Predicate Abstraction with SATABS

Version 1.0, 2010
Outline

Introduction

Existential Abstraction

Predicate Abstraction for Software

Counterexample-Guided Abstraction Refinement

Computing Existential Abstractions of Programs

Checking the Abstract Model

Simulating the Counterexample

Refining the Abstraction

Predicate Abstraction with SATABS – http://www.cprover.org/
“Things like even software verification, this has been the Holy Grail of computer science for many decades, but now in some very key areas, for example, driver verification we’re building tools that can do actual proof about the software and how it works in order to guarantee the reliability.”

Bill Gates, April 18, 2002
Keynote address at WinHec 2002
“One of the least visible ways that Microsoft Research contributed to Vista, but something I like to talk about, is the work we did on what’s called the Static Driver Verifier. People who develop device drivers for Vista can verify the properties of their drivers before they ever even attempt to test that. What’s great about this technology is there is no testing involved. For the properties that it is proving, they are either true or false.

You don’t have to ask yourself

“Did I come up with a good test case or not?”

Rick Rashid, Microsoft Research chief
father of CMU’s Mach Operating System (Mac OS X)
news.cnet.com interview, 2008
Model Checking with Predicate Abstraction

- A heavy-weight formal analysis technique

- Recent successes in software verification, e.g., SLAM at Microsoft

- The abstraction reduces the size of the model by removing irrelevant detail
Model Checking with Predicate Abstraction

- Goal: make the abstract model small enough for an analysis with a BDD-based Model Checker

- Idea: only track predicates on data, and remove data variables from model

- Mostly works with control-flow dominated properties
Notation for Abstractions

Abstract Domain

Approximate representation of *sets of concrete values*

\[S \xrightarrow{\alpha} \hat{S} \xleftarrow{\gamma} \]
We are given a set of predicates over S, denoted by Π_1, \ldots, Π_n.

An abstract state is a valuation of the predicates:

$$\hat{S} = \mathbb{B}^n$$

The abstraction function:

$$\alpha(s) = \langle \Pi_1(s), \ldots, \Pi_n(s) \rangle$$
Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

- $x = 2$
 - $y = 0$
 - $y = 1$
- $x = 0$
 - $y = 0$

- $x = 1$
 - $y = 0$
 - $y = 1$
 - $y = 2$
Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

Predicates:

\[p_1 \iff x > y \]
\[p_2 \iff y = 0 \]
Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

Predicates:

\[p_1 \iff x > y \]
\[p_2 \iff y = 0 \]
Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

Predicates:

$p_1 \iff x > y$
$p_2 \iff y = 0$

Abstract Transitions?
Definition (Existential Abstraction)

A model \(\hat{M} = (\hat{S}, \hat{S}_0, \hat{T}) \) is an *existential abstraction* of \(M = (S, S_0, T) \) with respect to \(\alpha : S \to \hat{S} \) iff

1. \(\exists s \in S_0. \alpha(s) = \hat{s} \Rightarrow \hat{s} \in \hat{S}_0 \) and
2. \(\exists (s, s') \in T. \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \Rightarrow (\hat{s}, \hat{s}') \in \hat{T} \).

\(^1\)Clarke, Grumberg, Long: *Model Checking and Abstraction*, ACM TOPLAS, 1994
Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a given α.

<table>
<thead>
<tr>
<th>Definition (Minimal Existential Abstraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A model $\hat{M} = (\hat{S}, \hat{S}_0, \hat{T})$ is the minimal existential abstraction of $M = (S, S_0, T)$ with respect to $\alpha : S \rightarrow \hat{S}$ iff</td>
</tr>
<tr>
<td>$\exists s \in S_0. \alpha(s) = \hat{s} \iff \hat{s} \in \hat{S}_0$ and</td>
</tr>
<tr>
<td>$\exists (s, s') \in T. \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \iff (\hat{s}, \hat{s}') \in \hat{T}$.</td>
</tr>
</tbody>
</table>

This is the most precise existential abstraction.
Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \ldots$$
Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \ldots$$

Lemma

Let \hat{M} be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in \hat{M}.

$$\pi \in M \Rightarrow \alpha(\pi) \in \hat{M}$$

Proof by induction.
We say that \hat{M} overapproximates M.

Predicate Abstraction with SATABS – http://www.cprover.org/
Reminder: we are using

- a set of **atomic propositions** (predicates) \(A \), and
- a **state-labelling function** \(L : S \rightarrow \mathcal{P}(A) \)

in order to define the meaning of propositions in our properties.
Abstracting Properties

We define an abstract version of it as follows:

- First of all, the negations are pushed into the atomic propositions.
 E.g., we will have
 \[x = 0 \in A \]
 and
 \[x \neq 0 \in A \]
Abstracting Properties

▶ An abstract state \hat{s} is labelled with $a \in A$ iff all of the corresponding concrete states are labelled with a.

$$a \in \hat{L}(\hat{s}) \iff \forall s \mid \alpha(s) = \hat{s}. a \in L(s)$$

▶ This also means that an abstract state may have neither the label $x = 0$ nor the label $x \neq 0$ – this may happen if it concretizes to concrete states with different labels!
Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let ϕ be a \forallCTL* formula where all negations are pushed into the atomic propositions, and let \hat{M} be an existential abstraction of M. If ϕ holds on \hat{M}, then it also holds on M.

$\hat{M} \models \phi \implies M \models \phi$

We say that an existential abstraction is conservative for \forallCTL* properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of ϕ. The converse usually does not hold.
Conservative Abstraction

We hope: computing \hat{M} and checking $\hat{M} \models \phi$ is easier than checking $M \models \phi$.
Back to the Example

\[x = 2 \]
\[y = 0 \]
\[p_1, p_2 \]

\[x = 1 \]
\[y = 0 \]

\[x = 2 \]
\[y = 1 \]
\[p_1, \neg p_2 \]

\[x = 0 \]
\[y = 0 \]
\[\neg p_1, p_2 \]

\[x = 1 \]
\[y = 1 \]

\[x = 1 \]
\[y = 2 \]
\[\neg p_1, \neg p_2 \]
Back to the Example
Back to the Example

Predicate Abstraction with SATABS – http://www.cprover.org/
Back to the Example

p_1, p_2

$x = 2$
$y = 0$

$x = 2$
$y = 1$

$x = 0$
$y = 0$

$x = 1$
$y = 0$

$p_1, \neg p_2$

$x = 1$
$y = 1$

$x = 1$
$y = 1$

$x = 1$
$y = 2$

$\neg p_1, p_2$

$\neg p_1, \neg p_2$

$\neg p_1, \neg p_2$

Predicate Abstraction with SATABS – http://www.cprover.org/
Back to the Example

\[
\begin{align*}
\text{Predicate Abstraction with SATABS} & \quad \text{– http://www.cprover.org/} 18
\end{align*}
\]
Back to the Example

