e., the unlin-
earised symbolic program order induced by the control flow graph).

We build the ses γ alongside the SSA form, as follows. Each occurrence of
a shared program variable on the right-hand side of an assignment becomes a

5

symbolic read, with the SSA-indexed variable as symbolic value, and the guard
is taken from the SSA equation. Similarly, each occurrence of a shared program
variable on the left-hand side becomes a symbolic write. Fences do not affect
memory states in a sequential setting, hence do not appear in SSA equations.
We simply add a fence event to the ses when we see a fence. We take the order
of assignments per thread as program order, and mark thread spawn points.

The bottom of Fig. 2 gives the ses of iriw. Each column represents the
symbolic program order. We use the same notation as for the events of Sec. 2,
but values are SSA symbols. Guards are omitted again, since all trivially true.
We depict a thread spawn by starting the program order in the appropriate row.

From symbolic to concrete event structures To relate to the models of Sec. 2, we
concretise symbolic events. A satisfying assignment to ssa ∧ pord, as computed
by a SAT or SMT solver, induces, for each symbolic event, a concrete value
(if it is a read or a write) and a valuation of its guard (for both accesses and
fences). A valuation V of the symbols of ssa includes the values of each symbolic
event. Since guards are formulas that are part of ssa, V allows us to evaluate the
guards as well. For a valuation V, we write conc(es,V) for the concrete event
corresponding to es, if there is one, i.e., if g(es) evaluates to true under V.

The concretisation of a set S of symbolic events is a set E of concrete events,
as in Sec. 2, s.t. for each e ∈ E there is a symbolic version es in S. We write
conc(S,V) for this concrete set E. The concretisation conc(rs,V) of a symbolic re-
lation rs is the relation {(x, y) | ∃(xs, ys) ∈ rs.x = conc(xs,V)∧y = conc(ys,V)}.

Given an ses γ, conc(γ,V) is the event structure (cf. Sec. 2), whose set of
events is the concretisation of the events of γ w.r.t. V, and whose program order
is the concretisation of po(γ) w.r.t. V. For example, the graph of Fig. 1 (erasing
the rf and fr relations) is a concretisation of the ses of iriw (cf. Fig. 2).

4 Symbolic Encodings

For an architecture A and an ses γ, we need to represent the communications
(i.e., rf,ws and fr) and the weak memory relations (i.e., ppoA, grfA and abA) of
Sec. 2. We encode them as a formula pord, s.t. ssa∧pord is satisfiable iff there is an
execution valid on A violating the property encoded in ssa. We avoid transitive
closures to obtain a small number of constraints. We start with an overview of
our approach, then describe how we encode partial orders, and finally detail the
encoding for the relations rf and ppo of Sec. 2 (we omit ws, fr, ab for brevity).

Overview We present our approach on iriw (Fig. 1) and its ses γ (Fig. 2). In
Fig. 1, we represent only the execution leading to the (non-SC) final state. In
this section, we generate constraints representing all the executions of iriw on
a given architecture. We give these constraints for the address x in Fig. 3 in
the SC case (for brevity we skip y, analogous to x). Weakening the architecture
removes some constraints: for Power, we omit the (rf-grf) and (ppo) constraints.

In Fig. 3, each symbol cab is a clock constraint, representing an ordering
between the events a and b. A variable swr represents a read-from between the

6

(si0a ⇒ x1 = x0) ∧ (si0d ⇒ x2 = x0)∧(rf-val x)
(sea ⇒ x1 = x3) ∧ (sed ⇒ x2 = x3)
(si0a ⇒ ci0a) ∧ (sea ⇒ cea)∧(rf-grf x)
(si0d ⇒ ci0d) ∧ (sed ⇒ ced)
(si0a ∨ sea) ∧ (si0d ∨ sed)(rf-some x)
¬ci0e ⇒ cei0(ws x)

((si0a ∧ ci0e)⇒ cae) ∧ ((si0d ∧ ci0e)⇒ cde)∧(fr x)
((sea ∧ cei0)⇒ cai0) ∧ ((sed ∧ cei0)⇒ cdi0)
ci0i1 (ppo P0) cab (ppo P1) ccd(ppo main)

