
Learning the Language of Error?

Martin Chapman1, Hana Chockler1, Pascal Kesseli2, Daniel Kroening2,
Ofer Strichman3, and Michael Tautschnig4

1 Department of Informatics, King’s College London, UK.
martin.chapman,hana.chockler@kcl.ac.uk

2 Department of Computer Science, University of Oxford, UK.
pascal.kesseli,kroening@cs.ox.ac.uk

3 Information Systems Engineering, Technion, Haifa, Israel.
ofers@ie.technion.ac.il

4 EECS, Queen Mary University of London, UK.
mt@eecs.qmul.ac.uk

Abstract. We propose to harness Angluin’s L∗ algorithm for learning a
deterministic finite automaton that describes the possible scenarios un-
der which a given program error occurs. The alphabet of this automaton
is given by the user (for instance, a subset of the function call sites or
branches), and hence the automaton describes a user-defined abstraction
of those scenarios. More generally, the same technique can be used for
visualising the behaviour of a program or parts thereof. This can be used,
for example, for visually comparing different versions of a program, by
presenting an automaton for the behaviour in the symmetric difference
between them, or for assisting in merging several development branches.
We present initial experiments that demonstrate the power of an abstract
visual representation of errors and of program segments.

1 Introduction

Many automated verification tools produce a counterexample trace when an
error is found. These traces are often unintelligible because they are too long
(an error triggered after a single second can correspond to a path with millions
of states), too low-level, or both. Moreover, a trace focuses on just one specific
scenario. Thus, error traces are frequently not general enough to help focus the
attention of the programmer on the root cause of the problem.

A variety of methods have been proposed for the explanation of counterex-
amples, such as finding similar paths that satisfy the property [15] and analysing
causality [8], but these focus on a single counterexample. The analysis of mul-
tiple counterexamples has been suggested in the hardware domain by Copty et
al. [12], who propose to compute all counterexamples and present those states
that occur in all of them to the user. Multiple counterexample analysis has also
been suggested in the context of a PDA (representing software) and a DFA

? This work was supported in part by the Google Faculty Research Award 2014.

(representing a negated property), by Basu et al. [7], who describe the genera-
tion of all loop-free counterexamples of a certain class, and the presentation of
them to the user in a tree-like structure. In software, another notable example
is the model-checker MS-SLAM, which reports multiple counterexamples if they
are believed to relate to different causes [6], and each example is ‘localised’ by
comparing it to a trace that does not violate the property.

It is clear, then, that developers can benefit from seeing the multiple ways
in which a given assertion can fail, and that raw counterexamples quickly be-
come unhelpful. In this article we suggest to present the user with a DFA that
summarises all the ways (up to a given bound, as will be explained) in which an
assertion can fail. Furthermore, the alphabet of this automaton is user-defined,
e.g., the user can give some subset of the function calls in a program. We argue
that this combination of user-defined abstraction with a compact representa-
tion of multiple counterexamples addresses all three problems mentioned above.
Moreover, the same idea can be applied to describing a program or, more real-
istically, parts of a program by adding an ‘assert(false)’ at the end of the sub-
program to be explained. Fig. 1, for instance, gives an automaton that describes
the operation of a merge-sort program in terms of its possible function calls.1

We obtained it by inserting such a statement at the end of the main function.

inspect before

seq sort core merge pair merge single node inspect after

Learn Assertinspect after
inspect after

inspect after

Fig. 1. An abstract description of a merge-sort program, where the letters are the
function calls.

Our method is based on Angluin’s L∗-learning algorithm [3]. L∗ is a frame-
work for learning a minimal DFA that captures the (regular) language of a model
U over a given alphabet Σ, the behaviour of which is communicated to L∗ via
an interface called the ‘teacher’. L∗ asks the teacher membership queries over
Σ, namely whether w ∈ L(U), where w is a word and L(U) is the language of
U , and conjecture queries, namely whether for a given DFA A, L(A) = L(U).
The number of queries is bounded by O(m2n3), where n is the number of states
of the resulting (minimal) DFA, and m is the length of the longest feedback
(counterexample). The use of L∗ in the verification community, to the best of
our knowledge, has been restricted so far to the verification process itself: to
model components in an assume-guarantee framework, e.g., [14], or to model
the input-output relation in specific types of programs, in which that relation is
sufficient for verifying certain properties [10].