Predicate Abstraction with SATABS – http://www.cprover.org/
Let’s try a Property

Property:

\[x > y \lor y \neq 0 \iff p_1 \lor \neg p_2 \]
Let’s try a Property

Property:

\[x > y \lor y \neq 0 \iff p_1 \lor \neg p_2 \]
Another Property

Property:

\[x > y \iff p_1 \]

But: the counterexample is spurious

Predicate Abstraction with SATABS – http://www.cprover.org/
Another Property

Property:

\[x > y \iff p_1 \]

But: the counterexample is spurious

Predicate Abstraction with SATABS

– http://www.cprover.org/
Another Property

Property:

\[x > y \iff p_1 \]

But: the counterexample is spurious
Another Property

Property:
\[x > y \iff p_1 \]

But: the counterexample is spurious
Microsoft blames most Windows crashes on third party device drivers

The Windows device driver API is quite complicated

Drivers are low level C code

SLAM: Tool to automatically check device drivers for certain errors

SLAM is shipped with Device Driver Development Kit

Full detail available at http://research.microsoft.com/slam/
Finite state language for defining properties
 - Monitors behavior of C code
 - Temporal safety properties (security automata)
 - familiar C syntax

Suitable for expressing control-dominated properties
 - e.g., proper sequence of events
 - can track data values
state {
 enum {Locked, Unlocked}
 s = Unlocked
}

KeAcquireSpinLock.entry {
 if (s==Locked) abort;
 else s = Locked;
}

KeReleaseSpinLock.entry {
 if (s==Unlocked) abort;
 else s = Unlocked;
}
SLIC Example

```c
state {
    enum {Locked, Unlocked}
    s = Unlocked;
}

KeAcquireSpinLock.entry {
    if (s==Locked) abort;
    else s = Locked;
}

KeReleaseSpinLock.entry {
    if (s==Unlocked) abort;
    else s = Unlocked;
}
```

Predicate Abstraction with SATABS – http://www.cprover.org/
Refinement Example

do {
 KeAcquireSpinLock ();
 nPacketsOld = nPackets;
 if (request) {
 request = request−>Next;
 KeReleaseSpinLock ();
 nPackets++;
 }
} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();
Refinement Example

Does this code obey the locking rule?

\[
\text{do} \{ \\
 \text{KeAcquireSpinLock}(); \\
 \text{nPacketsOld} = \text{nPackets}; \\
 \text{if} (\text{request}) \{ \\
 \text{request} = \text{request} \rightarrow \text{Next}; \\
 \text{KeReleaseSpinLock}(); \\
 \text{nPackets}++; \\
 \} \\
\} \text{while}(\text{nPackets} \neq \text{nPacketsOld}); \\
\text{KeReleaseSpinLock}();
\]
Refinement Example

do {
 KeAcquireSpinLock ();

 if () {
 KeReleaseSpinLock ();
 }
} while ()

KeReleaseSpinLock ();
Refinement Example

```c

do {
    KeAcquireSpinLock ();
    if (*) {
        KeReleaseSpinLock ();
    }
} while (*);

KeReleaseSpinLock ();
```

Is this path concretizable?
Refinement Example

do {
 KeAcquireSpinLock ();

 if (*) {
 KeReleaseSpinLock ();
 }

} while(*);

KeReleaseSpinLock ();
do {
 KeAcquireSpinLock ();
 if (*) {
 KeReleaseSpinLock ();
 }
} while (*) ;

KeReleaseSpinLock ();

Is this path concretizable?
Refinement Example

```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
    if (request) {
        request = request->Next;
        KeReleaseSpinLock ();
        nPackets++;
    }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock ();
```
Refinement Example

\[
\text{do } \left\{ \\
\qquad \text{KeAcquireSpinLock}(); \\
\qquad \text{nPacketsOld} = \text{nPackets}; \\
\qquad \text{if } (\text{request}) \left\{ \\
\qquad\qquad \text{request} = \text{request} \rightarrow \text{Next}; \\
\qquad\qquad \text{KeReleaseSpinLock}(); \\
\qquad\qquad \text{nPackets}++; \\
\qquad \left\} \right. \\
\left. \text{while } (\text{nPackets} \neq \text{nPacketsOld}); \right. \\
\text{KeReleaseSpinLock}();
\]
Refinement Example

```c
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
    if (request) {
        request = request->Next;
        KeReleaseSpinLock ();
        nPackets++;
    }
} while (nPackets != nPacketsOld);
KeReleaseSpinLock ();
```

Let’s add the predicate `nPacketsOld == nPackets`
Refinement Example

do {
 KeAcquireSpinLock();
 nPacketsOld = nPackets;
 if (request) {
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Let’s add the predicate nPacketsOld == nPackets
Refinement Example

```c
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets;
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++;
    }
} while (nPackets != nPacketsOld);
KeReleaseSpinLock();

Let’s add the predicate
nPacketsOld == nPackets
```

This path is spurious!

Let’s add the predicate
nPacketsOld == nPackets
Refinement Example

\[\textbf{do} \{ \]

\hspace{1em} \textbf{KeAcquireSpinLock}();

\hspace{1em} \textbf{b} = \text{true};

\hspace{1em} \textbf{if} (* \} \{

\hspace{2em} \textbf{KeReleaseSpinLock}();

\hspace{2em} \textbf{b} = \text{b} ? \text{false} : *;

\} \textbf{while}(!\text{b});

\hspace{1em} \textbf{KeReleaseSpinLock}();

\]\
Refinement Example

\[
\text{do } \{
\text{KeAcquireSpinLock ();}
\text{b=true; }
\text{if } (\ast) \{ \\
\text{KeReleaseSpinLock ();}
\text{b=b?false:;} \\
\text{\}} \text{ while(} \neg \text{b) ; }
\text{KeReleaseSpinLock (); }
\text{The property holds!}
\]
Refinement Example

do {
 KeAcquireSpinLock ();
 b=true;
 if (∗) {
 KeReleaseSpinLock ();
 b=b?false:∗;
 }
} while (!b);

KeReleaseSpinLock ();

