
Software Verification Using k-Induction
Extended version including appendix with proofs

Alastair F. Donaldson1, Leopold Haller1, Daniel Kroening1, and Philipp Rümmer2

1 Oxford University Computing Laboratory, Oxford, UK
2 Uppsala University, Department of Information Technology, Uppsala, Sweden

Abstract. We present combined-case k-induction, a novel technique for veri-
fying software programs. This technique draws on the strengths of the classical
inductive-invariant method and a recent application of k-induction to program
verification. In previous work, correctness of programs was established by sepa-
rately proving a base case and inductive step. We present a new k-induction rule
that takes an unstructured, reducible control flow graph (CFG), a natural loop oc-
curring in the CFG, and a positive integer k, and constructs a single CFG in which
the given loop is eliminated via an unwinding proportional to k. Recursively ap-
plying the proof rule eventually yields a loop-free CFG, which can be checked
using SAT-/SMT-based techniques. We prove soundness of the rule, and investi-
gate its theoretical properties. We then present two implementations of our tech-
nique: K-INDUCTOR, a verifier for C programs built on top of the CBMC model
checker, and K-BOOGIE, an extension of the Boogie tool. Our experiments, using
a large set of benchmarks, demonstrate that our k-induction technique frequently
allows program verification to succeed using significantly weaker loop invariants
than are required with the standard inductive invariant approach.

1 Introduction

We present a novel technique for verifying imperative programs using k-induction [21].
Our method brings together two lines of existing research: the standard approach to
program verification using inductive invariants [16], employed by practical program
verifiers (including [4, 5, 11, 19], among many others) and a recent k-induction method
for program verification [13] which we refer to as split-case k-induction.

Our method, which we call combined-case k-induction, is directly stronger than
both the inductive invariant approach and split-case k-induction, potentially allowing a
program to be verified using weaker loop invariants than would usually be required. In
addition, combined-case k-induction avoids the problem of exponential case explosion
associated with split-case k-induction.

We recap the inductive invariant and split-case k-induction approaches to verifica-
tion, and outline our new combined-case k-induction technique in §2, using an example.
After introducing necessary notation (§3), we make the following novel contributions:

– We formally present combined-case k-induction as a proof rule operating on control
flow graphs, and prove soundness of the rule (§4)

– We consider theoretical properties of the rule, and prove a confluence theorem,
showing that, in a multi-loop program, the order in which our rule is applied to
loops does not affect the result of verification (§5)

– We present two implementations of our method: K-INDUCTOR, a verifier for C
programs built on top of the CBMC model checker, and K-BOOGIE, an extension
of the Boogie tool and experimental results applying these tools to a large set of
benchmarks (§6)

Our experiments demonstrate that combined-case k-induction frequently allows
program verification to succeed using significantly weaker loop invariants than are re-
quired with either the standard inductive invariant approach, or split-case k-induction

Throughout the paper, we are concerned with proving partial correctness with re-
spect to assertions: establishing that whenever a statement assert φ is executed, the
expression φ evaluates to true. In the rest of the paper we simply use correctness to
refer to this notion of partial correctness.

2 Overview

Throughout the paper, we present programs as control flow graphs (CFGs). We use
the terms program and CFG synonymously. We follow the standard approach of mod-
elling control flow using a combination of nondeterministic branches and assume state-
ments. During execution, a statement assume φ causes execution to silently (and non-
erroneously) halt if the expression φ evaluates to false, and does nothing otherwise.

Consider the simple example program of Figure 1(a). The program initialises a, b
and c to distinct values, and then repeatedly cycles their values, asserting that a and
b never become equal. Variable x is initialised to zero, and after the loop an assertion
checks that x has not changed. The program is clearly correct.

The inductive invariant approach. To formally prove a program’s correctness using
inductive invariants, one first associates a candidate invariant with each loop header in
the program. One then shows that a) the candidate invariants are indeed loop invariants,
and b) these loop invariants are strong enough to imply that no assertion in the program
can fail. A technique for performing these checks in the context of unstructured pro-
grams is detailed in [3]. The technique transforms a CFG with loops into a loop-free
CFG in which each loop header in the transformed CFG is prepended with a basic block
that: asserts the loop invariant, havocs each loop-modified variable,3 and assumes the
loop invariant. Each back edge in the transformed CFG is replaced with an edge to a
new, childless basic block that asserts the invariant for the associated loop.

We say that each loop is cut with invariant φ. This is illustrated in Figure 1(b) for
the program of Figure 1(a), where invariant φ is left unspecified. Cutting every loop in a
CFG leads to a loop-free CFG, for which verification conditions can be computed using
weakest preconditions (an efficient method for this step is the main contribution of [3]).
These verification conditions can then be discharged to a theorem prover, and if they

3 A variable is havocked if it is assigned a nondeterministic value. A loop-modified variable is a
variable that is the target of an assignment in the loop under consideration.

2

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

assume i ≥ n;
assert x = 0;

(a) Original CFG

B1

assert φ;
i,a,b,c := *;
assume φ;

B2

assume i ≥ n;
assert x = 0;

assert φ;

(b) CFG after loop cutting

Fig. 1. A simple program, and the CFG obtained using the inductive invariant approach.

are proven, the program is deemed correct. In Figure 1(b), taking φ to be (a 6= b ∧ b 6=
c ∧ c 6= a) allows a proof of correctness to succeed.

The main problem with the inductive invariant approach is finding the required loop
invariants. Despite a wealth of research into automatic invariant generation (see [8] and
references therein for a discussion of state-of-the-art techniques), this is by no means a
solved problem, and in the worst case loop invariants must still be specified manually.
Split-case k-induction. The k-induction method was proposed as a technique for SAT-
based verification of finite-state transition systems [21]. Let I(s) and T(s, s′) be for-
mulae encoding the initial states and transition relation for a system over sets of propo-
sitional state variables s and s′, P(s) a formula representing states satisfying a safety
property, and k a non-negative integer. To prove P by k-induction one must first show
that P holds in all states reachable from an initial state within k steps, i.e., that the
following formula (the base case) is unsatisfiable:

I(s1) ∧T(s1, s2) ∧ · · · ∧T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) (1)
Secondly, one must show that whenever P holds in k consecutive states s1, . . . , sk,

P also holds in the next state sk+1 of the system. This is established by checking that
the following formula (the step case) is unsatisfiable:

P(s1) ∧T(s1, s2) ∧ · · · ∧P(sk) ∧T(sk, sk+1) ∧P(sk+1) (2)
In prior work [13] we investigated a direct lifting of k-induction from transition

systems to the level of program loops. We refer to the technique of [13] as split-case
k-induction, as it follows the transition system approach of splitting verification into a
base case and step case. Split-case k-induction is applied to a single loop in a program.
In the simplest case, no loop invariant is externally provided. Instead, assertions appear-
ing directly in the loop body take the role of an invariant. Given a CFG containing a
loop, two programs are derived; we illustrate these for our running example in Figure 2
with k = 3. The base case program (Figure 2(a)) checks that no assertion can be vi-
olated within k loop iterations. This is analogous to Equation 1 above. The step case
program (Figure 2(b)) is analogous to Equation 2. It checks whether, after executing the
loop body successfully k times from an arbitrary state, a further loop iteration can be
successfully executed. In this further loop iteration, back edges to the loop header are
removed, while edges that exit the loop are preserved. Thus the step case verifies that
on loop exit, the rest of the program can be safely executed.