Fig. 3. Partial order constraints for address x in Fig. 1 on SC

write w and the read r. The constraints of Fig. 3 represent the preserved program
order (cf. Sec. 4.2), e.g., on SC or TSO the read-read pairs (a, b) on P0 (ppo P0)
and (c, d) on P1 (ppo P1), but nothing on Power. We generate constraints for
the read-from (cf. Sec. 4.1), for example (rf-some x); the first conjunct si0a ∨ sea
expresses that the read a on P0 can read either from the initial write i0 or
from the write e on P2. The selected read-from pair also implies equalities of
the values written and read (rf-val x): for instance, si0a implies that x1 equals
the initialisation x0. The constraints for write serialisation and from-read are
specified as (ws x) and (fr x); (ws y) and (fr y) are analogous. As there are no
fences in iriw, we do not generate any fence constraints (cf. Sec. 4.3).

We represent the execution of Fig. 1 as follows. For (e, a) and (i0, d) ∈ grf,
we have the constraint sea ⇒ cea and si0d ⇒ ci0d in (rf-grf x). This means that
a reads from e (as witnessed by sea), and that we record that e is ordered before
a in grf (as witnessed by cea); idem for d and i0. To represent (d, e) ∈ fr, we pick
the appropriate constraint in (fr x), namely (si0d ∧ ci0e)⇒ cde. This reads “if d
reads from i0 and i0 is ordered before e (in ws, because i0 and e are two writes
to x), then d is ordered before e (in fr).”

Together with (ppo P0) and (ppo P1), these constraints represent the exe-
cution in Fig. 1. We cannot find a satisfying assignment of these constraints, as
this leads to both a before b (by (ppo P0)) and b before a (by (fr y), (rf-grf y),
(ppo P1), (fr x) and (grf x)). On Power, however, we neither have the ppo nor
the grf constraints, hence we can find a satisfying assignment.

Symbolic partial orders We associate each symbolic event x of an ses γ with a
clock variable clockx (cf. [22, 31]) ranging over the naturals. For two events x and
y, we define the Boolean clock constraint as cxy , (g(x) ∧ g(y))⇒ clockx < clocky
(“<” being less-than over the integers). We encode a relation r over the symbolic
events of γ as the formula φ(r) ,

∧
(x,y)∈r cxy.

Let C be a valuation of the clocks of the events of γ. Let V be a valuation
of the symbols of the formula ssa associated to γ. As noted in Sec. 3, V gives us
concrete values for the events of γ, and allows us to evaluate their guards. We
show below that (C,V) satisfies φ(r) iff the concretisation of r w.r.t. V is acyclic,
provided that this relation has finite prefixes.

7

input: γ, A output: Cwf , Crf, Cgrf

1 reads := {(α, {r1 . . . rn}) | ri is read ∧ addr(ri) = α}
2 writes := {(α, {w1 . . . wn}) | wi is write ∧ addr(wi) = α}
3 Crf := ∅; Cgrf := ∅
4 foreach α s.t. ∃R,W.(α,R) ∈ reads ∧ (α,W) ∈ writes do
5 foreach r ∈ R do
6 rf some := ∅
7 foreach w ∈W do
8 if (r, w) 6∈ po(γ) then
9 rf some := rf some ∪ {swr}

10 Cwf := Cwf ∪ {swr ⇒ (g(w) ∧ val(r) = val(w))}
11 Crf := Crf ∪ {swr ⇒ cwr}
12 if (w, r) not relaxed on A and tid(w) 6= tid(r) then
13 Cgrf := Cgrf ∪ {swr ⇒ cwr}
14 Cwf := Cwf ∪ {g(r)⇒

∨
s∈rf some s}

Algorithm 1: Constraints for read-from

A prefix of x in a relation r is a (possibly infinite) list S = [x0, x1, x2, . . .]
s.t. x = x0 and for all i, (xi+1, xi) ∈ r. The relation r has finite prefixes if
for each x, there is a bound l ∈ N to the cardinality of the prefixes of x in r.
We write card(S) for the cardinality of a list S = [x0, x1, x2, . . .], i.e., card(S) ,
card({x | ∃i.x = xi}). We write pref(r, x) for the set of prefixes of x in r. Formally,
r has finite prefixes when ∀x.∃l.∀S ∈ pref(r, x). card(S) < l. In our proofs and in
Alg. 2 we denote the concatenation of two lists S1 and S2 by S1++S2.