The property holds!
Refinement Example

```c
do {
    KeAcquireSpinLock();
    b=true;
    if (*)
        KeReleaseSpinLock();
    b=b?false:*;
} while(!b);
KeReleaseSpinLock();
```
Refinement Example

do {
 KeAcquireSpinLock ();
 b=true;
 if (b) {
 KeReleaseSpinLock ();
 b=b?false:*;
 }
}
while (!b);
KeReleaseSpinLock ();
Refinement Example

```c
do {
    KeAcquireSpinLock ();
    b=true;
    if (*) {
        KeReleaseSpinLock ();
        b=b?false:*
    }
}
while( !b );
KeReleaseSpinLock ();
```

The property holds!
Counterexample-guided Abstraction Refinement

▶ "CEGAR"

▶ An iterative method to compute a sufficiently precise abstraction

▶ Initially applied in the context of hardware [Kurshan]
CEGAR Overview

1.) Compute Abstraction
2.) Check Abstraction
3.) Check Feasibility
4.) Refine Predicates

[no error] [feasible] report counterexample

C program
Counterexample-guided Abstraction Refinement

Claims:

1. This never returns a false error.
2. This never returns a false proof.

3. This is complete for finite-state models.
4. But: no termination guarantee in case of infinite-state systems
Computing Existential Abstractions of Programs

1.) Compute Abstraction
2.) Check Abstraction
3.) Check Feasibility
4.) Refine Predicates

[no error]
OK

C program

[feasible]
report counterexample

Predicate Abstraction with SATABS – http://www.cprover.org/
Computing Existential Abstractions of Programs

```c
int main() {
    int i;
    i = 0;
    while (even(i))
        i++;
}
```

C Program
int main() {
 int i;
 i = 0;
 while (even(i)) {
 i ++;
 }
}

C Program

Predicates

\[
\begin{align*}
p_1 & \iff i = 0 \\
p_2 & \iff \text{even}(i)
\end{align*}
\]
Computing Existential Abstractions of Programs

```c
int main() {
    int i;
    i = 0;
    while (even(i))
        i++;
}
```

C Program

Predicates

```plaintext
p1 ⇔ i = 0
p2 ⇔ even(i)
```

Boolean Program

```c
void main() {
    bool p1, p2;
    p1 = TRUE;
    p2 = TRUE;
    while (p2) {
        p1 = p1 ? FALSE : *;
        p2 = !p2;
    }
}
```

Predicate Abstraction with SATABS – http://www.cprover.org/
Computing Existential Abstractions of Programs

C Program

```c
int main() {
    int i;
    i = 0;
    while (even(i)) {
        i++;
    }
}
```

Predicates

```
p1 ⇐⇒ i = 0
p2 ⇐⇒ even(i)
```

Boolean Program

```c
void main() {
    bool p1, p2;
    p1 = TRUE;
    p2 = TRUE;
    while (p2) {
        p1 = p1 ? FALSE : *;
        p2 = !p2;
    }
}
```
Predicate Images

Reminder:

\[
\text{Image}(X) = \{ s' \in S \mid \exists s \in X. T(s, s') \}
\]

We need

\[
\overline{\text{Image}}(\hat{X}) = \{ \hat{s}' \in \hat{S} \mid \exists \hat{s} \in \hat{X}. \hat{T}(\hat{s}, \hat{s}') \}
\]

\[
\overline{\text{Image}}(\hat{X}) \text{ is equivalent to }
\{ \hat{s}, \hat{s}' \in \hat{S}^2 \mid \exists s, s' \in S^2. \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \land T(s, s') \}
\]

This is called the \textbf{predicate image} of \(T \).
Let’s take existential abstraction seriously

Basic idea: with n predicates, there are $2^n \cdot 2^n$ possible abstract transitions

Let’s just check them!
Enumeration: Example

Predicates

\[p_1 \iff i = 1 \]
\[p_2 \iff i = 2 \]
\[p_3 \iff \text{even}(i) \]
Enumeration: Example

Predicates

\[p_1 \iff i = 1 \]
\[p_2 \iff i = 2 \]
\[p_3 \iff \text{even}(i) \]

Basic Block

\[i++; \]
Enumeration: Example

Predicates

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>$i = 1$</td>
</tr>
<tr>
<td>p_2</td>
<td>$i = 2$</td>
</tr>
<tr>
<td>p_3</td>
<td>$\text{even}(i)$</td>
</tr>
</tbody>
</table>

Basic Block

```
i++;  
```

Transition

```
i' = i + 1
```
Enumeration: Example

Predicates

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_1'</th>
<th>p_2'</th>
<th>p_3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic Block

\[i++; \]

\[T \]

\[i' = i + 1 \]
Enumeration: Example

Predicates

- \(p_1 \iff i = 1 \)
- \(p_2 \iff i = 2 \)
- \(p_3 \iff \text{even}(i) \)

Basic Block

- \(i++; \)

Predicate Abstraction with SATABS

- \(i' = i + 1 \)
Enumeration: Example

Predicates

\[p_1 \iff i = 1 \]
\[p_2 \iff i = 2 \]
\[p_3 \iff \text{even}(i) \]

Basic Block

\[i++; \]
\[i' = i + 1 \]

Query to Solver

\[i \neq 1 \land i \neq 2 \land \overline{\text{even}(i)} \land \\
\quad i' = i + 1 \land \\
\quad i' \neq 1 \land i' \neq 2 \land \overline{\text{even}(i')} \]

Predicate Abstraction with SATABS – http://www.cprover.org/
Enumeration: Example

Predicates

\[p_1 \iff i = 1 \]
\[p_2 \iff i = 2 \]
\[p_3 \iff \text{even}(i) \]

Basic Block

\[i++; \]

\[T \]

\[i' = i + 1 \]

Query to Solver

\[i \neq 1 \land i \neq 2 \land \overline{\text{even}(i)} \land \]
\[i' = i + 1 \land \]
\[i' \neq 1 \land i' \neq 2 \land \overline{\text{even}(i')} \]

Predicate Abstraction with SATABS – http://www.cprover.org/
Enumeration: Example

Predicates

- $p_1 \iff i = 1$
- $p_2 \iff i = 2$
- $p_3 \iff \text{even}(i)$

Basic Block

- $i++;$
- \[T \]
- \[i' = i + 1 \]

Query to Solver

\[
i \neq 1 \land i \neq 2 \land \overline{\text{even}(i)} \land \overline{i'} = i + 1 \land
i' \neq 1 \land i' \neq 2 \land \text{even}(i')
\]
Enumeration: Example

Predicates

- \(p_1 \iff i = 1 \)
- \(p_2 \iff i = 2 \)
- \(p_3 \iff \text{even}(i) \)