Trivially, the language that describes a piece of a program, or the behaviours
that fail an assertion, is neither finite or regular in the general case. We therefore
bound the length of the traces we consider by a constant, and thereby obtain a
finite set of finite words. The automaton that we learn may accept unbounded
words, but our guarantee to the user is limited: any word in L(A), up to the

1 Source code for all the programs mentioned in this article is available online from [1].

given bound, corresponds to a real trace in the program. We will formalise this
concept in Sect. 2. The fact that A may have loops has both advantages and
disadvantages. Consider, for example, the program in Fig. 2 (left). Suppose that
Σ is the set of functions that are called. With a small bound on the word
length we may get the automaton in Fig. 2 (right), which among others, accepts
the word g120 · f . The bound is not long enough to exclude this word. On the
other hand, if g had no effect on the reachability of f , then the automaton
would capture the language of error precisely, despite the fact that we are only
examining bounded traces.

void g(int x) { if (x > 100) exit(0); }

void f() { assert(0); }

void main() { // in is an input
for (int i=0; i < in; i++) g(in);
f ();
}

g

f assert

Fig. 2. A program and an automaton that we learn from it when using a low bound
(< 100) on the word length. in models an input to the program.

In the next two sections, we define the language we learn precisely, and de-
scribe our method in detail, while assuming that the reader is somewhat familiar
with L∗. L∗ is mostly used as a black-box in our framework. We describe various
aspects of our system and our empirical evaluation of it in Sec. 4, and conclude
with some ideas for future research in Sec. 5.

2 The language we learn

Our learning scheme is based on user-defined events, which can be anything a
user chooses as their atoms for describing the behaviours that lead to an assertion
violation. At source-level, events are identified by instrumenting the code with
a Learn(id) instruction at the desired position, where id is an identifier of the
event. Typical locations for such instrumentation are at the entry to functions
and branches, both of which can be done automatically by our tool. Each location
obtains its own unique id.

The set of event IDs constitute the alphabet Σ of the automaton A that we
construct. A sequence of events is a Σ-word that may or may not be in L(A),
the language of A. For an instrumented program P , a trace π of P induces a
Σ-word, which we denote by α(π). The language of such a program, denoted
L(P), is defined naturally by

L(P)
.
= {α(π) | π ∈ P} . (1)

Recall that our goal is to obtain a representation over Σ of P ’s traces that
violate a given assertion. Let ϕ be that assertion, and denote by π 6|= ϕ the fact

that a given trace violates ϕ. We now define

Fail(P)
.
= {α(π) | π ∈ P ∧ π 6|= ϕ} . (2)

In general, this set is irregular and uncomputable and, even in cases in which it
is computable, it is likely to contain too much information to be useful. However,
if we bound the loops and recursion in P , this set becomes regular, finite and
computable. Let b be such a bound, and let

Fail(P, b)
.
= {α(π) | π ∈ P ∧ |π| ≤ b ∧ π 6|= ϕ} , (3)

where |π| denotes the maximal number of loop iterations or recursive calls made
along π. Restricting the set of paths this way implicitly restricts the length of
the abstract traces that we consider, i.e., |α(π)| ≤ b′, where b′ can be computed
from P and b. We also allow users to bound the word length |α(π)| directly with
another value bwl. In Sec. 4 we will describe strategies for obtaining such bounds
automatically. Based on these bounds we define

Fail(P, b, bwl)
.
= {α(π) | π ∈ P ∧ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ} . (4)

The DFA A that we learn and present to the user has the following property:

Theorem 1. For all π ∈ P :

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐⇒ α(π) ∈ Fail(P, b, bwl) . (5)

A proof can be found in [1].

3 L∗ and the queries

We assume the reader is somewhat familiar with L∗ and only mention its es-
sentials here, while focusing on how we answer the queries produced by this
algorithm. In other words, we describe the so called ‘teacher’ and ‘oracle’, which
are the terms used in Angluin’s original description for the entities that answer
the two queries. For simplicity we will unify them under the name ‘teacher’.

