Predicate Abstraction with SATABS

SATABS

Version 1.0, 2010

SATABS

"Things like even software verification, this has been the Holy Grail of computer science for many decades, but now in some very key areas, for example, driver verification we're building tools that can do actual proof about the software and how it works in order to guarantee the reliability."

Bill Gates, April 18, 2002
Keynote address at WinHec 2002

Predicate Abstraction with SATABS - http://www.cprover.org/

Model Checking with Predicate Abstraction
SATABS

- A heavy-weight formal analysis technique
- Recent successes in software verification, e.g., SLAM at Microsoft
- The abstraction reduces the size of the model by removing irrelevant detail

Outline

Introduction
Existential Abstraction
Predicate Abstraction for Software
Counterexample-Guided Abstraction Refinement
Computing Existential Abstractions of Programs
Checking the Abstract Model
Simulating the Counterexample

Refining the Abstraction

Predicate Abstraction with SATABS - http://www.cprover.org/

Notation for Abstractions	SATABS
Abstract Domain	
Approximate representation of sets of concrete values	
$\qquad \underset{\gamma}{\stackrel{\alpha}{\gamma}} \hat{S}$	

Predicate Abstraction with SATABS - http://www.cprover.org/

Predicate Abstraction: the Basic Idea

SATABS
Concrete states over variables x, y :

Predicates:

$$
\begin{aligned}
& p_{1} \Longleftrightarrow x>y \\
& p_{2} \Longleftrightarrow y=0
\end{aligned}
$$

Abstract Transitions?

Predicate Abstraction with SATABS - http://www.cprover.org

Minimal Existential Abstractions
SATABS

There are obviously many choices for an existential abstraction for a given α.

Definition (Minimal Existential Abstraction)

A model $\hat{M}=\left(\hat{S}, \hat{S}_{0}, \hat{T}\right)$ is the minimal existential abstraction of $M=\left(S, S_{0}, T\right)$ with respect to $\alpha: S \rightarrow \hat{S}$ iff

- $\exists s \in S_{0} . \alpha(s)=\hat{s} \quad \Longleftrightarrow \quad \hat{s} \in \hat{S}_{0} \quad$ and
- $\exists\left(s, s^{\prime}\right) \in T . \alpha(s)=\hat{s} \wedge \alpha\left(s^{\prime}\right)=\hat{s}^{\prime} \quad \Longleftrightarrow \quad\left(\hat{s}, \hat{s}^{\prime}\right) \in \hat{T}$.

This is the most precise existential abstraction.

Predicate Abstraction as Abstract Domain

- We are given a set of predicates over S, denoted by Π_{1}, \ldots, Π_{n}.
- An abstract state is a valuation of the predicates:

$$
\hat{S}=\mathbb{B}^{n}
$$

- The abstraction function:

$$
\alpha(s)=\left\langle\Pi_{1}(s), \ldots, \Pi_{n}(s)\right\rangle
$$

Tedicate Abstraction with SATABS - http://www.cprover.org/

Existential Abstraction ${ }^{1}$

Definition (Existential Abstraction)

A model $\hat{M}=\left(\hat{S}, \hat{S}_{0}, \hat{T}\right)$ is an existential abstraction of $M=\left(S, S_{0}, T\right)$ with respect to $\alpha: S \rightarrow \hat{S}$ iff

- $\exists s \in S_{0} \cdot \alpha(s)=\hat{s} \quad \Rightarrow \quad \hat{s} \in \hat{S}_{0} \quad$ and
- $\exists\left(s, s^{\prime}\right) \in T . \alpha(s)=\hat{s} \wedge \alpha\left(s^{\prime}\right)=\hat{s}^{\prime} \quad \Rightarrow \quad\left(\hat{s}, \hat{s}^{\prime}\right) \in \hat{T}$.
${ }^{1}$ Clarke, Grumberg, Long: Model Checking and Abstraction, ACM TOPLAS, 1994
Predicate Abstraction with SATABS - http://www.cprover.org/

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi=s_{0}, s_{1}, \ldots$:

$$
\alpha(\pi)=\alpha\left(s_{0}\right), \alpha\left(s_{1}\right), \ldots
$$

Lemma

Let \hat{M} be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in \hat{M}.

$$
\pi \in M \quad \Rightarrow \quad \alpha(\pi) \in \hat{M}
$$

Proof by induction.
We say that \hat{M} overapproximates M.
Abstracting Properties \quad SATABS

Reminder: we are using

- a set of atomic propositions (predicates) A, and
- a state-labelling function $L: S \rightarrow \mathscr{P}(A)$
in order to define the meaning of propositions in our properties.