3

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

B1

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

assume i ≥ n;
assert x = 0;

(a) Base case

x,i,a,b,c:=*;

assume i < n;
assume a 6= b;
a,b,c:=b,c,a;

i++;

Ba
2

Ba
2

Ba
2

assume i ≥ n;
assert x = 0;

B2

(b) Step case

Fig. 2. Split-case k-induction, with k = 3

Correctness of both base and step case implies correctness of the whole program.
On the other hand, an incorrect base case indicates an error; an incorrect step case might
either indicate an error or a failure of k-induction to prove the program correct with the
current value of k (which is, in fact, the case for the step case pictured in Figure 2(b)).

In a program with multiple loops, applying split-case k-induction to one loop may
lead to a base and step case that each contain loops. In this case, the splitting proce-
dure can be applied recursively until loop-free CFGs are obtained, whose verification
conditions can be discharged to a prover. This may lead to an exponential number of
cases to be checked [14]. Although this offers the potential for parallel verification on a
multicore machine, early experiments in this vein do not show promising results [14].

Compared with the inductive invariant approach, split-case k-induction has the ad-
vantage that verification may succeed using weaker loop invariants. The assertion a 6= b
in Figure 1(a) can be established using split-case k-induction as shown in Figure 2
by taking k ≥ 3: unlike the inductive invariant approach, no external invariant (like
a 6= b ∧ b 6= c ∧ c 6= a) is required. However, split-case k-induction has the disad-
vantage that in the step case (Figure 2(b)), information about the values of variables
not occurring in the loop is entirely lost. Although the variable x in the example is not
modified in the loop, proving the assertion x = 0 after the loop is beyond the reach
of split-case k-induction. For split-case k-induction to succeed on this example, an in-
variant like x = 0 must be added to the loop body as an assertion. In contrast, with
the inductive invariant approach, the fact that x is assigned to zero before the loop is
preserved by the loop cutting process.

Our contribution: combined-case k-induction. In this paper, we present combined-
case k-induction, which brings together the strengths of split-case k-induction and the
inductive invariant approach. Like the inductive invariant approach, combined-case k-
induction works by cutting loops in the input CFG one at a time, resulting in a single
program that needs to be checked, but like split-case k-induction, no external invariant
is required.

4

x:=0;
i:=0;
a:=1;
b:=2;
c:=3;

assume i < n;
assert a 6= b;
a,b,c:=b,c,a;

i++;

B2

B2

B2

i,a,b,c:=*;

assume i < n;
assume a 6= b;
a,b,c:=b,c,a;

Ba
2

Ba
2

Ba
2

B2

assume i ≥ n;
assert x = 0

Fig. 3. k-Induction using a single check

A non-negative integer kL is associated with each loop L in the input CFG. Loop
L is then kL-cut by replacing it with: kL copies of the loop body, statements havocking
all loop-modified variables, and kL copies of the loop body where all assertions are
replaced with assumptions and edges exiting the loop are removed. The last of the
“assume” copies of the loop body is followed by a regular copy of the loop body, in
which back edges to the loop header are removed.

Figure 3 illustrates combined-case k-induction applied to the example CFG of Fig-
ure 1(a); the single loop has been 3-cut. Comparing Figure 3 with Figure 2, observe that
the base and step cases of Figure 2 are essentially merged in Figure 3. There is one key
difference: variable x, which is not modified by the loop of Figure 1(a), is not havocked
in Figure 3. Thus, unlike with split-case k-induction, we do not lose the information that
the variable always retains its original value. Furthermore, because combined-case k-
induction does not split verification into multiple cases, the exponential case explosion
associated with split-case k-induction is completely avoided.

Summary of overview. Our novel technique, combined-case k-induction, builds on the
strengths of the inductive invariant and split-case k-induction approaches to program
verification. With combined-case k-induction, the program of Figure 1(a), which is be-
yond the reach of split-case k-induction, can be directly verified with k ≥ 3. Unlike with
the inductive invariant approach, no external invariant is required. Our experimental re-
sults in §6 demonstrate that combined-case k-induction frequently makes verification
possible with weaker invariants than are otherwise required.

We are now ready to formally present our contribution.

3 Control flow graphs and loops

We present our results in terms of control flow graphs, which minimal, but general
enough to uniformly translate imperative programs where procedure calls are either
inlined, or replaced with pre- and post-conditions. In the diagrams of §2 we presented
CFGs whose nodes are basic blocks. For ease of formal presentation, from this point on
we consider CFGs whose nodes are single statements.

5

LetX be a set of integer variables, and let Expr be the set of all integer and boolean
expressions over X , using standard arithmetic and boolean operations. The set Stmt of
statements over X covers nondeterministic assignments, assumptions, and assertions:

Stmt = {x := ∗ | x ∈ X} ∪ {assume φ | φ ∈ Expr} ∪ {assert φ | φ ∈ Expr}.

Intuitively, a nondeterministic assignment x := ∗ alters the value of x arbitrarily; an
assumption assume φ suspends program execution if φ is violated and can be used
to encode conditional statements, while an assertion assert φ raises an error if φ is
violated. Neither assume φ nor assert φ have any effect if φ holds. We also use x := e
as shorthand for ordinary assignments, which can be expressed in the syntax above via
a sequence of nondeterministic assignments and assumptions.

Definition 1. A control flow graph (CFG) is a tuple (V, in, E, code), where V is a finite
set of nodes, in ∈ V an initial node, E ⊆ V × V a set of edges, and code : V → Stmt
a mapping from nodes to statements.

Loops and reducibility. We briefly recap notions of dominance, reducibility, and natu-
ral loops in CFGs, which are standard in the compilers literature [1].

Let C = (V, in, E, code) be a CFG. For u, v ∈ V , we say that u dominates v if
u = v, or if every path from in to v must pass through u. Edge (u, v) ∈ E is a back edge
if v dominates u. The natural loop associated with back edge (u, v) is the smallest set
L(u,v) ⊆ V satisfying u, v ∈ L(u,v), and (u′, v′) ∈ E∧v′ ∈ L(u,v)\{v} ⇒ u′ ∈ L(u,v).
For a node v such that there exists a back edge (u, v) ∈ E, the natural loop associated
with v is the set Lv =

⋃
u∈V,(u,v) is a back edge L(u,v). Node v is the header of loop Lv .