Basic Block

\[
i++;
\]

\[
i' = i + 1
\]

Query to Solver

\[
i \neq 1 \land i \neq 2 \land \overline{\text{even}(i)} \land
i' = i + 1 \land
i' \neq 1 \land i' \neq 2 \land \text{even}(i')
\]
Enumeration: Example

Predicates

\[
p_1 \iff i = 1
\]

\[
p_2 \iff i = 2
\]

\[
p_3 \iff \text{even}(i)
\]

Basic Block

\[
i++;
\]

\[
i' = i + 1
\]

Query to Solver

\[
i \neq 1 \land i \neq 2 \land \text{even}(i) \land i' = i + 1
\]

...and so on...
Computing the minimal existential abstraction can be way too slow

- Use an over-approximation instead
 - Fast(er) to compute
 - But has additional transitions

Examples:
- Cartesian approximation (SLAM)
- FastAbs (SLAM)
- Lazy abstraction (Blast)
- Predicate partitioning (VCEGAR)
Checking the Abstract Model

1.) Compute Abstraction
2.) Check Abstraction
3.) Check Feasibility
4.) Refine Predicates

C program

[feasible]
report counterexample

[no error]
OK
No more integers!

But:
- All control flow constructs, including function calls
- (more) non-determinism

✓ BDD-based model checking now scales
1. Variables

VAR b0_argc_ge_1: boolean; — argc >= 1
VAR b1_argc_le_2147483646: boolean; — argc <= 2147483646
VAR b2: boolean; — argv[argc] == NULL
VAR b3_nmemb_ge_r: boolean; — nmemb >= r
VAR b4: boolean; — p1 == &array[0]
VAR b5_i_ge_8: boolean; — i >= 8
VAR b6_i_ge_s: boolean; — i >= s
VAR b7: boolean; — 1 + i >= 8
VAR b8: boolean; — 1 + i >= s
VAR b9_s_gt_0: boolean; — s > 0
VAR b10_s_gt_1: boolean; — s > 1

...
Control Flow

— program counter: 56 is the "terminating" PC
VAR PC: 0..56;
ASSIGN init(PC) := 0; — initial PC

ASSIGN next(PC) := case
 PC=0: 1; — other
 PC=1: 2; — other
 . . .
 PC=19: case — goto (with guard)
 guard19: 26;
 1: 20;
 esac;
 . . .
Finite-State Model Checkers: SMV

TRANS (PC=0) \rightarrow next(b0_argc_ge_1) = b0_argc_ge_1
& next(b1_argc_le_213646) = b1_argc_le_21646
& next(b2) = b2
& (!b30 | b36)
& (!b17 | !b30 | b42)
& (!b30 | !b42 | b48)
& (!b17 | !b30 | !b42 | b54)
& (!b54 | b60)

TRANS (PC=1) \rightarrow next(b0_argc_ge_1) = b0_argc_ge_1
& next(b1_argc_le_214646) = b1_argc_le_214746
& next(b2) = b2
& next(b3_nmemb_ge_r) = b3_nmemb_ge_r
& next(b4) = b4
& next(b5_i_ge_8) = b5_i_ge_8
& next(b6_i_ge_s) = b6_i_ge_s

...
Property

—— the specification

—— file main.c line 20 column 12
—— function c::very_buggy_function

SPEC AG ((PC=51) → !b23)
Finite-State Model Checkers: SMV

- If the property holds, we can terminate

- If the property fails, SMV generates a counterexample with an assignment for all variables, including the PC
Simulating the Counterexample

C program

1.) Compute Abstraction
2.) Check Abstraction
3.) Check Feasibility
4.) Refine Predicates

[no error] → OK

[feasible] → report counterexample

Predicate Abstraction with SATABS – http://www.cprover.org/
Lazy Abstraction

- The progress guarantee is only valid if the minimal existential abstraction is used.

- Thus, distinguish *spurious transitions from spurious prefixes*.

- Refine spurious transitions separately to obtain minimal existential abstraction

- **SLAM**: Constrain
One more observation:
each iteration only *causes only minor changes* in the abstract model

Thus, use “incremental Model Checker”, which *retains the set of reachable states between iterations* (BLAST)
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x)
        y--;  // Predicate: y > x
    else
        y++;
    assert(y > x);
}
```

```c
main() {
    bool b0; // y > x
    b0 = *;
    b0 = *;
    if (b0)
        b0 = *;
    else
        b0 = *;
    assert(b0);
}
```
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x)
        y--;  // Predicate: y > x
    else
        y++;
    assert(y > x);
}
```

```
main() {
    bool b0; // y > x
    b0 = *;
    b0 = *;
    if (b0)
        b0 = *;
    else
        b0 = *;
    assert(b0);
}
```
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x)
        y--;  // y -= 1
    else
        y++;
    assert(y > x);
}
```
We now do a path test, so convert to SSA.
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x)
        y = y - 1;
    else
        y++;
    assert(y > x);
}
```

This is UNSAT, so \(\hat{\pi} \) is spurious.
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x)
        y2 = y - 1;
    else
        y++;
    assert(y2 > x);
}
```

$$y_1 = 1 \land x_1 = 1 \land y_1 > x_1 \land y_2 = y_1 - 1 \land \neg (y_2 > x_0)$$

Predicate Abstraction with SATABS – http://www.cprover.org/
Example Simulation

```c
int main() {
    int x, y;
    y = 1;
    x = 1;
    if (y > x) {
        y = y - 1;
    } else {
        y++;
    }
    assert(y > x);
}
```

This is UNSAT, so $\hat{\pi}$ is spurious.

\[
\begin{align*}
y_1 &= 1 \land \\
x_1 &= 1 \land \\
y_1 &> x_1 \land \\
y_2 &= y_1 - 1 \land \\
\neg(y_2 > x_0)
\end{align*}
\]
Refining the Abstraction

1.) Compute Abstraction
2.) Check Abstraction
3.) Check Feasibility
4.) Refine Predicates

[no error]

OK

[feasible]
report counterexample

C program
```c
int main() {
    int x, y;
    y = 1;

    x = 1;

    if (y > x)
        y--;    
    else

        y++;

    assert(y > x);
}
```
Manual Proof!

```c
int main() {
    int x, y;
    y = 1;
    {y = 1}
    x = 1;

    if (y > x)
        y --;
    else

        y ++;

    assert(y > x);
}
```
Manual Proof!