Our first lemma shows the acyclicity of a concrete relation equivalent to the
satisfiability of the formula encoding this relation symbolically:

Lemma 1. (C,V) satisfies φ(r) iff conc(r,V) is acyclic and has finite prefixes.

The formula φ(r1 ∪ r2) is equivalent to φ(r1) ∧ φ(r2). Thus we encode unions
of relations, e.g., ghbA , ws ∪ fr ∪ grfA ∪ ppoA ∪abA, as the conjunction of their
respective encodings. By Lem. 1, the acyclicity of ghbA corresponds to the sat-
isfiability of φ(ghbs), where ghbs is a symbolic encoding of ghbA.

We build φ(ghbs) as the conjunction of the formulas φ(r), for r being a
symbolic encoding of ws, fr, grfA, ppoA and abA. We now present the encodings
of ppoA, rf and ab, and omit the others for brevity. We define auxiliaries over
symbolic events: tid(e) is the thread identifier of e, addr(e) the memory address
read from or written to (e.g., x for (e) Rxy), and val(e) its (symbolic) value.
Each algorithm outputs constraints, whose conjunction we add to pord.

4.1 Read-from

For an architecture A and an ses γ, Alg. 1 encodes the read-from (resp. global
read-from) as the set of constraints Crf (resp. Cgrf). Following Sec. 2, we add
constraints to Cgrf depending on: first, the relation being within one thread or

8

between distinct threads (derivable from tid(w) and tid(r)); second, whether A
exhibits store buffering, store atomicity relaxation, or both.

To form the potential read-from pairs, we introduce a free Boolean vari-
able swr for each (w, r) of write and read to the same address (line 9), unless it
contradicts program order (line 8) (as this violates uniproc). Following Sec. 2,
each read must read from some write. We ensure this at line 14, by gathering in
Cwf , for a given r, all the potential read-from swr collected in rf some.

If swr evaluates to true (i.e., r reads from w), we record the value constraint
val(r) = val(w) in the set Cwf (line 10). The constraint added to Crf is such that
only if swr evaluates to true, the clock constraint cwr is enforced (line 11). If
(w, r) is not relaxed on A, we also add its clock constraint cwr to Cgrf (line 13).

We write (w, r) ∈ WRα when w writes to an address α and r reads from
the same α, and prf , {(w, r) ∈

⋃
α WRα | (r, w) 6∈ po(γ)}. We write rf(γ) for

the set {(w, r) ∈ prf | swr}, and grf(γ) for grfA(rf(γ)). Note that we build the
external global read-from (grfe(γ)) only, i.e., between two events from distinct
threads. We compute the internal one as part of ppoA, in Alg. 2.

Given an ses γ, Alg. 1 outputs Crf, Cgrf and Cwf . Let WR be a valuation of
the swr variables of γ. We write inst(r,WR) for r where WR instantiates the swr
variables. Alg. 1 gives the clock constraints encoding grf:

Lemma 2. (C,V,WR) satisfies
∧
c∈Cwf∪Cgrf

c iff (C,V) satisfies

i) for all r s.t. g(r) is true, there is w s.t. (w, r) ∈ inst(rf(γ),WR) and
ii) for all (w, r) ∈ inst(rf(γ),WR), g(w) is true and val(w) = val(r) and
iii)

∧
(w,r)∈inst(grfe(γ),WR) cwr.

4.2 Preserved program order

For an architecture A and an ses γ, Alg. 2 encodes the preserved program order as
the set Cppo. We reuse the notation ppoA for the function collecting non-relaxed
pairs in symbolic program order. Unlike in Sec. 2, the non-relaxed pairs in sym-
bolic program order also include the internal global internal read-from, internal
write serialisation, internal from-read, and the orderings due to Power’s isync

fence. We generate these constraints here, rather than in each of the communica-
tion encodings, to limit the redundancies. We write ppoA(γ) for ppoA(po-br(γ)),
or only ppoA if γ is clear from the context.

Alg. 2 avoids building redundant transitive closure constraints, taking into
account the guards of events: for two events e1, e2, we build a constraint iff
(e1, e2) ∈ ppoA(γ). If, e.g., ppoA(po-br) = po-br (on SC), Alg. 2 creates con-
straints only for neighbouring events in po-br(γ) in each control flow branch.