For an arbitrary loop L, modified(L) denotes the set of variables that may be modi-
fied by nodes in L. Formally, modified(L) = {x ∈ X | ∃l ∈ L . code(l) = ‘x := ∗’}.4

In a reducible CFG, the only edges inducing cycles are back edges. More for-
mally, C is reducible if the CFG C ′ = (V, in,FE , code) is acyclic, where FE is the
set {(u, v) ∈ E | (u, v) is not a back edge} of forward edges; otherwise,C is irreducible.

In the remainder of the paper, we assume that all CFGs are reducible. This en-
sures that every cycle in a CFG is part of a loop, and allows our k-induction method to
work recursively, unwinding loops one-by-one until a loop-free CFG is obtained. This
is not a severe restriction: structured programming techniques guarantee reducibility,
and standard (though expensive) techniques exist for transforming irreducible CFGs
into reducible ones [1].
Semantics of control flow graphs. Semantically, a CFG denotes a set of execution
traces, which are defined by first unwinding CFGs to prefix-closed sets of statement
sequences. Subsequently, statements and statement sequences are interpreted as opera-
tions on program states.

Definition 2. Let C = (V, in, E, code) be a CFG. The unwinding of C is defined as:

unwinding(C) =

{
〈code(v1), . . . , code(vn)〉 | n > 0 ∧ v1 ∈ in ∧

∀i ∈ {1, . . . , n− 1}. (vi, vi+1) ∈ E

}
∪{ε} ⊆ Stmt∗

4 In practice, modified(L) could be computed more precisely, e.g. disregarding assignments in
dead code. For a language with pointers, modified(L) is computed with respect to an alias
analysis, in the obvious way.

6

where ε denotes the empty sequence.

A non-error state is a store mapping variables to values in some domain D. The set
of program states for a CFG over X is the set of all stores, together with a designated
error state: S = {σ | σ : X → D} ∪ { }.

We give trace semantics to CFGs by first defining the effect of a statement on a
program state. This is given by the function post : S × Stmt → 2S defined as follows:

post(, s) = { } (for any statement s)
For non-error states σ 6= :

post(σ, x := ∗) = {σ′ | σ′(y) = σ(y) for all y 6= x}
post(σ, assume φ) =

(
if φσ = tt then {σ}, otherwise ∅

)
post(σ, assert φ) =

(
if φσ = tt then {σ}, otherwise { }

)
The function post is lifted to the evaluation function traces : S × Stmt∗ → 2S

∗
on

statement sequences as follows:

traces(σ, s) = {〈σ, σ′〉 | σ′ ∈ post(σ, s)}
traces(σ, 〈s1, . . . , sn〉) = {σ.τ | ∃σ′. σ′ ∈ post(σ, s1) ∧ τ ∈ traces(σ′, 〈s2, . . . , sn〉)}

Here, for a state σ ∈ S and state tuple τ ∈ Sm, σ.τ ∈ Sm+1 is the concatenation of σ
and τ . The set of traces of a CFG C is the union of the traces for any of its paths:

traces(C) =
⋃
{traces(σ, p) | σ ∈ S \ { } ∧ p ∈ unwinding(C)}.

Note that there are no traces along which assume-statements fail.
We say that CFG C is correct if does not appear on any trace in traces(C). Oth-

erwise C is not correct, and a trace in traces(C) which leads to is a counterexample
to correctness.

4 Proof rule and verification algorithm

Given a CFG C containing a loop L, and a positive integer k, we shall define a k-
induction rule that transforms C into a CFG CLk in which loop L is eliminated via k-
cutting, such that correctness ofCLk implies correctness ofC. We start by motivating the
use of the rule for verification by considering the procedure ANALYSE of Algorithm 1.

ANALYSE attempts to prove correctness of C by applying the k-induction rule re-
cursively. At each step, a loop in the CFG, and a corresponding value of k is chosen.
The loop is eliminated from the CFG by k-cutting. If the result is a loop-free CFG,
correctness is checked by an appropriate decision procedure (e.g. an SMT solver). Oth-
erwise, the process continues with the selection of another loop. If a k-cut CFG is not
found to be correct (a recursive call to ANALYSE returns DON’T KNOW) then the pro-
cedure either returns an inconclusive result, or backtracks and applies k-induction to a
different loop, and/or using a different value for k.

Note that ANALYSE cannot be used to determine that a program is incorrect. It could
be modified to do so, by explicitly marking those portions of a k-cut CFG in which an
error signifies a genuine bug; alternatively, ANALYSE can simply be executed in parallel
with bounded model checking [6].

7

Algorithm 1: ANALYSE

Input: Reducible CFG C = (V, in, E, code).
Output: One of {CORRECT,DON’T KNOW}
if C is loop-free then

if DECIDE(C) = CORRECT then // Program is correct
return CORRECT;

else // Correctness not determined
return DON’T KNOW;

end
else // apply the k-induction rule

(∗) choose loop L in C and depth k ∈ N;
result←− ANALYSE(CL

k);
if result = DON’T KNOW then // k-induction was inconclusive

(∗∗) either back-track to (∗), or return DON’T KNOW;
else // k-induction was conclusive

return result;
end

end

4.1 Graphical description of k-induction proof rule

Figure 4(a) depicts an arbitrary CFG C that contains at least one loop, L. The CFG is
separated into a loop L (the smaller cloud), and the set of nodes outside L (the cloud
labelled “Main program”). The main program may contain further loops, and L may
contain nested loops. We assume that entry to the CFG, indicated by the edge into “Main
program”, is not via L. The program can be re-written to enforce this, if necessary.

Loop L has a single entry point, or header, indicated by the large dot in Figure 4(a).
There are edges from at least one (and possibly multiple) node(s) in the main program
to this header. Inside L, there are back edges from at least one node to the header. In
addition, there are zero-or-more edges that exit L, leading back to the main program.

For some unspecified k > 0, Figure 4(b) shows the CFG CLk generated by our
novel k-induction rule, which we present formally in §4.2. The loop L has been k-cut,
producing a CFG CLk with four components. The nodes outside L are labelled “Main
program”. Edges from the main program into L in Figure 4(a) are replaced with edges
into the first of k copies of the body of L, denoted L1, . . . , Lk. These are marked “Base
case” in Figure 4(b). In each Li, edges leaving L are preserved, as are edges within L,
except for back edges. For i < k, a back edge in L is replaced in Li with an edge to the
header node of the next copy of L, namely Li+1. The base case part of CLk checks that
the first k iterations of L can be successfully executed.

In the final copy of L appearing in the base case, Lk, back edges are replaced with
edges to the sequence of nodes marked Z in Figure 4(b). Z has the effect of havocking
the variables x1, . . . , xd that comprise modified(L), the loop-modified variables for L.