```c
int main() {
    int x, y;
    y = 1;
    { y = 1 }
    x = 1;
    { x = 1 \land y = 1 }
    if (y > x)
        y--;  
    else
        y++;  
    assert(y > x);
}
```

This proof uses strongest post-conditions. Predicate Abstraction with SATABS – http://www.cprover.org/
Manual Proof!

```c
int main() {
    int x, y;
    y = 1;
    { y = 1 }
    x = 1;
    { x = 1 \land y = 1 }  
    if (y > x) 
        y--;  
    else 
        { x = 1 \land y = 1 \land \neg y > x }  
        y++;  
    assert(y > x);  
}
```

This proof uses strongest post-conditions

Predicate Abstraction with SATABS – http://www.cprover.org/
Manual Proof!

```c
int main() {
    int x, y;
    y = 1;
    { y = 1 }
    x = 1;
    { x = 1 ∧ y = 1 }
    if (y > x)
        y--; 
    else
        { x = 1 ∧ y = 1 ∧ ¬y > x }
        y++; 
    { x = 1 ∧ y = 2 ∧ y > x }
    assert(y > x);
}
```

This proof uses strongest post-conditions
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;

    x = 1;

    if (y > x)
        y--; 
    else
        y++;

    assert(y > x);
}
```
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;

    x = 1;

    if (y > x)
        y --;
    else
        y ++;

    {y > x}
    assert(y > x);
}
```
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;

    x = 1;

    if (y > x)
        y--; // {y + 1 > x}
    else
        y++; // {y > x}

    assert(y > x);
}
```

We are using weakest pre-conditions here:

```
wp(x := E, P) = P[x/E]
wp(S; T, Q) = wp(S, wp(T, Q))
wp(if(c) A else B, P) = (B ⇒ wp(A, P)) ∧ (¬B ⇒ wp(B, P))
```

The proof for the "true" branch is missing.
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;

    x = 1;
    {¬y > x ⇒ y + 1 > x}
    if (y > x)
        y--;  // Miscalculated
    else
        {y + 1 > x}
        y++;  // Miscalculated
    {y > x}
    assert(y > x);
}
```
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;
    {¬y > 1 ⇒ y + 1 > 1}
    x = 1;
    {¬y > x ⇒ y + 1 > x}
    if (y > x)
        y--;  
    else
        {y + 1 > x}
        y++;
        {y > x}
    assert(y > x);
}
```

We are using weakest pre-conditions here

\[
wp(x := E, P) = P[x/E]
\]

\[
wp(S; T, Q) = wp(S, wp(T, Q))
\]

\[
wp(if(c) A else B, P) = (B ⇒ wp(A, P)) ∧ (¬B ⇒ wp(B, P))
\]

The proof for the "true" branch is missing
An Alternative Proof

```c
int main() {
    int x, y;
    y = 1;
    {¬y > 1 ⇒ y + 1 > 1}
    x = 1;
    {¬y > x ⇒ y + 1 > x}
    if (y > x)
        y--;
    else
        {y + 1 > x}
        y++;
    {y > x}
    assert(y > x);
}
```

We are using weakest pre-conditions here

\[
\begin{align*}
wp(x:=E, P) &= P[x/E] \\
wp(S;T,Q) &= wp(S, wp(T,Q)) \\
wp(\text{if}(c) \ A \ \text{else} \ B, P) &= (B \Rightarrow wp(A,P)) \land (-B \Rightarrow wp(B,P))
\end{align*}
\]

The proof for the "true" branch is missing
Refinement Algorithms

Using WP
1. Start with failed guard G
2. Compute $wp(G)$ along the path

Using SP
1. Start at beginning
2. Compute $sp(\ldots)$ along the path

▶ Both methods eliminate the trace
▶ Advantages/disadvantages?
Predicate Localization

Example:

```c
int x, y;
x = 10;
y = x + 10;
y = y + 10;
assert(y == 30);
```

original program
Predicate Localization

Example:

```
int x, y;
x = 10;
y = x + 10;
y = y + 10;
assert(y == 30);
```

original program

```
x = 10
y = 20
y = 30
```

predicates
Predicate Localization

Example:

```c
int x, y;
x = 10;
y = x + 10;
y = y + 10;
assert(y == 30);
```

Original program

```c
bool x10, y20, y30;
x10 = 1;
y20, y30 = x10 ? 1 : *
y20, y30 = *, y20 ? 1 : *
assert(y30);
```

Abstraction

Predicate Abstraction with SATABS – http://www.cprover.org/
Predicate Localization

Example:

```c
int x, y;

x = 10;
    \{ x = 10 \}

y = x + 10;
    \{ y = 20 \}

y = y + 10;
    \{ y = 30 \}

assert(y == 30);
```

original program

```c
bool x10, y20, y30;

x10 = 1;

y20, y30 = x10 ? 1 : *, *;

y20, y30 = *, y20 ? 1 : *;

assert(y30);
```

abstraction

We really only want to track specific predicates at each location!
Predicate Localization

Example:

```c
int x, y;
x = 10;
{ } \( x = 10 \)
y = x + 10;
{ } \( y = 20 \)
y = y + 10;
{ } \( y = 30 \)
assert(y == 30);
```

original program

```c
bool x10, y20, y30;
x10 = 1;
{ } \( x = 10 \)
y20, y30 = x10 ? 1 : *;
y20, y30 = *;
assert(y30);
```

abstraction

We really only want to track specific predicates at each location!
Predicate Localization

- Track a separate set of predicates for each location

✓ Makes predicate image easier
✓ Makes simulation of transitions easier
✓ Makes the check of the abstract model easier
Recall the decision problem we build for simulating paths:

\[x_1 = 10 \quad \land \quad y_1 = x_1 + 10 \quad \land \quad y_2 = y_1 + 10 \quad \land \quad y_2 \neq 30 \]
Recall the decision problem we build for simulating paths:

\[x_1 = 10 \land y_1 = x_1 + 10 \land y_2 = y_1 + 10 \land y_2 \neq 30 \]

\[\Rightarrow x_1 = 10 \]
Recall the decision problem we build for simulating paths:

\[x_1 = 10 \land y_1 = x_1 + 10 \land y_2 = y_1 + 10 \land y_2 \neq 30 \]

\[\Rightarrow x_1 = 10 \quad \Rightarrow y_1 = 20 \]
Recall the decision problem we build for simulating paths:

\[\begin{align*}
x_1 &= 10 & \land & & y_1 &= x_1 + 10 & \land & & y_2 &= y_1 + 10 & \land & & y_2 &\neq 30 \\
\Rightarrow x_1 &= 10 & \Rightarrow & & y_1 &= 20 & \Rightarrow & & y_2 &= 30
\end{align*}\]
Predicate Refinement for Paths