As SSA and loop unrolling yield po(γ) (i.e., lists of symbolic events per
thread) rather than po-br(γ) (the corresponding DAG), we cannot construct
Cppo by analysing control flow branches of the program.

To build ppoA, Alg. 2 uses the variable chains, a list of pairs (y, T). For a
given y, its companion set T contains the events x occurring before y in ppoA

+

together with a formula r that characterises all paths of ppoA
+ between x and

9

input: γ, A output: Cppo

1 Cppo := ∅; foreach S ∈ po(γ) ∧ S 6= ∅ do
2 S = [e]++S′ ∩ {e | e is not fence}
3 chains := [(e, ∅)]; R := true
4 foreach e′ ∈ S′ do
5 T ′ := ∅
6 foreach (e′′, T ′′) ∈ chains s.t. there is no r s.t.

(e′′, r) ∈ T ′ and ((g(e′) ∧ g(e′′) ∧R)⇒ r) do
7 re′′e′ := not relaxA γ (e′′, e′)
8 if re′′e′ is satisfiable then
9 Cppo := Cppo ∪ {re′′e′ ⇒ ce′′e′}

10 T ′ := T ′ ∪ {(e′′, re′′e′)}
11 foreach (e, r) ∈ T ′′ do
12 if ∃r′.(e, r′) ∈ T ′ then
13 R := R ∧ (ρ⇔ r′ ∨ (re′′e′ ∧ r))
14 T ′ := {(e, ρ)} ∪ T ′ \ (e, r′)

15 else T ′ := {(e, re′′e′ ∧ r)} ∪ T ′

16 chains := [(e′, T ′)]++[chains]

Algorithm 2: Constraints for preserved program order

y. We build r from formulas re′′e′ asserting that (e′′, e′) ∈ ppoA, describing
individual steps (e′′, e′) of a path between x and y.

We compute the formula re′′e′ at line 7, using the function not relax. Given an
ses γ and a pair (e′′, e′), not relaxA γ (e′′, e′) returns a formula re′′e′ expressing
the condition under which (e′′, e′) is not relaxed. Depending on the specification
of the architecture A, not relax uses the direction of events only, determines data-
and control dependencies using a definition-use data flow analysis, or considers
Power’s isync fence. In all cases, a conjunction of the guards of the instructions
on the data flow path is returned.

For a given e′, we initialise its companion set T ′ at line 5, then increment it
in lines 10–15. In line 14, we use fresh variables ρ constrained in the formula R
(line 13) to avoid repeating sub-formulas, as is standard in, e.g., CNF encod-
ings [8]. In line 7 we compute the condition re′′e′ for (e′′, e′) not being relaxed on
A for each e′′ in chains (unless skipped for transitivity, see below). We generate
the constraint re′′e′ ⇒ ce′′e′ iff re′′e′ is satisfiable (line 9), i.e., (e′′, e′) is not
relaxed on A. We now characterise the output of Alg. 2:

Lemma 3. Alg. 2 outputs {rxy ⇒ cxy | (x, y) ∈ ppoA}.

Since the rxy are guard conditions, we just need to evaluate the guards to
evaluate them. We show that Alg. 2 gives the clock constraints encoding ppo:
Lemma 4. (C,V) satisfies

∧
c∈Cppo

c iff it satisfies
∧

(x,y)∈ppoA
cxy.

4.3 Memory fences and cumulativity

Alg. 3 encodes the fence orderings as the set Cab′ . A fence s potentially induces
orderings over all (e, e′) s.t. e is in po before s and e′ after s, which is quadratic