Predicate Abstraction with SATABS - http://www.cprover.org/

Abstracting Properties

SATABS

- An abstract state \hat{s} is labelled with $a \in A$ iff all of the corresponding concrete states are labelled with a.

$$
a \in \hat{L}(\hat{s}) \quad \Longleftrightarrow \quad \forall s \mid \alpha(s)=\hat{s} . a \in L(s)
$$

- This also means that an abstract state may have neither the label $x=0$ nor the label $x \neq 0$ - this may happen if it concretizes to concrete states with different labels!

Predicate Abstraction with SATABS - http://www.cprover.org/
Conservative Abstraction

We hope: computing \hat{M} and checking $\hat{M} \models \phi$ is easier than
checking $M \models \phi$.

Property:

$$
x>y \vee y \neq 0 \quad \Longleftrightarrow \quad p_{1} \vee \neg p_{2}
$$

Predicate Abstraction with SATABS - http://www.cprover.org/

SLAM	SATABS
	Microsoft blames most Windows crashes on third party
	device drivers
	- The Windows device driver API is quite complicated
	Drivers are low level C code
	- SLAM: Tool to automatically check device drivers for
	certain errors
	- SLAM is shipped with Device Driver Development Kit
	Full detail available at
	http://research.microsoft . com/slam/
Predicate Abstraction with satass - http///mwweproverorg/	

Pren

Another Property
SATABS

Property:
$x>y \quad \Longleftrightarrow \quad p_{1}$
But: the counterexample is spurious

Predicate Abstraction with SATABS - http://www.cprover.org/

SLIC

SATABS

- Finite state language for defining properties
- Monitors behavior of C code
- Temporal safety properties (security automata)
- familiar C syntax
- Suitable for expressing control-dominated properties
- e.g., proper sequence of events
- can track data values

Predicate Abstraction with SATABS - http://www.cprover.org/

Predicate Abstraction with SATABS - http://www.cprover.org

Refinement Example

SATABS
 do $\{$

KeAcquireSpinLock ();
nPacketsOld = nPackets;
if (request) \{
request $=$ request $->$ Next;
KeReleaseSpinLock ();
nPackets++; \quad b=b?false:*;
\}
\} while(nPackets != nPacketsOld); !b
 nPacketsOld==nPackets
KeReleaseSpinLock ()
redicate Abstraction with SATABS - http://www.cprover.org/

Counterexample-guided Abstraction Refinement
 SATABS

- "CEGAR"
- An iterative method to compute a sufficiently precise abstraction
- Initially applied in the context of hardware [Kurshan]

Predicate Abstraction with SATABS - http://www.cprover.org/

Claims:

1. This never returns a false error.
2. This never returns a false proof.
3. This is complete for finite-state models.
4. But: no termination guarantee in case of infinite-state systems

Computing Existential Abstractions of Programs SATABS

C program

report counterexample

Predicate Abstraction with SATABS - http://www.cprover.org

Predicate Images

SATABS
Reminder:

$$
\operatorname{Image}(X)=\left\{s^{\prime} \in S \mid \exists s \in X . T\left(s, s^{\prime}\right)\right\}
$$

We need

$$
\widehat{\operatorname{Image}}(\hat{X})=\left\{\hat{s}^{\prime} \in \hat{S} \mid \exists \hat{s} \in \hat{X} . \hat{T}\left(\hat{s}, \hat{s}^{\prime}\right)\right\}
$$

$\widehat{\operatorname{Image}}(\hat{X})$ is equivalent to

$$
\left\{\hat{s}, \hat{s}^{\prime} \in \hat{S}^{2} \mid \exists s, s^{\prime} \in S^{2} . \alpha(s)=\hat{s} \wedge \alpha\left(s^{\prime}\right)=\hat{s}^{\prime} \wedge T\left(s, s^{\prime}\right)\right\}
$$

This is called the predicate image of T.