Fig. 3 describes the interaction of L∗ with the teacher. L∗ learns L(U), by
querying the teacher with two types of questions:

– membership queries (top arrow), namely whether for a given word w ∈ Σ∗,
w ∈ L(U), and

– conjecture queries (third arrow from top), namely whether a given conjec-
tured automaton A has the property L(A) = L(U). If the answer is yes, L∗

terminates with A as the answer. Otherwise it expects the teacher to provide
a counterexample string σ such that σ ∈ L(U)− L(A) or σ ∈ L(A)− L(U).
In the first case, we call σ positive feedback, because it should be added
to L(A). In the second case, we call σ negative feedback since it should be
removed from L(A).

L∗ maintains a table (called an ‘observation table’) that represents transitions
and states. Let S be the set of states represented by this table. A table is said
to be closed if ∀s ∈ S. ∀α ∈ Σ. ∃s′ ∈ S. s′ ≡ s · α. In other words, the table
is closed when it represents a complete transition function. To close its table,
L∗ asks the teacher multiple membership queries. For reasons that we will not
detail here, once the table is closed it represents a DFA. L∗ presents this DFA as
a conjecture query to the teacher. If the answer to the query is false, it analyses
the counterexample σ and adds states and transitions to accommodate it, which
makes the table ‘open’ again. This leads to additional membership queries, and
the process continues.

T
ea

ch
er Unknown

model

yes / no

yes / (no + feedback)

L∗

U
L(A) = L(U) ?

w ∈ L(U) ?

A such that

L(A) = L(U)

Σ(U)

Fig. 3. The input and output of L∗, and its interaction with the teacher.

Consider the automaton in Fig. 2, which is learned by our system from the
program on the left of the same figure, when b = bwl = 4. This automaton is the
second conjecture of L∗. Let us briefly review the steps L∗ follows that lead to
this conjecture. Initially it has a single state with no transitions. Then it asks
the teacher three single-letter membership queries: whether f, g and assert are
in L(U). The answer is false to all three since, e.g., we cannot reach an assertion
failure on a path hitting f alone (in fact the first two are trivially false because
they do not end with assert).

g, f, assertAfter answering these queries, L∗ has a closed table correspond-
ing to the automaton on the right: an automaton with one non-
accepting state. It poses this automaton as a conjecture to the
teacher, which answers ‘no’ and returns σ = f·assert as positive
feedback, i.e., this word should be added to L(A). Now L∗ poses 12 more mem-
bership queries and conjectures the automaton in Fig. 2. The teacher answers
‘yes’, which terminates the algorithm. ut

We continue by describing the teacher in our case, namely how we an-
swer those queries. The source code of P is instrumented with two functions:
Learn(id) at a location of each Σ-event (recall that id is the identifier of the
event), and Learn Assert at the location of the assertion that is being in-
vestigated. The implementation of these functions depends on whether we are
checking a membership or a conjecture query, as we will now show.

3.1 Membership queries

A membership query is as follows: “given a word w, is there a π ∈ P such
that α(π) = w and π 6|= ϕ?” Fig. 4 gives sample code that we generate for
a membership query — in this case for the word (3 · 3 · 6 · 2 · 0). The letter
‘0’ always symbolises an assertion failure event, and indeed queries that do not
end with ‘0’ are trivially rejected. This code, which is an implementation of
the instrumented functions mentioned above, is added to P , and the combined
code is then checked with the Bounded Model Checker for software CBMC [11].
CBMC supports ‘assume(pred)’ statements, which block any path that does not
satisfy the predicate pred. In lines 4–5 we use this feature to block paths that
are not compatible with w.

Learn Assert is called when the path arrives at the checked assertion, and
declares the membership to be true (i.e., w ∈ L(A)) if the assertion fails exactly
at the end of the word.

1: int word[|w|] = {3, 3, 6, 2, 0}; . The checked word w
2: int idx = 0;
3: function void Learn(int x) . Event
4: if idx ≥ |w| ∨ word[idx] 6= x then
5: assume(false); . Block paths incompatible with query

6: idx = idx+ 1;

7: function Learn Assert(bool assertCondition)
8: if ¬assertCondition then . Assertion fail
9: if idx = |w| − 1 then assert(false); . w ∈ L(A). Answer ‘true’ to query

10: assume(false); . Arrived here at the wrong time: block path.

Fig. 4. Sample (pseudo) code generated for a particular membership query.