10

input: γ, A output: Cab′

1 Cab′ := ∅; foreach S ∈ po(γ) ∧ S 6= ∅ do
2 fences := {s | s ∈ S ∧ s is fence}
3 foreach e ∈ S \ fences do
4 foreach s ∈ fences do
5 if (e, s) ∈ po(γ) then
6 Cab′ := Cab′ ∪ {g(s)⇒ ces}
7 if A is not store atomic then
8 foreach (w, e) being a w-r pair s.t. addr(w) = addr(e) and

tid(w) 6= tid(e) do
9 Cab′ := Cab′ ∪ {(g(s) ∧ swe)⇒ cws}

10 else Cab′ := Cab′ ∪ {g(s)⇒ cse}
11 if A is not store atomic then
12 foreach (e, r) being a w-r pair s.t. addr(e) = addr(r) and

tid(e) 6= tid(r) do
13 Cab′ := Cab′ ∪ {(g(s) ∧ ser)⇒ csr}

Algorithm 3: Constraints for memory fences

in the number of events in po for each fence. Cumulativity constraints depend
on read-from, and again these are paired with all events before or after (in po) a
fence. We alleviate this with the fence events (see below). The implementation
supports x86’s mfence and Power’s sync, lwsync and isync. We present only
x86’s mfence and Power’s sync, for brevity.

We test at line 5 for each pair (e, s) s.t. e is a non-fence event and s is fence if
(e, s) is in program order. The result of this test determines the non-cumulative
and cumulative constraints. For non-cumulativity, if e is before (resp. after) s
in program order, Alg. 3 produces at line 6 the clock constraint ces (resp. cse
at line 10). If A relaxes store atomicity, we build cumulativity constraints. For
A-cumulativity, Alg. 3 adds at line 9 the constraint swe ⇒ cws, for each (w, e)
s.t. e is in po before the fence s, and e reads from the write w. The constraint
reads “if g(s) is true (i.e., the fence is concretely executed) and if swe is true
(i.e., e reads from w), then cws is true (i.e., there is a global ordering, due to the
fence s, from w to s)”. All other constraints, i.e., the actual ordering of w before
some event e′ in po after s, follow by transitivity. We handle B-cumulativity in
a similar way, given in lines 12 and 13.

As lwsync does not order write-read pairs [4], we avoid creating a con-
straint cwr between a write w and a read r separated by an lwsync. To do
so, we use two distinct clock variables clockrs and clockws for an lwsync s.

Given an ses γ, Alg. 3 outputs Cab. We let ab(γ) be the symbolic version
of ab in Sec. 2. We only prove this encoding sound w.r.t. Sec. 2, as Cab is more
fine-grained than ab. Yet we prove our overall encoding complete in Thm. 1.

Lemma 5. If (C,V,WR) satisfies
∧
c∈Cab

c then
(C,V) satisfies

∧
(e1,e2)∈inst(ab(γ),WR) ce1e2 .

11

4.4 Soundness and completeness of the encoding

Given an architecture A and a program, the procedure of Sec. 3 and Sec. 4
outputs a formula ssa∧pord and an ses γ. This formula provably encodes the ex-
ecutions of this program valid on A and violating the property encoded in ssa in a
sound and complete way. Given an ses γ, we write φ for

∧
c∈Cppo∪Cgrf∪Cwf∪Cws∪Cab′

c:

Theorem 1. φ is satisfiable iff there is a valuation V of the symbols of ssa, and
a well formed X s.t. ghbA(conc(γ,V), X) is acyclic and has finite prefixes.

5 Experimental Results

Our experiments suggest that our technique scales enough to verify non-trivial
concurrent systems code, e.g. the worker-synchronisation logic of the relational
database PostgreSQL, socket-handover in the Apache httpd, and the core API
of the Read-Copy-Update (RCU) mutual exclusion code from Linux 3.2.21.

We implement our technique within the bounded model checker CBMC [10],
using a SAT solver as an underlying decision procedure. We estimate the over-
head of our method in two ways. First, we pass the benchmarks with a single,
fixed interleaving to sequential CBMC. Our implementation performs compara-
bly to sequential CBMC, as Fig. 4 shows (rows “sequential” and “concurrent”).
Second, we compare to ESBMC [11], which also implements bounded model
checking, but uses interleaving-based techniques.