The final node of Z is followed by k copies of the body of L in which all state-
ments of the form assert φ are replaced with assume φ, and all edges leaving L are
removed. These modified copies of the body of L are denoted La1 , . . . , L

a
k (where a

8

Main
program

L

(a) Program

B
as

e
ca

se
St

ep
ca

se
Z

Main
program

L1 L2 Lk

La
1 La

2 La
k Lk+1

· · ·

· · ·

x1 := ∗x2 := ∗xd := ∗ · · ·

(b) Unrolled program

Fig. 4. Schematic overview of the new k-induction rule. modified(L) = {x1, . . . , xd} is the set
of variables modified in loop L.

denotes assume), and back-edges in L are replaced in Lai with edges to to the header
of Lai+1, for i < k. In Lak, back edges are replaced with edges to Lk+1. This is a final
copy of the body of L, where assertions are left intact, edges leaving L are preserved,
and back-edges are removed. The fragments La1 , . . . , L

a
k and Lk+1 are denoted “Step

case” in Figure 4(b). Together with the Z nodes, they check that, from an arbitrary loop
entry state, assuming that k iterations of L have succeeded, a further iteration, followed
by execution of the main program, will succeed.

It may be instructive to compare the abstract program of Figure 4(a), and corre-
sponding k-cut program of Figure 4(b), with the program of Figure 1(a) and 3-cut pro-
gram of Figure 3. Loop L of Figure 4(a) corresponds to B2 in Figure 1(a). Components
L1, . . . , Lk in Figure 4(b) correspond to the three copies of B2 on the left of Figure 3,
La1 , . . . , L

a
k to the three copies ofBa2 on the right of Figure 3, and Lk+1 to the additional

copy of B2 on the right of Figure 3. Finally, the Z nodes of Figure 4(b) are reflected by
the statement i, a, b, c := ∗ in Figure 3.

4.2 Formal definition of k-induction proof rule

We now formally define our novel k-induction rule as a transformation rule on con-
trol flow graphs. To aid understanding, our formal definition uses the same notation as
presented in Figure 4,

Let C = (V, in, E, code) be a CFG and L ⊆ V a loop in C with header h. As-
sume that in /∈ L. (This can be trivially enforced by adding an assume tt node to C
if necessary.) We present a k-induction proof rule for positive values of k, under the
assumption that modified(L), the set of variables that may be modified by loop L, is
non-empty. Extending the definition, and all the results presented in this paper, to allow

9

k = 0, and modified(L) = ∅, is trivial, and the implementations we describe in §6
incorporate such extensions. However, a full presentation involves considering pedan-
tic corner cases which make the essential concepts harder to follow without providing
further insights into our work.

Thus, let k > 0, and suppose modified(L) = {x1, . . . , xd} for some d > 0. For
1 ≤ i ≤ k + 1, define Li = {vi | v ∈ L}. Thus Li is a duplicate of L where each
node is subscripted by i. Similarly, for 1 ≤ i ≤ k, define Lai = {vai | v ∈ L}. Thus
Lai is a duplicate of L where each node is subscripted by i and superscripted by a. Let
Z = {zh1 , . . . , zhd} be a fresh set of nodes, distinct from L, Li (1 ≤ i ≤ k + 1) and Lai
(1 ≤ i ≤ k).

Definition 3. CLk = (V Lk , in
L
k , E

L
k , codeLk) is defined as follows:

V Lk = (V \ L) ∪
⋃k+1
i=1 Li ∪

⋃k
i=1 L

a
i ∪ Z

inLk = in (recall that, by assumption, in /∈ L)

ELk =
{ (u, v) | (u, v) ∈ E ∧ u, v /∈ L } Edges in Main program
∪ { (u, h1) | (u, h) ∈ E ∧ u /∈ L } Main program→ L1

∪ { (ui, vi) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v 6= h } Edges in Li
∪ { (uai , v

a
i) | 1 ≤ i ≤ k ∧ (u, v) ∈ E ∧ u, v ∈ L ∧ v 6= h } Edges in Lai

∪ { (ui, hi+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Li → Li+1 (i < k)
∪ { (uai , h

a
i+1) | 1 ≤ i < k ∧ (u, h) ∈ E ∧ u ∈ L } Lai → Lai+1 (i < k)

∪ { (ui, v) | 1 ≤ i ≤ k + 1 ∧ (u, v) ∈ E ∧ u ∈ L ∧ v /∈ L } Li →Main program
∪ { (uk, zh1) | (u, h) ∈ E ∧ u ∈ L } Lk → Z
∪ { (zhi , z

h
i+1) | 1 ≤ i < d } Edges in Z

∪ { (zhd , h
a
1) } Z → La1

codeLk (zhi) = ‘xi := ∗’ (1 ≤ i ≤ d)

codeLk (vai) =

{
assume φ if code(v) = assert φ

code(v) otherwise
(1 ≤ i ≤ k)

codeLk (vi) = code(v) (1 ≤ i ≤ k + 1)
codeLk (v) = code(v) for v ∈ V Lk ∩ V

Theorem 1 (Soundness). If CLk is correct then C is correct.

The proof of Theorem 1 is presented in the appendix.

5 Theoretical properties of the k-induction rule
5.1 Confluence

We now turn to the question of confluence: for fixed values of k, does it matter in which
order the loops of a CFG are processed when recursively applying the k-induction rule?

First, we define what it means for CFGs to be equivalent.

Definition 4. Let C = (V, in, E, code) and C ′ = (V ′, in ′, E′, code ′) be CFGs. A
bijection α : V → V ′ is an isomorphism between C and C ′ if α(in) = in ′ and, for
all u, v ∈ V , code(u) = code ′(α(u)), and (u, v) ∈ E ⇔ (α(u), α(v)) ∈ E′. If there
exists an isomorphism between C and C ′, we say that C and C ′ are isomorphic.

10

We say that CFGs C and C ′ are equivalent, and write C ≡ C ′, if they are isomorphic.
It is easy to show that ≡ is indeed an equivalence relation.

The following result follows directly from the definition of a natural loop:

Lemma 1. Let L and M be distinct loops in CFG C. Then either L ∩M = ∅, L ⊂M
or M ⊂ L.

In what follows, C denotes a CFG.

Lemma 2 (Confluence of k-induction rule for disjoint loops). Let L and M be dis-
joint loops in C, and let kL and kM be positive integers. Then (CLkL

)MkM
= (CMkM

)LkL
.

Lemma 2 shows that, for disjoint loops, the order in which k-induction is applied
to each loop is irrelevant; an identical CFG always results. (Note that the CFGs are
truly identical, not merely equivalent.) Thus, for mutually disjoint loops L1, . . . , Ld in
a CFG C, and positive integers k1, . . . , kd, we can unambiguously write CL1,...,Ld

k1,...,kd
to

denote the CFG obtained by applying the k-induction rule d times, on each application
eliminating one of the loops Li according to ki.

Now consider loops L ⊂M of C, and positive integers kL and kM .
The CFG CMkM

contains kM + 1 direct copies of L, and kM copies of L in which all
assertions are replaced with assumptions. This is because L forms part of the body of
M . Let us denote these copies of L by L1, . . . , LkM+1 and La1 , . . . , L

a
kM

respectively.
Def. 3 ensures that they are all disjoint in CMkM

.
The CFG CLkL

contains a loopM ′ identical toM , except that L has been eliminated
from the body of M ′, and replaced with an unwinding of L proportional to kL.