Predicate Abstraction with SATABS - http://www.cprover.org/

	Predicates			
p_{1}	$\Longleftrightarrow i=1$			
p_{2}	$\Longleftrightarrow i=2$			
p_{3}	$\Longleftrightarrow \operatorname{even}(i)$		\quad Basic Block \quad	T
:---:				

p_{1}	p_{2}	p_{3}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Query to Solver

$$
i \neq 1 \wedge i \neq 2 \wedge \overline{\operatorname{even}(i)} \wedge
$$

$$
i^{\prime}=i+1 \wedge
$$

$$
i^{\prime} \neq 1 \wedge i^{\prime} \neq 2 \wedge \operatorname{even}\left(i^{\prime}\right)
$$

... and so on ...

Predicate Abstraction with SATABS - http://www.cprover.org/

Computing Existential Abstractions of Programs SATABS

Enumeration

SATABS

- Let's take existential abstraction seriously
- Basic idea: with n predicates, there are $2^{n} \cdot 2^{n}$ possible abstract transitions
- Let's just check them!

Predicate Abstraction with SATABS - http://www.cprover.org/

Predicate Images

x Computing the minimal existential abstraction can be way too slow

- Use an over-approximation instead
\checkmark Fast(er) to compute
x But has additional transitions
- Examples:
- Cartesian approximation (SLAM)
- FastAbs (SLAM)
- Lazy abstraction (Blast)
- Predicate partitioning (VCEGAR)

Finite-State Model Checkers: SMV

SATABS

(1) Variables

```
VAR b0_argc_ge_1: boolean; -- argc >= 1
VAR b1_argc_le_2147483646: boolean; -_ argc <= 2147483646
VAR b2: boolean; -- argv[argc] == NULL
VAR b3_nmemb_ge_r: boolean; __ nmemb >= r
VAR b4: boolean; - p1 == &array[0]
VAR b5_i_ge_8: boolean; - i >= 8
VAR b6_i_ge_s: boolean; - i >=s
VAR b7: boolean; -- 1 + i >= 8
VAR b8: boolean; -- 1+i>=s
VAR b9_s_gt_0: boolean; - s > >0
VAR b10_s_gt_1: boolean; -- s > 1
```

Predicate Abstraction with SATABS - http://www.cprover.org/
(3) Data

TRANS $(P C=0) \rightarrow$ next $\left(b 0_{-}\right.$argc_ge_1) $=$b0_argc_ge_1
\& next (b1_argc_le_213646)=b1_argc_le_21646
\& next (b2)=b2
(!b30 | b36)
\& (!b17 | ! b30 | b42)
\& (!b30 | !b42 | b48)
\& (!b17 | ! b30 | ! b42 | b54)
\& (!b54 | b60)
TRANS $(P C=1) \rightarrow$ next $\left(b 0_{-}\right.$argc_ge_1) $=b 0_{-}$argc_ge_1
\& next (b1_argc_le_214646) $=$ b1_argc_le_214746
\& next (b2)=b2
\& next(b3_nmemb_ge_r)=b3_nmemb_ge_r
\& next $(b 4)=b 4$
\& next $\left(b 5 _i-g e _8\right)=b 5 _i _g e _8$
\& next $(\mathrm{b} 6$ _i_ge_s $)=\mathrm{b} 6$ _i_ge_s

- No more integers!
- But:
- All control flow constructs, including function calls
- (more) non-determinism
\checkmark BDD-based model checking now scales

(2) Control Flow

_- program counter: 56 is the "terminating" PC
VAR PC: 0..56;
ASSIGN init (PC): $=0 ;-\quad$ initial PC
ASSIGN next(PC):= case
$\mathrm{PC}=0$: 1; - other
$\mathrm{PC}=1: 2 ;-$ other
$P C=19$: case - goto (with guard)
guard19: 26;
1: 20;
esac ;