Fibo. Litmus PgSQL RCU Apache
LOC 41 50.9 5412 5834 28864
unroll 5 none 2 bounded 5

tot. addr 2 11.8 6 3 8
tot. shared 45 58.7 233 107 88
same addr 11 3.7 72 4 5
all constr 308 874 3762 90 160

most costly rf (178) ab (342) rf (1868) rf (33) rf (49)
sequential 0.3 s 0.1 s 4.1 s 0.8 s 1.7 s
concurrent 3.3 s 0.2 s 90.0 s 1.0 s 2.8 s
ESBMC 13.8 s 609.8 s t/o parse err parse err

Fig. 4. Facts about all examples

In Fig. 4, we gather
facts about all exam-
ples: the Fibonacci ex-
ample from [6] with N=5,
4500 litmus tests (see be-
low), the worker synchro-
nisation in PostgreSQL,
RCU, and fdqueue in
Apache httpd. For each
we give the number of
lines of code (LOC), the
number of distinct mem-
ory addresses “tot. addr” (including unused shared variables), the total number
of shared accesses “tot. shared”, the maximal number of accesses to a single ad-
dress “same addr”, the total number of constraints “all constr” and the relation
with the most costly encoding, in terms of the number of constraints generated.
We give the loop unrolling bounds “unroll”: we write “none” when there is no
loop, and “bounded” when the loops in the program are natively bounded.

The total number of shared accesses is on average 13 times the maximal
number of accesses to a single address. The most costly constraint is usually the
read-from, or the barriers, which build on read-from. The time needed by our
tool to analyse a program grows with the total number of constraints generated.
ESBMC is 4 times slower than our tool on Fibonacci, 3050 times slower on the
litmus tests, times out on PostgreSQL, and cannot parse RCU and Apache.

12

CBMC CBMC CBMC CheckFence ESBMC Poirot SatAbs Threader

SC TSO Power SC, TSO SC SC SC SC
F CE N = 300 CE N = 220 CE N = 240 conv err CE N = 10 fails N ≥ 1 V N = 3 t/o N = 1
L 100% 100% 100% 18% 34% 47% 100% 8%
P V V CE conv err t/o parse err t/o n/a
Pf V V V conv err t/o parse err t/o n/a
R V V V conv err parse err parse err ref err n/a
A V V V conv err parse err parse err aborts n/a

Fig. 5. Comparison of all tools on all examples (time out 30 mins)

Other tools There are very few tools for verifying concurrent C programs, even
on SC [12]. For weak memory, existing techniques are restricted to TSO, and
its siblings PSO and RMO [7, 20, 19, 5, 1, 24]. Not all of them have been im-
plemented, and only few handle systems code given as C programs. We have
submitted a program transformation based approach that generalizes to Power
to ESOP [3], and use the technique presented in the present paper in there.

We tried 5 ANSI-C model checkers: SatAbs, a verifier based on predicate
abstraction [9]; ESBMC; Threader, a thread-modular verifier [16]; and Poirot,
which implements a context-bounded translation to sequential programs [21].
We also tried CheckFence [7].

In Fig. 5, we compare all tools on all examples: F for Fibonacci, L for the
litmus tests, P for PostgreSQL with its bug, Pf for our fix, R for RCU and A
for Apache. For L, P, R and A, the bounds are as in Fig. 4; for Pf we take the
one of P. For F we try the maximal N that the tool can handle within the time
out of 30 mins. For each tool, we give the model below. When a tool verifies an
example we write “V”; when it finds a counterexample we write “CE”.

Fibonacci All tools, except ESBMC, SatAbs and ours, fail to analyse Fibonacci.
Poirot claims the assertion violated for any N, which is not the case for 1 ≤ N ≤ 5.
SatAbs does not reach beyond N = 4. Our tool handles more than N = 300, which
is 30 times more loop unrolling than ESBMC, within the same amount of time.

Litmus tests We analyse 4500 tests (generated by the diy tool [4] exposing weak
memory artefacts. For example, iriw (Fig. 1) can only be reached on RMO (by
reordering the reads) or on Power (idem, or because the writes are non-atomic).

We convert these tests into C code, of 50 lines on average, involving 2 to 4
threads. Despite the small size of the tests, they prove challenging to verify, as
Fig. 5 shows: most tools, except SatAbs and ours, give wrong results or fail in
other ways on a vast majority of tests, even for SC. For each tool we give the
average percentage of correct results over all models.

PostgreSQL Developers observed a regression failure on a PowerPC machine,
and later identified the memory model as possible culprit: the processor could
delay a write by a thread until after a token signalling the end of this thread’s
work had been set. Our tool confirmed the bug, and proved a patch we proposed.
A detailed description of the problem is in [3].