Optimizations. We bypass a CBMC call and answer ‘false’ to a membership
query if one of the following holds:

– The query does not end with a call to assert,
– The query contains more than one call to assert,
– w is incompatible with the control-flow graph.

3.2 Conjecture queries

A conjecture query is: “given a DFA A, is there a π ∈ P such that

– α(π) ∈ L(A) ∧ π |= ϕ, or
– α(π) 6∈ L(A) ∧ π 6|= ϕ ?”

The two cases correspond to negative and positive feedback to L∗, respectively.
Fig. 5 presents the code that we add to P when checking a conjecture query.

The candidate A is given in a two-dimensional array A, and the accepting states

of A are given in an array accepting (both are not shown here). path is an array
that captures the abstract path, as can be seen in the implementation of learn.
Learn Assert simulates the path accumulated so far (lines 6–7) on A in order
to find the current state. It then aborts if one of the two conditions above holds.
In both cases the path path serves as the feedback to L∗.

1: function learn(int x) . Event
2: path[++idx] = x;

3: function Learn Assert(bool assertCondition)
4: if ¬assertCondition then learn(0); . 0 = the ‘assert’ letter

5: char state = 0;
6: for (int i = 0; i < idx; ++i) do
7: state = A[state][path[i]]; . Finding current state.

8: if assertCondition ∧ accepting[state] then assert(false); . neg. feedback

9: if ¬assertCondition ∧ ¬accepting[state] then assert(false); . pos. feedback

Fig. 5. Code added to P for checking conjecture queries.

Eliminating spurious words The conjecture-query mechanism described above
only applies to paths ending with Learn Assert. Other paths should be re-
jected, and for this we add a ‘trap’ at the exit points of the program. The
implementation of this function appears in Fig. 6. It ends with negative feed-
back if the current path is a prefix of a path that a) reaches an accepting state
in A (line 6), and b) was not marked earlier as belonging to L(A) (line 7). The
reason for this filtering is that the same abstract path can belong to both a real
path p ∈ P and to a path p′ 6∈ P that we chose nondeterministically in this
function (see line 9). For example, a path p = 1 · 1 · 2 · 0 can exist in P (recall
that the ‘0’ in the end means that it violates the assertion), but there is another
path p′ that does not go via any of these locations and reaches Learn Trap,
which nondeterministically chooses this path.

1: function Learn trap
2: char state = 0;
3: for (; idx < bwl; ++idx) do
4: for (int i = 0; i ≤ idx; ++i) do . Compute current state in A
5: state = A[state][path[i]];

6: if accepting[state] then . state is an accepting state
7: if path ∈ L(A) is known then assume(false); . Block path

8: assert(false); . Negative feedback

9: path[idx] = non-deterministic element from Σ;

Fig. 6. Learn trap is called at P ’s exit points. It gives negative feedback to conjecture
queries in which ∃w ∈ L(A) such that w does not correspond to any path in P .

The trap function has an additional benefit: it brings us close to the following
desired property for every word w ∈ Σ∗:

w ∈ L(A) ∧ |w| ≤ bwl =⇒ ∃π ∈ P. α(π) = w . (6)

That is, ideally we should exclude from L(A) any word w, |w| ≤ bwl that does
not correspond to a path in P . The reason that this trap function does not
guarantee (6) is that it only catches a word w ∈ L(A) if there is a path in P
to an exit point, which is a prefix of w. In other cases, the user can check the
legality of w ∈ L(A) either manually or with a membership query.

Optimisation. We can bypass a CBMC call in the following case: consider an
automaton Acfg in which the states and transitions are identical to those of the
control-flow graph (CFG) of P , and every state is accepting. Since the elements
of Σ correspond to locations in the program we can associate them with nodes
in the CFG. Hence, we can define LΣ(Acfg), the language of Acfg projected to
Σ. Then if L(A) 6⊆ LΣ(Acfg), return ‘no’, with an element of L(A)− LΣ(Acfg)
as the negative feedback.

4 System Description and Empirical Evaluation

Determining the bounds. The automatic estimation of suitable values for
both the loop bound b and the word length bwl contributes significantly to the
usability of our framework. Our strategy for this is illustrated in Fig 8. We let
b range between 1 and bmax, where bmax is relatively small (4 in our default
configuration). This reflects the fact that higher values of b may have a negative
impact on performance, and that in practice low values of b are sufficient for
triggering the error. As an initial value for bwl (bwlmin), we take a conservative
estimation of the shortest word possible, according to a light-weight analysis of
the control-flow graph of P . We increase the value of bwl up to a maximum of
bwlmax, which is user-defined. The value of bwlmax reflects an estimation of how long
these words can be before the explanation becomes unintelligible.