Recall the decision problem we build for simulating paths:

\[x_1 = 10 \land y_1 = x_1 + 10 \land y_2 = y_1 + 10 \land y_2 \neq 30 \]

\[\Rightarrow x_1 = 10 \Rightarrow y_1 = 20 \Rightarrow y_2 = 30 \Rightarrow false \]
Predicate Refinement for Paths

Recall the decision problem we build for simulating paths:

\[
\begin{align*}
A_1 & \quad x_1 = 10 & \quad A_2 & \quad y_1 = x_1 + 10 & \quad A_3 & \quad y_2 = y_1 + 10 & \quad A_4 & \quad y_2 \neq 30 \\
& \quad \Rightarrow x_1 = 10 & \quad & \quad \Rightarrow y_1 = 20 & \quad & \quad \Rightarrow y_2 = 30 & \quad & \quad \Rightarrow \text{false}
\end{align*}
\]
Predicate Refinement for Paths

Recall the decision problem we build for simulating paths:

\[x_1 = 10 \land y_1 = x_1 + 10 \land y_2 = y_1 + 10 \land y_2 \neq 30 \]

\[\Rightarrow x_1 = 10 \]
\[\Rightarrow y_1 = 20 \]
\[\Rightarrow y_2 = 30 \]
\[\Rightarrow \text{false} \]
Predicate Refinement for Paths

For a path with n steps:

\[
\begin{align*}
A_1 & \quad \Rightarrow A_1' \\
A_2 & \quad \Rightarrow A_2' \\
A_3 & \quad \Rightarrow A_3' \\
\ldots & \quad \ldots \\
A_n & \quad \Rightarrow A_{n-1}' \\
\text{true} & \quad \Rightarrow \text{false}
\end{align*}
\]
Predicate Refinement for Paths

For a path with n steps:

$$
\begin{array}{c|c|c|c|c}
A_1 & A_2 & A_3 & \ldots & A_n \\
\hline
\text{true} & \Rightarrow & A'_1 & \Rightarrow & A'_2 & \Rightarrow & A'_3 & \Rightarrow & A'_{n-1} & \Rightarrow & \text{false}
\end{array}
$$

- Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- $A'_0 = \text{true}$ and $A'_n = \text{false}$
- $(A'_{i-1} \land A_i) \Rightarrow A'_i$ for $i \in \{1, \ldots, n\}$
Predicate Refinement for Paths

For a path with n steps:

\[
\begin{array}{ccccccc}
A_1 & | & A_2 & | & A_3 & | & \ldots & | & A_n \\
\text{true} & \Rightarrow & A'_1 & \Rightarrow & A'_2 & \Rightarrow & A'_3 & \Rightarrow & A'_{n-1} & \Rightarrow & \text{false}
\end{array}
\]

- Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- $A'_0 = \text{true}$ and $A'_n = \text{false}$
- $(A'_{i-1} \land A_i) \Rightarrow A'_i$ for $i \in \{1, \ldots, n\}$
- Finally, $\text{Vars}(A'_i) \subseteq (\text{Vars}(A_1 \ldots A_i) \cap \text{Vars}(A_{i+1} \ldots A_n))$
Predicate Refinement for Paths

Special case \(n = 2 \):

\begin{itemize}
 \item \(A \land B = \text{false} \)
 \item \(A \Rightarrow A' \)
 \item \(A' \land B = \text{false} \)
 \item \(\text{Vars}(A') \subseteq (\text{Vars}(A) \cap \text{Vars}(B)) \)
\end{itemize}
Predicate Refinement for Paths

Special case $n = 2$:

- $A \wedge B = \text{false}$
- $A \Rightarrow A'$
- $A' \wedge B = \text{false}$
- $\text{Vars}(A') \subseteq (\text{Vars}(A) \cap \text{Vars}(B))$

W. Craig’s Interpolation theorem (1957): such an A' exists for any first-order, inconsistent A and B.
Predicate Refinement with Craig Interpolants

✓ For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (\(\rightarrow\) SAT!) in linear time

✓ Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions

✗ Not possible for every fragment of FOL:

\[
x = 2y \quad \text{and} \quad x = 2z + 1 \quad \text{with} \quad x, y, z \in \mathbb{Z}
\]
Predicate Refinement with Craig Interpolants

✓ For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (\rightarrow SAT!) in linear time.

✓ Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions.

✗ Not possible for every fragment of FOL:

$$x = 2y \quad \text{and} \quad x = 2z + 1 \quad \text{with} \quad x, y, z \in \mathbb{Z}$$

The interpolant is “x is even”
Craig Interpolation for Linear Inequalities

\[
\begin{align*}
0 & \leq x \quad 0 \leq y \\
0 & \leq c_1 x + c_2 y \\
\text{with } 0 & \leq c_1, c_2
\end{align*}
\]

- “Cutting-planes”
- Naturally arise in Fourier-Motzkin or Simplex
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]

\[0 \leq y - z - 1 \]

\[0 \leq z - x \]
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]

\[0 \leq y - z - 1 \]

\[0 \leq z - x \]

\[0 \leq y - x - 1 \]
Example

\[\begin{align*}
A &= (0 \leq x - y) \land (0 \leq y - z - 1) \\
B &= (0 \leq z - x)
\end{align*} \]

\[\begin{align*}
0 &\leq y - z - 1 \\
0 &\leq z - x \\
0 &\leq y - x - 1 \\
0 &\leq x - y \\
0 &\leq -1
\end{align*} \]

Just sum the inequalities from A, and you get an interpolant!
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]

\[0 \leq y - z - 1 \]
\[0 \leq z - x \]
\[0 \leq y - z - 1 \]
\[0 \leq 0 \]

\[0 \leq y - x - 1 \]
\[0 \leq y - x - 1 \]
\[0 \leq x - y \]
\[0 \leq x - y \]

\[0 \leq -1 \]
\[0 \leq x - z - 1 \]
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]

\[
\begin{align*}
0 \leq y - z - 1 & \quad 0 \leq z - x \\
0 \leq y - x - 1 & \quad 0 \leq y - z - 1 \\
0 \leq x - y & \quad 0 \leq x - y \\
0 \leq -1 & \quad 0 \leq x - z - 1 \\
& \quad \iff z - x \leq -1
\end{align*}
\]
Example

\[A = (0 \leq x - y) \land (0 \leq y - z - 1) \]

\[B = (0 \leq z - x) \]

\[0 \leq y - z - 1 \]
\[0 \leq z - x \]
\[0 \leq y - z - 1 \]
\[0 \leq 0 \]

\[0 \leq y - x - 1 \]
\[0 \leq y - z - 1 \]
\[0 \leq x - y \]
\[0 \leq x - y \]
\[0 \leq -1 \]
\[0 \leq x - z - 1 \]
\[\iff z - x \leq -1 \]