13

Read-Copy-Update (RCU) is a synchronisation mechanism of the Linux kernel,
introduced in version 2.5. Writers to a concurrent data structure prepare a fresh
component (e.g., list element), then replace the existing component by adjusting
the pointer variable linking to it. Clean-up of the old component is delayed until
there is no process reading. Readers can rely on very lightweight (thus fast)
lock-free synchronisation only. The protection of reads against concurrent writes
is fence-free on x86, and uses only a light-weight fence (lwsync) on Power. We
verify the original implementation of the 3.2.21 kernel for x86 (5824 lines) and
Power (5834 lines) in less than 1 s, using a harness that asserts that the reader
will not obtain an inconsistent version of the component. On Power, removing
the lwsync makes the assertion fail.

Apache httpd is the most widely used HTTP server software. It supports a
broad range of concurrency APIs distributing incoming requests to a pool of
workers. The fdqueue module (28864 lines) is the central part of this mechanism,
which implements the hand-over of a socket together with a memory pool to an
idle worker. The implementation uses a central, shared queue for this purpose.
Shared access is synchronised using an integer keeping track of the number of
idle workers, which is updated via architecture-dependent compare-and-swap
and atomic decrement operations. Hand-over of the socket and the pool and
wake-up of the idle thread is then coordinated by means of a conventional, heavy-
weight mutex and a signal. We verify that hand-over guarantees consistency of
the payload data passed to the worker in 2.45 s on x86 and 2.8 s on Power.

6 Conclusion

Our experiments demonstrate the scalability of our method for programs with
bounded loops. Our proofs suggest that this is not limited to bounded loops, but
impracticable as it involves infinite structures. We hope that this work opens up
new possibilities for over-approximation for programs with unbounded loops.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: TACAS (2012)

2. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
IEEE Computer (1995)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for
weak memory via program transformation, submitted to ESOP 2013, available at
http://www.cprover.org/etaps/

4. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models
(Extended Version). In: FMSD (2012)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in the Analysis
of Weak Memory Models. In: CAV (2011)

6. Beyer, D.: Competition on software verification - (SV-COMP). In: TACAS (2012)

14

7. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of con-
current data types on relaxed memory models. In: PLDI (2007)

8. Chambers, B., Manolios, P., Vroon, D.: Faster sat solving with better cnf genera-
tion. In: DATE (2009)

9. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: TACAS (2005)

10. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS (2004)

11. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: ICSE (2011)

12. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. TCAD (2008)

13. Ganai, M., Gupta, A.: Efficient Modeling of Concurrent Systems in BMC. In: SPIN
(2008)

14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer (1996)

15. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An Efficient Execution
Verification Tool for Memory Orderings. In: CAV (2004)

16. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier
for Multi-Threaded Programs. In: CAV (2011)

17. Huynh, Q., Roychoudhury, A.: A memory sensitive checker for C#. In: FM (2006)
18. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog pro-

grams using bounded model checking. In: DAC (2003)
19. Kuperstein, M., Vechev, M., Yahav, E.: Partial-Coherence Abstractions for Relaxed

Memory Models. In: PLDI (2011)
20. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:

FMCAD (2010)
21. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential

analysis. In: FMSD (2009)
22. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.

CACM (1978)
23. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on

a Multiprocessor. IEEE Trans. Comput. (1979)
24. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., Yahav, E.: Dynamic synthesis for

relaxed memory models. In: PLDI (2012)
25. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,

Alur, R., Martin, M., Sewell, P., Williams, D.: An Axiomatic Memory Model for
Power Multiprocessors. In: CAV (2012)

26. Musuvathi, M., Qadeer, S.: Iterative Context Bounding for Systematic Testing of
Multithreaded Programs. In: PLDI (2005)

27. Owens, S., Sarkar, S., Sewell, P.: A better x86 model: x86-TSO. In: TPHOL (2009)
28. Peled, D.: All from one, one for all. In: CAV (1993)
29. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.

In: TACAS (2005)
30. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding Power

Multiprocessors. In: PLDI (2011)
31. Sinha, N., Wang, C.: Staged Concurrent Program Analysis. In: FSE (2010)
32. Sinha, N., Wang, C.: On Interference Abstractions. In: POPL (2011)
33. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: Checking Axiomatic Specifications of

Memory Models. In: PLDI (2010)

15