Predicate Abstraction with SATABS - http://www.cprover.org/

Finite-State Model Checkers: SMV
(4) Property

- the specification
-_ file main.c line 20 column 12
function c::very_buggy_function
SPEC AG ((PC=51) $->$!b23)

Finite-State Model Checkers: SMV
SATABS

- If the property holds, we can terminate
- If the property fails, SMV generates a counterexample with an assignment for all variables, including the PC

Predicate Abstraction with SATABS - http://www.cprover.org/
Lazy Abstraction

- The progress guarantee is only valid if the minimal
existential abstraction is used.
- Thus, distinguish spurious transitions from spurious
prefixes.
- Refine spurious transitions separately to obtain minimal
existential abstraction
- SLAM: Constrain

Predicate Abstraction with SATABS - http://www.cprover.org/

Simulating the Counterexample

C program

Predicate Abstraction with SATABS - http://www.cprover.org/

Lazy Abstraction

SATABS

- One more observation:
each iteration only causes only minor changes in the abstract model
- Thus, use "incremental Model Checker", which retains the set of reachable states between iterations (BLAST)

Predicate Abstraction with SATABS - http://www.cprover.org/

Predicate Abstraction with SATABS - http://www.cprover.org
51

Predicate Abstraction with SATABS - http://www.cprover.org/

Refinement Algorithms

Using WP

1. Start with failed guard G
2. Compute $w p(G)$ along the path

Using SP

1. Start at beginning
2. Compute $s p(\ldots)$ along the path

Both methods eliminate the trace

- Advantages/disadvantages?

SATABS
int x, y;
$y=1$;
$\{y=1\}$
$\mathrm{x}=1$;
$\{x=1 \wedge y=1\}$
if $(\mathrm{y}>\mathrm{x}$)
$y--;$
else
$\{x=1 \wedge y=1 \wedge \neg y>x\}$
y++;
$\{x=1 \wedge y=2 \wedge y>x\}$
assert(y>x);
\}
This proof uses
strongest post-conditions

Predicate Abstraction with SATABS - http://www.cprover.org/
SATABS
assert(y>x);
}

```
```

```
An Alternative Proof
```

```
An Alternative Proof
    int main() \{
    int main() \{
        int \(\mathrm{x}, \mathrm{y}\);
        int \(\mathrm{x}, \mathrm{y}\);
            \(y=1\);
            \(y=1\);
            \(\{\neg y>1 \Rightarrow y+1>1\}\)
            \(\{\neg y>1 \Rightarrow y+1>1\}\)
            \(\mathrm{x}=1\);
            \(\mathrm{x}=1\);
            \(\{\neg y>x \Rightarrow y+1>x\}\)
            \(\{\neg y>x \Rightarrow y+1>x\}\)
            if ( \(\mathrm{y}>\mathrm{x}\) )
            if ( \(\mathrm{y}>\mathrm{x}\) )
                \(y--;\)
                \(y--;\)
            else
            else
            \(\{y+1>x\}\)
            \(\{y+1>x\}\)
            y++;
            y++;
            \(\{y>x\}\)
```

 \(\{y>x\}\)
    ```
```

Predicate Abstraction with SATABS - http://www.cprover.org/

```

Refining the Abstraction
SATABS

C program

report counterexample

\section*{Predicate Localization}

SATABS
- Track a separate set of predicates for each location
\(\checkmark\) Makes predicate image easier
\(\checkmark\) Makes simulation of transitions easier
\(\checkmark\) Makes the check of the abstract model easier

\section*{Predicate Refinement for Paths}

SATABS

Special case \(n=2\) :
- \(A \wedge B=\) false
- \(A \Rightarrow A^{\prime}\)
- \(A^{\prime} \wedge B=\) false
- \(\operatorname{Vars}\left(A^{\prime}\right) \subseteq(\operatorname{Vars}(A) \cap \operatorname{Vars}(B))\)
W. Craig's Interpolation theorem (1957): such an \(A^{\prime}\) exists for any first-order, inconsistent \(A\) and \(B\).
- \(\left(A_{i-1}^{\prime} \wedge A_{i}\right) \Rightarrow A_{i}^{\prime}\) for \(i \in\{1, \ldots, n\}\)
- Finally, \(\operatorname{Vars}\left(A_{i}^{\prime}\right) \subseteq\left(\operatorname{Vars}\left(A_{1} \ldots A_{i}\right) \cap \operatorname{Vars}\left(A_{i+1} \ldots A_{n}\right)\right)\)