Just sum the inequalities from \textcolor{red}{A}, and you get an interpolant!
```c
int x, y;

x = y = 0;

while (x != 10) {
  x ++;
  y ++;
}

assert (y == 10);
```

The SP refinement results in

\[
sp(x = y = 0, \text{true}) = x = 0 \land y = 0
\]
int x, y;

x=y=0;

while (x!=10) {
 x++;
 y++;
}

assert (y==10);

The SP refinement results in

\[
sp(x=y=0, \text{true}) = x = 0 \land y = 0
\]

\[
sp(x++; y++; \ldots) = x = 1 \land y = 1
\]

... 10 iterations required to prove the property.

It won't work if we replace 10 by n.
Approximating Loop Invariants: SP

```c
int x, y;

x = y = 0;

while (x != 10) {
    x++; y++;
    y++;}

assert (y == 10);
```

The SP refinement results in

\[
\begin{align*}
sp(x=y=0, \text{true}) &= x = 0 \land y = 0 \\
sp(x++; y++, \ldots) &= x = 1 \land y = 1 \\
sp(x++; y++, \ldots) &= x = 2 \land y = 2
\end{align*}
\]

...10 iterations required to prove the property.

It won’t work if we replace 10 by \(n\).
Approximating Loop Invariants: SP

```c
int x, y;

x = y = 0;

while (x != 10) {
    x++; y++;
}

assert (y == 10);
```

The SP refinement results in

- \(sp(x=y=0, \text{true}) = x = 0 \land y = 0 \)
- \(sp(x++; y++; \ldots) = x = 1 \land y = 1 \)
- \(sp(x++; y++; \ldots) = x = 2 \land y = 2 \)
- \(sp(x++; y++; \ldots) = x = 3 \land y = 3 \)

...

- \(x = n \) iterations required to prove the property.
- \(\times \) It won’t work if we replace 10 by \(n \).
int x, y;

x = y = 0;

while (x != 10) {
 x ++;
 y ++;
}

assert (y == 10);

The WP refinement results in

\[wp(x == 10, y \neq 10) = y \neq 10 \land x = 10 \]
Approximating Loop Invariants: WP

```c
int x, y;
x = y = 0;
while (x != 10) {
    x ++;
    y ++;
}
assert (y == 10);
```

The WP refinement results in

\[
wp(x == 10, y \neq 10) = y \neq 10 \land x = 10
\]

\[
wp(x++; y++; \ldots) = y \neq 9 \land x = 9
\]

... Also requires 10 iterations.

It won’t work if we replace 10 by \(n\).
Approximating Loop Invariants: WP

```c
int x, y;
x = y = 0;
while (x != 10) {
    x ++;
    y ++;
}
assert (y == 10);
```

The WP refinement results in

```
wp(x==10, y \neq 10) = y \neq 10 \land x = 10
wp(x++; y++; \ldots) = y \neq 9 \land x = 9
wp(x++; y++; \ldots) = y \neq 8 \land x = 8
```

Also requires 10 iterations.

It won't work if we replace 10 by \(n \).
The WP refinement results in

\[
\begin{align*}
wp(x==10, y \neq 10) &= y \neq 10 \land x = 10 \\
wp(x++; y++; \ldots) &= y \neq 9 \land x = 9 \\
wp(x++; y++; \ldots) &= y \neq 8 \land x = 8 \\
wp(x++; y++; \ldots) &= y \neq 7 \land x = 7
\end{align*}
\]

... Also requires 10 iterations.

It won’t work if we replace 10 by \(n\).
int x, y;

x = y = 0;

while (x != 10) {
 x ++;
 y ++;
}

assert (y == 10);

The WP refinement results in

\[wp(x==10, y \neq 10) = y \neq 10 \land x = 10 \]
\[wp(x++; y++, ...) = y \neq 9 \land x = 9 \]
\[wp(x++; y++, ...) = y \neq 8 \land x = 8 \]
\[wp(x++; y++, ...) = y \neq 7 \land x = 7 \]

... Also requires 10 iterations.
\[\times \] It won’t work if we replace 10 by \(n \).
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

\begin{align*}
x_1 &= 0 \\
y_1 &= 0
\end{align*}
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

1st It.

\[x_1 = 0 \]
\[y_1 = 0 \]

\[x_1 \neq 10 \]
\[x_2 = x_1 + 1 \]
\[y_2 = y_1 + 1 \]
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

\[
\begin{align*}
 x_1 &= 0 \\
 y_1 &= 0
\end{align*}
\]

1st It.

\[
\begin{align*}
 x_1 &\neq 10 \\
 x_2 &= x_1 + 1 \\
 y_2 &= y_1 + 1
\end{align*}
\]

2nd It.

\[
\begin{align*}
 x_2 &\neq 10 \\
 x_3 &= x_2 + 1 \\
 y_3 &= y_2 + 1
\end{align*}
\]
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

\[
\begin{align*}
\text{1st It.} & : & x_1 & \neq 10 \\
& & x_2 & = x_1 + 1 \\
& & y_2 & = y_1 + 1 \\
\text{2nd It.} & : & x_2 & \neq 10 \\
& & x_3 & = x_2 + 1 \\
& & y_3 & = y_2 + 1 \\
\text{3rd It.} & : & x_3 & \neq 10 \\
& & x_4 & = x_3 + 1 \\
& & y_4 & = y_3 + 1
\end{align*}
\]
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

<table>
<thead>
<tr>
<th>Initial Conditions</th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 0$</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td></td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
<td></td>
</tr>
</tbody>
</table>
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

\[
\begin{align*}
\text{1st It.} & : & \begin{align*}
x_1 &= 0 \\
x_2 &= x_1 + 1 \\
y_2 &= y_1 + 1
\end{align*} & \quad \begin{align*}
x_1 \neq 10 \\
x_2 \neq 10
\end{align*} \\
\text{2nd It.} & : & \begin{align*}
x_3 &= x_2 + 1 \\
y_3 &= y_2 + 1
\end{align*} & \quad \begin{align*}
x_2 \neq 10 \\
x_3 \neq 10
\end{align*} \\
\text{3rd It.} & : & \begin{align*}
x_4 &= x_3 + 1 \\
y_4 &= y_3 + 1
\end{align*} & \quad \begin{align*}
x_3 \neq 10 \\
x_4 \neq 10
\end{align*} \\
\text{Assertion} & : & \begin{align*}
x_4 &= 10 \\
y_4 \neq 10
\end{align*}
\end{align*}
\]
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