Lemma 3 (Confluence of k-induction rule for nested loops). Let L ⊂M be loops of
C, and kL and kM positive integers. Using the above notation, we have:

(CLkL
)M
′

kM
≡ (CMkM

)L1,...,Lk+1,L
a
1 ,...,L

a
k

kL,.....................,kL
.

We now show that if we repeatedly apply the k-induction rule to obtain a loop-free
CFG, then as long as a value for k is used consistently for each loop in C, the the order
in which the k-induction rule is applied to loops is irrelevant.

We assume a map, origin which, given any CFG D derived from C by zero-or-
more applications of the k-induction rule, and a loop L of D, tells us the original loop
in C to which L corresponds. For example, given loops L ⊂M ⊂ N in C and positive
integers kL, kM , kN , CFG CNkN

contains many duplicates of L and M , including loops
L1 ⊂ M1. In turn, CFG (CNkN

)M1
kM

contains many duplicates of L1, including L11 . We
have origin(L11) = origin(L1) = origin(L) = L, origin(M1) = origin(M) = M ,
and origin(N) = N . Also, CFG CLkL

includes loops M ′ ⊂ N ′ identical to M and N ,
except that L has been unrolled. We have origin(M ′) = M and origin(N ′) = N .

Definition 5. Let k : (loops of C) → N associate a positive integer with each loop
of C. For i ≥ 0, let Pi be the set of all CFGs that can be derived from C by exactly
i applications of the k-induction rule, together with all loop-free CFGs that can be
derived from C by up to i applications of the k-induction rule. In all applications of the
rule, k is chosen according to the mapping k.

11

The sequence (Pi) is defined by P0 = {C} and

Pi = {DL
k(origin(L)) | D ∈ Pi−1 ∧ L is a loop of D} ∪

{D ∈ Pi−1 | D is loop free } .
(for i > 0)

Theorem 2 (Global confluence). There is an integer n such that Pm = Pn for all
m ≥ n. All the CFGs in Pn are equivalent, and loop-free.

To prove this theorem, we first consider the special case of outward application of
the k-induction rule, which means that only loops are unrolled that no longer contain
inner loops. Since this strategy guarantees that the total number of loops decreases by
exactly 1 each time k-induction is applied, a CFG C containing l loops is reduced to a
loop-free CFG by l applications of k-induction, regardless of which (innermost) loop is
chosen in each step. In fact, all such application sequences lead to the same CFG:

Lemma 4. Suppose the sequence (Qi) is defined by Q0 = {C} and

Qi = {DL
k(origin(L)) | D ∈ Qi−1, L ⊂ D a loop without inner loops}

for i ∈ {1, . . . , l}. Then Ql is a singleton set containing a loop-free CFG.

A proof is given in the appendix. Theorem 2 can then be proven as follows:

Proof (Theorem 2). Suppose an arbitrary sequence of applications of the k-induction
rule to the CFG C to the loops L1, L2, . . . , Lm, finally resulting in a loop-free CFG.
Let furthermore Lu be the last loop in the sequence containing an inner loop M ; this
means that the suffix Lu+1, . . . , Lm represents outward application of k-induction. We
can then first reorder the suffix with the help of Lemma 4 so that all occurrences of
M are eliminated in the beginning of the suffix, and then apply Lemma 3 to swap the
k-induction applications to Lu and to M . Iterating this procedure will eventually re-
duce L1, L2, . . . , Lm to an outward application sequence of k-induction, so that finally
Lemma 4 applies. ut

5.2 Fair enumeration of values of k

We observe that larger values of k can only make CLk simpler to verify, in the sense that
if CLk is correct, then CLk′ is also correct for all k′ > k. A similar observation applies
to programs with multiple loops. A natural strategy to choose k at (∗) in Algorithm 1
is therefore to start with small values of k, and to iteratively increment k as long as
DON’T KNOW occurs at (∗∗). We call such an enumeration strategy fair if, for any
n ∈ N, eventually a run of ANALYSE occurs in which a k ≥ n is chosen for each
loop of the input program. Due to Theorem 2, it can be concluded that if any run of
ANALYSE exists that yields the result CORRECT, then also ANALYSE driven by a fair
enumeration strategy will eventually return CORRECT.

5.3 Size of loop-free programs produced by k-induction

Since the program CLk obtained via a single application of the k-induction rule contains
2k + 1 copies of the loop L, repeated application can increase the size of a program

12

exponentially. Such exponential growth can only occur in the presence of nested loops,
however, because k-induction leaves programs parts outside of the eliminated loop L
unchanged. By a simple complexity analysis, we can derive that the size of loop-free
programs derived though repeated application of k-induction is (singly) exponential
in the depth of deepest loop nest in the worst case, but only linear in the number of
disjoint loops. This implies that the size of generated programs, in practical cases, is
not a bottleneck of the combined-case k-induction method.

6 Experimental evaluation

We have implemented our techniques in two tools. K-BOOGIE is an extension of the
BOOGIE verifier, and allows programs written in the BOOGIE language to be verified
using k-induction. As BOOGIE is an intermediate language for verification, K-BOOGIE
can be applied to programs originating from several different languages, including
Spec# [4], Dafny [19], Chalice, VCC, and Havoc. K-INDUCTOR is a k-induction-based
verifier for C programs, built on top of the bounded model checker CBMC [9].5

Experiments with K-BOOGIE. We apply K-BOOGIE to a set of 26 Boogie programs,
the majority of which were machine-generated from (hand-written) Dafny programs in-
cluded in the Boogie distribution. Most of the programs verify functional correctness of
standard algorithms, including sophisticated procedures such as the Schorr-Waite graph
marking algorithm. The Boogie programs contain altogether 40 procedures with loops
annotated with (possibly multiple) loop invariants, and were not previously known to
be amenable to k-induction. Our findings are summarised in Table 1.

To evaluate the applicability of k-induction, we first eliminated loop invariants from
the programs that were not necessary even with the normal Boogie induction rule. We
then checked, using k ∈ {0, 1, 2, 3}, which of the loop invariants were unnecessary with
combined-case k-induction. This was done by first trying to remove invariants individ-
ually, keeping all other invariants of a procedure (# removable, where the number of
removable invariants, the total number of invariants). As second step, we determined
maximum sets of invariants that could be removed simultaneously (# sim. remov-
able). In both cases, we show largest value of k required for invariant removal, over
all loops (required k). For each procedure, we show the number of lines of executable
code (LOC) and the number of loops (#loops). We also show the total number of lines
for each program (LOC program), including all procedures and additional definitions
(which can be quite considerable). For all but 11 of the procedures, spread over 22 of
the 26 programs, we find that, with 1- or 2-induction, we are able to remove invariants
that are necessary for the normal Boogie loop rule (k = 3 did not allow us to remove
further invariants for any of the programs). This illustrates that k-induction, with small
values of k, can be useful for general-purpose verification. As the required verification
times with k-induction did not differ significantly from those with the normal Boogie
rule for most procedures, we do not report detailed times.
Experiments with K-INDUCTOR. We apply K-INDUCTOR to a set of benchmarks
from the domain of direct memory access (DMA) race checking, studied in [13] (in