\section*{Predicate Refinement with Craig Interpolants}
\(\checkmark\) For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof \((\rightarrow\) SAT! ) in linear time
\(\checkmark\) Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions

X Not possible for every fragment of FOL:
\[
x=2 y \quad \text { and } \quad x=2 z+1 \quad \text { with } x, y, z \in \mathbb{Z}
\]

The interpolant is " \(x\) is even"


Just sum the inequalities from \(A\), and you get an interpolant!

Predicate Abstraction with SATABS - http://www.cprover.org/

Approximating Loop Invariants: SP
```

int x, y;

```
\(x=y=0\);
while (x!=10) \{
    \(\mathrm{X}++\)
        \(y++;\)
\}

The SP refinement results in
...
\[
\text { assert }(y==10) \text {; }
\]
\(\times 10\) iterations required to prove the property.
\(\mathbf{X}\) It won't work if we replace 10 by \(n\).

Predicate Abstraction with SATABS - http://www.cprover.org/

\section*{What do we really need?}

Consider an SSA-unwinding with 3 loop iterations:
\[
\begin{array}{c:c:c:c:c} 
& \text { 1st It. } & \text { 2nd It. } & \text { 3rd It. } & \text { Assertion } \\
x_{1}=0 & x_{1} \neq 10 & x_{2} \neq 10 & x_{3} \neq 10 & \\
y_{1}=0 & x_{2}=x_{1}+1 & x_{3}=x_{2}+1 & x_{4}=x_{3}+1 & x_{4}=10 \\
& y_{2}=y_{1}+1 & y_{3}=y_{2}+1 & y_{4}=y_{3}+1 & y_{4} \neq 10 \\
x_{1}=0 & x_{2}=1 & x_{3}=2 & x_{4}=3 \\
y_{1}=0 & y_{2}=1 & y_{3}=2 & y_{4}=3
\end{array}
\]
\(\mathbf{x}\) This proof will produce the same predicates as SP.

Predicate Abstraction with SATABS - http://www.cprover.org/

\section*{Back to the Example}

Restriction to language \(\mathcal{L}=\) "no new constants":
\[
\begin{array}{c:c:c:c:c} 
& \text { 1st lt. } & \text { 2nd It. } & \text { 3rd It. } & \text { Assertion } \\
x_{1}=0 & x_{1} \neq 10 & x_{2} \neq 10 & x_{3} \neq 10 & \\
y_{1}=0 & x_{2}=x_{1}+1 & x_{3}=x_{2}+1 & x_{4}=x_{3}+1 & x_{4}=10 \\
& y_{2}=y_{1}+1 & y_{3}=y_{2}+1 & y_{4}=y_{3}+1 & y_{4} \neq 10 \\
x_{1}=0 \quad x_{2}=1 \quad & x_{3}=y_{3} \quad x_{4}=y_{4}
\end{array}
\]
\[
\begin{aligned}
& s p(\mathrm{x}=\mathrm{y}=0, \text { true }) \quad=\quad x=0 \wedge y=0 \\
& s p(\mathrm{x}++; \mathrm{y}++, \ldots)=x=1 \wedge y=1 \\
& s p(\mathrm{x}++; \mathrm{y}++, \ldots)=x=2 \wedge y=2 \\
& s p(\mathrm{x}++; \mathrm{y}++, \ldots)=x=3 \wedge y=3
\end{aligned}
\]
\(\checkmark\) The language restriction forces the solver to generalize!
- Algorithm:
- If the proof fails, increase \(\mathcal{L}\) !
- If we fail to get a sufficiently strong invariant, increase \(n\).
\(\checkmark\) This does work if we replace 10 by \(n\) !
? Which \(\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots\) is complete for which programs?```