Recall that the value of b implies a bound on the word length (we denoted it
b′ in Sec. 2), and hence for a given b, increasing the explicit bound on the word
length bwl beyond a certain value is meaningless. In other words, for a given b,
the process of increasing bwl converges. Until convergence, A can both increase
and decrease as a result of increasing bwl (it can decrease because paths not
belonging to the language are caught in the conjecture query, which may lead
to a smaller automaton).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

50

60

70

80

90

100

110

120

bwl

E
d
ge
s/
st
at
es

in
A

States

Edges

Fig. 7. Size of A (bubble sort).

Fig. 7 demonstrates this fact for one of
the benchmarks (bubble sort with b = 2). We
are not aware of a way to detect convergence
in Ptime, so in practice we terminate when
two conditions hold (see line 5): a) A has not
changed from the previous iteration, and b) A
does not contain edges leaving an accepting

state (‘back edges’). Recall that a failing as-
sertion aborts execution, and hence no path can continue beyond it. Hence,
the existence of such edges in A indicates that increasing b, bwl or both should
eventually remove them.

1: function LearnUptoBound(Program P)
2: for b ∈ [1 . . . bmax] do
3: for bwl ∈ [bwl

min . . . b
wl
max] do

4: A = learn P with b and bwl;
5: if A = Aprev and A does not have back edges then return A;

6: Aprev = A;

Fig. 8. The autonomous discovery of the appropriate bounds.

Incrementality. The incremental nature of LearnUptoBound is exploited
by our system for improving performance. We maintain a cache of words that
have already already been proven to be in L(U), and consult it as the first step of
answering membership queries. Negative results from membership queries can
only be cached and reused if this result does not depend on the bound. For
example, the optimisation mentioned in Sec. 3 by which we reject words that
are not compatible with the control-flow graph, does not depend on the bound
and hence can be cached and reused. In our experiments caching reduces the
number of membership queries sent to CBMC by an average of 32.28%.

Post-processing Our system performs the following post-processing on A in
order to assist the user:

– Marking dominating edges: edges that represent events that must occur in
order to reach the accepting state. In order to detect these edges, we remove
each event in turn (recall that the same event can label more than one edge),
and check whether the accepting state is still reachable from the root.

– Marking Doomed states: states from which the accepting state is inevitable [16].
– Removing the (non-accepting) sink state and its incoming edges: Such a

state always exists, because the outgoing edges of the accepting state must
transition to it (because, recall, an assertion failure corresponds to aborting
the execution). Missing transitions, then, are interpreted as rejection.

Evaluation. Our implementation of the process described so far is based on
the automata library libalf [9] and on CBMC. We used it to learn the language
of error associated with a set of software verification benchmarks (that are rel-
atively easy as verification targets for CBMC) drawn from three sources: the
Competition on Software Verification [18], the Software-artifact Infrastructure
Repository2, and a model describing the behaviour of a space shuttle as it docks

2 http://sir.unl.edu/

with the International Space Station (an open-source version of the NASA sys-
tem Docking Approach). Each of these programs contain a single instrumented
assertion. Whilst learning, we record our estimated bwlmin, and when LearnUp-
toBound terminates we record the values of bwl, the number of iterations, b,
the total CPU time in seconds, the number of states and edges in A, the number
of calls to CBMC as a percentage of the total membership queries, and the total
number of conjecture queries. All experiments were conducted on a computer
with a 3.2 GHz quad-core processor and 6 GB of DDR3 RAM. The results are
summarised in Table 1. We also tested a strategy by which we do not return
at Line 5 (recall that the condition there does not guarantee convergence), and
rather only print A. The multiple entries of bwl and b for the same benchmark
in Table 1 reflect that.