5 Both tools, and all our benchmarks, are available online: http://www.cprover.org/kinduction.

13

Procedure
removable, # sim. removable, LOC/ LOC

required k required k #loops program
Procedures generated from Dafny programs
VSI-b1.Add 2/4, 1 2/4, 1 114/2 710
VSI-b2.BinarySearch 0/5, 1 100/1 595
VSI-b3.Sort 1/16, 1 1/16, 1 186/2

798VSI-b3.RemoveMin 1/6, 1 1/6, 1 176/2
VSI-b4.Map.FindIndex 3/4, 2 2/4, 1 84/1 956
VSI-b6.Client.Main 1/3, 1 1/3, 1 139/1 900
VSI-b8.Glossary.Main 4/16, 1 3/16, 1 381/3
VSI-b8.Glossary.readDef 0/1, 1 71/1 1998
VSI-b8.Map.FindIndex 0/1, 1 66/1
Composite.Adjust 1/3, 2 1/3, 2 80/1 1275
LazyInitArray 1/5, 1 1/5, 1 165/1 806
SchorrWaite.RecursiveMark 0/6, 1 98/1
SchorrWaite.IterativeMark 2/17, 1 2/17, 1 177/1 1175
SchorrWaite.Main 4/27, 1 3/27, 1 275/1
SumOfCubes.Lemma0 1/2, 1 1/2, 1 81/1
SumOfCubes.Lemma1 1/2, 1 1/2, 1 65/1

915SumOfCubes.Lemma2 1/2, 1 1/2, 1 48/1
SumOfCubes.Lemma3 1/2, 1 1/2, 1 51/1
Substitution 0/1, 1 131/1 846
PriorityQueue.SiftUp 1/2, 2 1/2, 2 92/1

819PriorityQueue.SiftDown 1/2, 2 1/2, 2 101/1
MatrixFun.MirrorImage 2/6, 1 2/6, 1 125/2

922MatrixFun.Flip 1/3, 1 1/3, 1 103/1
ListReverse 2/3, 2 2/3, 2 71/1 329
ListCopy 1/4, 1 1/4, 1 141/1 434
ListContents 1/3, 1 1/3, 1 141/1 717
Cubes 3/4, 2 2/4, 2 97/1 339
Celebrity.FindCelebrity1 1/1, 2 1/1, 2 98/1
Celebrity.FindCelebrity2 0/1, 1 99/1 795
Celebrity.FindCelebrity3 0/2, 1 86/1
VSC-SumMax 1/2, 1 1/2, 1 77/1 458
VSC-Invert 0/1, 1 61/1 568
VSC-FindZero 1/2, 1 1/2, 1 90/1 625
VSC-Queens.CConsistent 0/3, 1 79/1

825VSC-Queens.SearchAux 0/1, 1 139/1

Native Boogie programs
StructuredLocking 1/1, 1 1/1, 1 16/1

40StructuredLockingWithCalls 0/1, 1 13/1
Structured.RunOffEnd1 1/1, 1 1/1, 1 12/1 53
BubbleSort 7/14, 1 7/14, 1 33/3 42
DutchFlag 1/5, 1 1/5, 1 29/1 37

Table 1. Experimental results applying K-BOOGIE to Dafny and Boogie benchmarks included in
the Boogie distribution.

Benchmark LOC/#loops min/max k split min/max k combined # invariants split speedup
1-buf 151/2 1/1 0/1 3 1.4
1-buf I/O 178/2 1/1 0/1 5 1.5
2-buf 254/3 1/2 0/2 17 2.6
2-buf I/O 304/3 1/2 0/2 29 3.9
3-buf 282/4 1/3 0/3 27 9.4
3-buf I/O 364/4 1/3 0/3 38 8.3
Euler simple 101/3 1/2 0/2 10 1.1
sync atomic op 91/3 1/1 0/1 4 2.3
sync mutex 83/2 1/1 0/1 2 3.1

Table 2. Experimental results applying K-INDUCTOR to DMA processing benchmarks.

14

which full details can be found). These consist of data processing programs for the Cell
BE processor, where data is manipulated using DMA. In [13], split-case k-induction
is applied to these benchmarks, under the simplifying assumption that in many cases
inner loops unrelated to DMA are manually sliced away, leaving single-loop programs.
We find that combined-case k-induction allows us to handle inner loops in these bench-
marks directly. With split-case k-induction, handling inner loops requires the addition
of numerous invariants, as assertions in the program text.

For each DMA processing benchmark, Table 2 shows the number of lines of code
(LOC) and the number of loops processed by k-inductor (#loops, this is the number
of loops after function inlining, which may cause loop duplication). We then show the
minimum and maximum values of k required for induction to succeed using the split-
case and combined-case approaches (min/max k split/combined), the number of in-
variants that had to be added manually for split-case k-induction to work (#invariants
split), and the speedup obtained by using combined-case k-induction over split-case k-
induction (speedup). Experiments are performed on a 3GHz Intel Xeon machine with
40 GB RAM, running 64-bit Linux. MiniSat 2 is used as a back-end SAT solver for
CBMC. Manually specified invariants are mainly simple facts related to the ranges of
variables; many could be inferred automatically using abstract interpretation.

The results show that combined-case k-induction avoids the need for a significant
number of additional invariants when verifying these examples. This allows many in-
ner loops that are unrelated to DMA processing (and thus do not contain assertions of
interest) to be handled using k = 0. We also find that combined-case k-induction is uni-
formly, and sometimes significantly faster than split-case k-induction. We attribute this
to the multiple loop-free programs that must be solved with split-case k-induction, com-
pared with the single loop-free program associated with combined-case k-induction.

7 Related work and conclusions
The concept of k-induction was first published in [21, 7], targeting the verification of
hardware designs represented by transition relations (although the basic idea had al-
ready been used in earlier implementations [20] and a version of one-induction used for
BDD-based model checking [10]). A major emphasis of these two papers is on the re-
striction to loop-free or shortest paths, which is so far not considered in our k-induction
rule due to the size of state vectors and the high degree of determinism in software pro-
grams. Several optimisations and extensions to the technique have been proposed, in-
cluding property strengthening to reduce induction depth [22], improving performance
via incremental SAT solving [15], and verification of temporal properties [2].

Besides hardware verification, k-induction has been used to analyse synchronous
programs [18, 17]. To the best of our knowledge, the first application of k-induction
to imperative software programs was done in the context of DMA race checking [13],
from which we also draw some of the benchmarks used in this paper. A combination
of the k-induction rule of [13], abstract interpretation, and domain-specific invariant
strengthening techniques for DMA race analysis is the topic of [12].

We have presented combined-case k-induction, demonstrated experimentally that it
can allow verification to succeed using weaker loop invariants than are required with
either split-case k-induction or the inductive invariant approach, and that it can sig-

15

nificantly out-perform split-case k-induction. As future work, we plan to extend this
comparison by implementing split-case k-induction in Boogie. We also plan to investi-
gate techniques for applying K-INDUCTOR to the verification of heap-manipulating C
programs.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley (2006)

2. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-based induc-
tion for temporal safety properties. Electr. Notes Theor. Comput. Sci. 119(2), 3–16 (2005)

3. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In PASTE
(2005)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview. In
CASSIS (2005)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The
KeY Approach, LNCS, vol. 4334. Springer (2007)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 118–149 (2003)

7. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In FMCAD
(2000)

8. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp.
Comput. 20(4-5), 379–405 (2008)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: TACAS (2004)
10. Déharbe, D., Moreira, A.M.: Using induction and BDDs to model check invariants. In

CHARME (1997)
11. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In OOPSLA

(2008)
12. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening induction-based race checking with

lightweight static analysis. In VMCAI (2011)
13. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code

for heterogeneous multicore processors. In TACAS (2010)
14. Donaldson, A.F., Rümmer, P., Kroening, D.: Split-case k-induction for program verification.

Tech. rep. (2011), available: www.allydonaldson.co.uk/papers/DonaldsonKR TR2011.html
15. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.

Comput. Sci. 89(4) (2003)
16. Floyd, R.: Assigning meaning to programs. In: Proceedings of Symposium on Applied Math-

ematics. pp. 19– 32 (1967)
17. Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre pro-

grams. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)
18. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based

techniques. In FMCAD (2008)
19. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In LPAR

(2010)
20. Lillieroth, C.J., Singh, S.: Formal verification of FPGA cores. Nord. J. Comput. 6(3), 299–

319 (1999)
21. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a

SAT-solver. In FMCAD (2000)
22. Vimjam, V.C., Hsiao, M.S.: Explicit safety property strengthening in SAT-based induction.

In VLSID (2007)

16

Appendix

A Correctness of k-induction

A.1 Inductive decomposition of CFGs

The k-induction rule that we have presented is an instance of a more general princi-
ple, in the following called inductive decomposition. The rule works by transforming
CFGs C into a CFG CLk that contains fewer (or less deeply nested) loops, in such a
way that the correctness of C follows from the correctness of CLk . This construction
is justified by proving that every statement sequence in the unwinding of C can be
decomposed into sequences from the unwinding of CLk .

As an important part of the argument, we observe that the statement sequence
∀x ∈ modified(L). x := ∗ inserted in CLk can be expanded to arbitrary statements as-
signing on to variables in modified(L). To define this more formally, we introduce
the notion of rewriting relations on statement sequences, which are binary relations
→ ⊆ P(Stmt∗ × Stmt∗). We will later consider in particular those relations → that
relate statement sequences s with sequences t that have “less behavior” than s.

We define how to close a set of statement sequences under self-composition:

Definition 6. Given a set P ⊆ Stmt∗ of statement sequences (over a set of variables
X) and a rewriting relation→, the set gen→(P) ⊆ Stmt∗ of sequences generated by
P modulo→ is the least prefix-closed set with the following properties:

1. P ⊆ gen→(P)
2. Closure under rewriting:

p.q.r ∈ gen→(P), q′ ∈ gen→(P), q → q′

=⇒ p.q′.r ∈ gen→(P)

3. Closure under composition:

〈p1, p2, . . . , pn〉 ∈ gen→(P), 〈q1, q2, . . . , qm〉 ∈ gen→(P),
k ∈ {n−m+ 2, . . . , n+ 1},
∀i ∈ {0, . . . , n− k}. qi+1 ∈ {pi+k, passume

i+k }
=⇒ 〈p1, p2, . . . , pn, qn−k+2, . . . , qm〉 ∈ gen→(P)

We say that a rewriting relation→ is monotonic if for all sequences s → t and all
non-error states σ ∈ S \ { } the following inclusion holds:

{σ′ | 〈σ, . . . , σ′〉 ∈ traces(σ, t)} \ { } ⊆ {σ′ | 〈σ, . . . , σ′〉 ∈ traces(σ, s)} \ { }

Lemma 5. If P ⊆ Stmt∗ is a set of correct statement sequences and→ is a monotonic
rewriting relation, then gen→(P) is a set of correct statement sequences.

Proof. Since gen→(P) is inductively defined as the least prefix-closed set satisfying
the properties 1, 2, and 3, it is enough to show that the statement sequences generated
by each of the implications are correct (observe that all prefixes of a correct statement
sequence are trivially correct).

17

1. Since all sequences in P are correct, this rule only adds correct sequences to
gen→(P).

2. Suppose p.q.r ∈ gen→(P) and q′ ∈ gen→(P) are correct, and q → q′. Let
〈σ0, σ1, . . . , σl〉 ∈ traces(p.q′.r) be a trace of p.q′.r; this trace can be split into
parts

〈σ0, σ1, . . . , σn〉 ∈ traces(p),
〈σn, σn+1, . . . , σm〉 ∈ traces(q′),
〈σm, σm+1, . . . , σl〉 ∈ traces(r).

Since q′ is correct, σm 6= . Because also q → q′, there is a corresponding trace

〈σn, σ′n+1, σ
′
n+2, . . . , σ

′
m′−1, σm〉 ∈ traces(q)

which can be composed with the other traces to a trace of p.q.r:

〈σ0, σ1, . . . , σn, σ
′
n+1, σ

′
n+2, . . . , σ

′
m′−1, σm, σm+1, . . . , σl〉 ∈ traces(p.q.r) .

Since p.q.r is correct, this implies that σl 6= , and thus cannot occur on the trace
〈σ0, σ1, . . . , σl〉.

3. Suppose 〈p1, p2, . . . , pn〉 ∈ gen→(P) and 〈q1, q2, . . . , qm〉 ∈ gen→(P) are correct
sequences of statements, k ∈ {n−m+ 2, . . . , n+ 1}, and

∀i ∈ {0, . . . , n− k}. qi+1 ∈ {pi+k, passume
i+k } .

Further, let 〈σ0, σ1, . . . , σl〉 ∈ traces(〈p1, p2, . . . , pn, qn−k+2, . . . , qm〉) be a trace
of the generated statement sequence. Because the prefix 〈σ0, σ1, . . . , σn〉 is also a
trace of the correct sequence 〈p1, p2, . . . , pn〉, the error state cannot occur on this
prefix. Thus we know that 〈σk−1, σk, . . . , σn〉 is also a trace of 〈q1, . . . , qn−k+1〉,
and therefore 〈σk−1, σk, . . . , σl〉 is a trace of 〈q1, q2, . . . , qm〉. Since 〈q1, q2, . . . , qm〉
is correct, this implies that σl 6= , and therefore cannot occur on the trace
〈σ0, σ1, . . . , σl〉.