Time CBMC Queries

Target bwl
min bwl It. b [sec] States Edges memb. conj.

tcas 3 17 14 1 7.87 25 28 0.51% 34
bubble sort 8 17 9 2 2.24 10 10 0.17% 69
bubble sort 8 16 17 3 3.06 7 7 0.13% 89
bubble sort 8 19 20 3 6.12 19 21 0.12% 99
merge sort 4 8 4 1 0.11 4 3 0.92% 12
merge sort 4 9 9 2 0.54 7 9 2.59% 32
sll to dll rev 8 28 20 1 2.90 14 13 0.18% 39
sll to dll rev 8 28 40 2 7.60 17 19 0.15% 78
defroster 25 29 4 1 36.31 14 18 0.01% 26
docking 5 8 3 1 0.47 7 6 0.86% 9
docking 5 8 6 2 0.76 7 6 0.86% 18
docking 5 11 12 2 1.63 11 11 1.07% 29

Table 1. Experimental results. bwl
min is our initial bound estimation. bwl, It., b and

Time pertain to the process in LearnUptoBound, which produces A. We give the
number of states and edges of A. We also list the percentage of membership queries
made to CBMC, and the total number of conjecture queries.

Next, we present several examples ofA from this benchmark set. Fig. 9 and 10
give A in the bubble sort benchmark with b = 2 and b = 3, where the value of
bwl satisfies the condition in Line 5. Bold edges indicate dominating events, e.g.,
the function inspect is marked as dominating because a path to the error must
call it. Doomed states are labelled with ‘D’. (In this and later examples all states
have paths to the non-accepting sink-state which we remove in post-processing,
as explained above. Hence only the accepting state is marked doomed). Fig. 11
shows the docking benchmark, with b = 2, bwl = 11. The source code and the
corresponding learned automata of all our benchmarks are available online [1],
where one may interactively change the bounds and see their effect.

D
gl read gl insert list add list add

gl insert list add list add inspect

Learn Assert

inspect

Fig. 9. Automaton produced for the ‘bubble sort’ benchmark. bwl = 17. b = 2.

D

gl
re

ad

gl
in

se
rt

lis
t

ad
d

lis
t

ad
d

gl
in

se
rt

lis
t

ad
d

lis
t

ad
d

in
sp

ec
t

gl
so

rt

gl
so

rt
pa

ss
va

l
fr

om
no

de
va

l
fr

om
no

de

lis
t

m
ov

e

lis
t

de
l

lis
t

ad
d

lis
t

ad
d

gl
so

rt
pa

ss
va

l
fr

om
no

de
va

l
fr

om
no

de

in
sp

ec
t L

ea
rn

A
ss

er
t

inspect

inspect

Learn Assert

gl inser
t

Fig. 10. Automaton produced for the ‘bubble sort’ benchmark. bwl = 19. b = 3.

5 Conclusions and Future Work

Our definition of fail(P) in (2) captures the ‘language of error’, but this lan-
guage is, in the general case, not computable. We have presented a method for
automatically learning a DFA A that captures a well-defined subset of this lan-
guage (see Theorem 1), for the purpose of assisting the user to understand the
cause of the error. More generally, the same technique can be used for visualising
the behaviour of a program or parts thereof. This can be used, for example, for
visually comparing different versions of a program (by presenting an automaton
that captures the behaviour in the symmetric difference between them), or for
assisting in merging several development branches.

Future directions. A possible extension is to adapt the framework to learn
ω-regular languages, represented by Büchi automata (see [13, 4] for the exten-
sion of L∗ to ω-regular languages). This extension would enable the learning of
behaviours that violate the liveness properties of non-terminating programs.

Another future direction is learning non-regular languages, as it will enable
the learning of richer abstract representations of the language of error for a given
program. Context-free grammars are of particular interest because of the natu-
ral connection between context-free grammars and the syntax of programming
languages; some subclasses of context-free grammars have been shown to be
learnable, such as, for example, k-bounded context free grammars [2] (though in
general, the class of context-free grammars is not believed to be learnable [5]),
providing us with the possibility of harnessing these algorithms in our frame-
work.

D
Ext

Ext initialize

rt OneStep Ext output Ext update

rt OneStep

Ext output

MissionPhaseStat

Ext update

Learn Assert

Learn Assert

Fig. 11. Automaton produced for the ‘docking’ benchmark. bwl = 11. b = 2.