A.2 k-Induction by inductive decomposition

We will use inductive decompositions to prove the soundness of k-induction. To this
end, we consider rewriting relations→h generated by the following rules:

p→h p

p→h p
′ q →h q

′

p.q →h p
′.q′

modified({p1, . . . , pn, p
′
1, . . . , p

′
n′}) ⊆ {x1, . . . , xm}

〈p1, . . . , pn, x1 := ∗, . . . , xm := ∗〉 →h 〈p′1, . . . , p′n′〉

It can be observed that→h is a monotonic relation, so that Lemma 5 applies. Further-
more,→h corresponds to the transformation of the combined-case k-induction rule:

18

Lemma 6. Let C and CLk be CFGs as defined in Def. 3. Then

unwinding(C) ⊆ gen→h
(unwinding(CLk)) .

Lemma 5 and Lemma 6 together directly imply Theorem 1.

Proof (Lemma 6). We assume that the k-induction rule is applied to the loop L ⊆ V
with loop header h ∈ L. As in Def. 3, we denote the original CFG and the CFG resulting
from k-induction by:

C = (V, in, E, code), CLk = (V Lk , in
L
k , E

L
k , codeLk) .

Because C is reducible, by assumption, we know that every transition into the loop
((u, v) ∈ E with u 6∈ L and v ∈ L) targets the loop header (v = h). Also, by assump-
tion we know that h 6= in .

Let 〈v1, v2, . . . , vn〉 with n > 0, v1 = in , and ∀i ∈ {1, . . . , n− 1}. (vi, vi+1) ∈ E
denote an arbitrary non-empty path of C. We infer a sequence l(1), l(2), . . . , l(n) ∈ N
counting the current number of loop iterations on 〈v1, v2, . . . , vn〉:

l(i) =

0 if vi 6∈ L

l(i− 1) if vi ∈ L \ {h}

l(i− 1) + 1 if vi = h

From this, we can derive a maximum set {p1, p2, . . . , pm} ⊆ N of “fusion points,”
which are the indexes 1 < p1 < p2 < · · · < pm = n+ 1 satisfying the condition

∀i ∈ {1, . . . ,m− 1}.
(
vpi = h ∧ l(pi) > k

)
.

We can now prove by induction that for all a ∈ {1, . . . ,m} it is the case that

〈code(v1), code(v2), . . . , code(vpa−1)〉 ∈ gen→h
(unwinding(CLk)) .

In the base case, this follows because the path 〈v1, v2, . . . , vpa−1〉 directly corre-
sponds to a path in CLk .

For the step case, observe that any sequence of statements in CLk through the base
case part

⋃k
i=1 Li and Z part can be rewritten using →h to an arbitrary sequence of

statements through the loop L. The sequence 〈code(v1), code(v2), . . . , code(vpa−1)〉
therefore corresponds to a sequence in unwinding(CLk) modulo the rewriting rela-
tion→h. This can be used to extend 〈code(v1), code(v2), . . . , code(vpa−1)〉 to the se-
quence 〈code(v1), code(v2), . . . , code(vpa+1−1)〉.

B Proof of Lemma 4

Consider two sequences of k-induction applications to loops inC (without inner loops),
unrolling the loops L̄ = L1, L2, . . . , Ll and M̄ = M1,M2, . . . ,Ml of loops. We have
to show that both sequences yield the same CFG. Let m ∈ {1, . . . , l} be minimal such

19

that Lm 6= Mm; if no such m exists, we are already finished. We show how to enlarge
the common prefix L1, L2, . . . , Lm−1 of L̄ and M̄ by repeatedly applying Lemma 2 to
M̄ , without changing the resulting CFGs.

Because every loop in C is eventually unrolled in M̄ , there is a u ∈ {m+ 1, . . . , l}
such that origin(Lm) = origin(Mu). Similarly, there has to be a v ∈ {m + 1, . . . , l}
such that origin(Lv) = origin(Mu−1):

L1 L2 · · · Lm−1 Lm · · ·

M1 M2 · · · Mm−1 Mm · · · Mu−1 Mu · · · Ml

· · · LlLv

= = = 6=

Because Lv is unwound after Lm, the loop origin(Lv) cannot be an inner loop
of origin(Lm), since also Lm would otherwise contain an inner loop. Similarly, loop
origin(Mu) cannot be an inner loop of origin(Mu−1). By Lemma 1, origin(Mu) and
origin(Mu−1) are then disjoint, and so are Mu and Mu−1. This implies that unrolling
of Mu and Mu−1 can be transposed without changing the resulting CFG, by Lemma 2,
producing the sequence

M1,M2, . . . ,Mm, . . . ,Mu,Mu−1, . . . ,Ml

By iterating such transpositions,Mu can eventually be put in the place ofMm, enlarging
the common prefix of L̄ and M̄ to L1, L2, . . . , Lm. Iterating this process will eventually
make L̄ and M̄ identical. ut

C Detailed proof of Theorem 2

Suppose an arbitrary sequence of applications of the k-induction rule to the CFG C
to the loops L1, L2, . . . , Lm, finally resulting in a loop-free CFG. We show that this
sequence can be transformed, with the help of Lemma 3 and Lemma 4, to a sequence
in which k-induction is only applied to loops without inner loops, without changing
the final CFG (up to equivalence). By Lemma 4, this implies that all CFGs in Pn are
equivalent.

Let u ∈ {1, . . . ,m} be maximal such that Lu contains inner loops; if no such
u exists, we are already finished. Let M ⊂ Lu be an innermost loop of Lu. Since the
loopsLu+1, . . . , Lm do not contain inner loops, there are exactly n = 2k(origin(Lu))+
1 loops in the suffix Lu+1, . . . , Lm corresponding to M : let Lv1 , Lv2 , . . . , Lvn

be such
that origin(Lvi

) = origin(M) for all i ∈ {1, . . . , n}. Since the loops Lu+1, . . . , Lm
do not contain inner loops, and since M ⊂ Lu is an innermost loop, the suffix can
be reordered with the help of Lemma 4 to the sequence L′u+1, . . . , L

′
m, such that

origin(L′u+i) = origin(Lvi
) for all i ∈ {1, . . . , n}; this does not change the result-

ing CFG.
We can then apply Lemma 3 to reorder the sequence

L1, L2, . . . , Lu−1, Lu, L′u+1, L
′
u+2, . . . , L

′
u+n, L′u+n+1, . . . , L

′
m

20

to the sequence

L1, L2, . . . , Lu−1, M, L′′u, L′′u+n+1, . . . , L
′′
m

whereL′′u is the loop obtained by applying k-induction toM ⊂ Lu, andL′′u+n+1, . . . , L
′′
m

are derived fromL′u+n+1, . . . , L
′
m by relabeling nodes appropriately (recall that Lemma 3

only guarantees equivalent, not identical CFGs).
Iterating this procedure will eventually reduce L1, L2, . . . , Lm to an outward appli-

cation sequence of k-induction, so that finally Lemma 4 applies.

21