One of the main goals of our framework is to present the language of error
(or interesting behaviour) in a compact, easy to analyse and understandable
way. Hence, small automata are preferable, at least for manual analysis. Even
for a given alphabet Σ, we believe it should be possible to reduce the size of
the learned DFA A, based on the observation that we do not care whether a
word w such that ∀π ∈ P.|π| ≤ b ∧ |α(π)| ≤ bwl ⇒ α(π) 6= w is accepted or
rejected by the automaton. Adding a ‘don’t care’ value to the learning scheme
requires a learning mechanism that can recognise three-valued answers (see [17]
for a learning algorithm with inconclusive answers).

References

1. http://www.cprover.org/learning-errors/.

2. D. Angluin. Learning k-bounded context-free grammars. Technical report, Dept.
of Computer Science, Yale University, 1987.

3. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

4. D. Angluin and D. Fisman. Learning regular omega languages. In Proc. of 25th
ALT, pages 125–139. Springer, 2014.

5. D. Angluin and M. Kharitonov. When won’t membership queries help? (extended
abstract). In Proc. of 23rd STOC, pages 444–454. ACM, 1991.

6. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. In Proc. of POPL, pages 97–105, 2003.

7. S. Basu, D. Saha, Y. Lin, and S. A. Smolka. Generation of all counter-examples for
push-down systems. In 23rd FORTE, volume 2767 of LNCS, pages 79–94, 2003.

8. I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. J. Trefler. Explaining coun-
terexamples using causality. Formal Methods in System Design, 40(1):20–40, 2012.

9. B. Bollig, J. Katoen, C. Kern, M. Leucker, D. Neider, and D. R. Piegdon. libalf:
The automata learning framework. In Proc. of 22nd CAV, pages 360–364, 2010.

10. M. Botinc̆an and D. Babić. Sigma*: symbolic learning of input-output specifica-
tions. In Proc. of 40th POPL, pages 443–456. ACM, 2013.

11. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Proc. of 10th TACAS, pages 168–176. Springer, 2004.

12. F. Copty, A. Irron, O. Weissberg, N. P. Kropp, and G. Kamhi. Efficient debugging
in a formal verification environment. STTT, 4(3):335–348, 2003.

13. A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, and B. Wang. Extending automated
compositional verification to the full class of omega-regular languages. In Proc. of
14th TACAS, pages 2–17. Springer, 2008.

14. D. Giannakopoulou, Z. Rakamaric, and V. Raman. Symbolic learning of component
interfaces. In Proc. of 19th SAS, pages 248–264. Springer, 2012.

15. A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with dis-
tance metrics. STTT, 8(3):229–247, 2006.

16. J. Hoenicke, K. Leino, A. Podelski, M. Schäf, and T. Wies. Doomed program
points. Formal Methods in System Design, 37(2–3):171–199, 2010.

17. M. Leucker and D. Neider. Learning minimal deterministic automata from inex-
perienced teachers. In Proc. of 5th ISoLA, pages 524–538. Springer, 2012.

18. Competition on software verification 2015. http://sv-comp.sosy-lab.org/2015/.

A Proof of Theorem 1.

⇒ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇒ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ

The first two conjuncts are trivially true. For the third, falsely assume that π |= ϕ.
We separate the discussion to two cases:
• α(π) ends with a Learn Assert statement. In the (last) conjecture query π

calls that function, which appears in Fig. 5. Since π |= ϕ the guard in line 4 is
false. In line 7 state, in the last iteration of the for loop, is accepting, because
we know from the premise that α(π) ∈ L(A). This fails the assertion in line 8,
and the conjecture is rejected. Contradiction.

• Otherwise, in the (last) conjecture query, π calls the trap function of Fig. 6.
In line 5 state, in the end of the for loop, is accepting, again because we
know from the premise that α(π) ∈ L(A). The condition in line 7 is false,
and the assert(0) in the following line is reached. The conjecture is rejected.
Contradiction.

⇐ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 6|= ϕ

Again, the first two conjuncts are trivially true. For the third, falsely assume that
α(π) 6∈ L(A). Since π 6|= ϕ, π must end with a call to Learn Assert. Hence in
the (last) conjecture query π calls that function, which appears in Fig. 5. By our
false premise, the state is not accepting. Hence the condition in line 9 is met, and
α(π) is returned as a positive feedback to L∗, which adds it to A. Contradiction.

ut