<table>
<thead>
<tr>
<th></th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td>$x_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x_1 = 0$</td>
<td>$x_2 = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$y_2 = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

<table>
<thead>
<tr>
<th></th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td>y_1</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td>x_1</td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
<td></td>
</tr>
<tr>
<td>y_1</td>
<td>$x_2 = 1$</td>
<td>$x_3 = 2$</td>
<td>$y_3 = 2$</td>
<td></td>
</tr>
</tbody>
</table>
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

<table>
<thead>
<tr>
<th></th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td>y_1</td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td>$x_1 = 0$</td>
<td>$x_2 = 1$</td>
<td>$x_3 = 2$</td>
<td>$x_4 = 3$</td>
<td></td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$y_2 = 1$</td>
<td>$y_3 = 2$</td>
<td>$y_4 = 3$</td>
<td></td>
</tr>
</tbody>
</table>
What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

$x_1 = 0$
$y_1 = 0$

1st It.:
$x_1 \neq 10$
$x_2 = x_1 + 1$
$y_2 = y_1 + 1$
$x_1 = 0$
$y_1 = 0$

2nd It.:
$x_2 \neq 10$
$x_3 = x_2 + 1$
$y_3 = y_2 + 1$
$x_2 = 1$
$y_2 = 1$

3rd It.:
$x_3 \neq 10$
$x_4 = x_3 + 1$
$y_4 = y_3 + 1$
$x_3 = 2$
$y_3 = 2$

Assertion:
$x_4 = 10$
$y_4 \neq 10$
$x_4 = 3$
$y_4 = 3$

\[\text{x This proof will produce the same predicates as SP.} \]
Split Provers

Idea:

Each prover P_i only knows A_i, but they exchange facts
We require that each prover only exchanges facts with common symbols
Plus, we restrict the facts exchanged to some language \mathcal{L}
Back to the Example

Restriction to language $\mathcal{L} = \text{“no new constants”}:

<table>
<thead>
<tr>
<th>$x_1 = 0$</th>
<th>1st It.</th>
<th>$x_2 \neq 10$</th>
<th>$x_3 \neq 10$</th>
<th>$x_4 \neq 10$</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$y_2 = y_1 + 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assertion:

$x_4 = 10$

$y_4 \neq 10$
Restriction to language $\mathcal{L} = \text{“no new constants”}:

\[
\begin{align*}
&x_1 = 0 \\
y_1 = 0
\end{align*}
\quad
\begin{align*}
&x_1 \neq 10 \\
x_2 = x_1 + 1 \\
y_2 = y_1 + 1
\end{align*}
\quad
\begin{align*}
&x_2 \neq 10 \\
x_3 = x_2 + 1 \\
y_3 = y_2 + 1
\end{align*}
\quad
\begin{align*}
&x_3 \neq 10 \\
x_4 = x_3 + 1 \\
y_4 = y_3 + 1
\end{align*}
\quad
\begin{align*}
&x_4 = 10 \\
y_4 \neq 10
\end{align*}
\]
Restriction to language \mathcal{L} = “no new constants”:

<table>
<thead>
<tr>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 0$</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
</tr>
<tr>
<td>$x_1 = 0$</td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$y_4 = y_3 + 1$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$y_2 = 1$</td>
<td>$y_2 = 1$</td>
<td></td>
</tr>
</tbody>
</table>

Predicate Abstraction with SATABS – http://www.cprover.org/
Back to the Example

Restriction to language $\mathcal{L} = \text{“no new constants”}$:

<table>
<thead>
<tr>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 0$</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
</tr>
<tr>
<td>$x_2 = x_1 + 1$</td>
<td>$y_2 = x_1 + 1$</td>
<td>$y_3 = x_2 + 1$</td>
<td>$y_4 = x_3 + 1$</td>
</tr>
<tr>
<td>$y_2 = x_1 + 1$</td>
<td>$y_3 = x_2 + 1$</td>
<td>$y_4 = x_3 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x_4 = 10$</td>
<td>$y_4 \neq 10$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Back to the Example

Restriction to language $\mathcal{L} =$ “no new constants”:

\[
\begin{align*}
\text{1st It.} & : & x_1 &= 0 \\
& & x_1 &\neq 10 \\
& & x_2 &= x_1 + 1 \\
& & y_2 &= y_1 + 1 \\
\text{2nd It.} & : & x_2 &= 1 \\
& & x_2 &\neq 10 \\
& & x_3 &= x_2 + 1 \\
& & y_3 &= y_2 + 1 \\
\text{3rd It.} & : & x_3 &= 2 \\
& & x_3 &\neq 10 \\
& & x_4 &= x_3 + 1 \\
& & y_4 &= y_3 + 1 \\
\text{Assertion} & : & x_4 &= 10 \\
& & y_4 &\neq 10
\end{align*}
\]
Restriction to language $\mathcal{L} = \text{“no new constants”}$:

<table>
<thead>
<tr>
<th></th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 0$</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 \neq 10$</td>
<td>$x_3 \neq 10$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 = x_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td>$x_1 = 0$</td>
<td>$x_2 = 1$</td>
<td>$x_3 = y_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_1 = 0$</td>
<td>$y_2 = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Back to the Example

Restriction to language $\mathcal{L} = \text{“no new constants”}:$

<table>
<thead>
<tr>
<th></th>
<th>1st It.</th>
<th>2nd It.</th>
<th>3rd It.</th>
<th>Assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$x_1 \neq 10$</td>
<td>$x_2 = x_1 + 1$</td>
<td>$x_3 \neq 10$</td>
<td>$x_3 = x_2 + 1$</td>
</tr>
<tr>
<td>y_1</td>
<td>$y_2 = y_1 + 1$</td>
<td>$y_3 = y_2 + 1$</td>
<td>$x_4 = x_3 + 1$</td>
<td>$y_4 \neq 10$</td>
</tr>
<tr>
<td>x_2</td>
<td>$x_2 = 1$</td>
<td>$x_3 = y_3$</td>
<td>$x_4 = y_4$</td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td>$y_2 = 1$</td>
<td>$x_3 = y_3$</td>
<td>$x_4 = y_4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_1 = 0$</td>
<td>$x_2 = 1$</td>
<td>$x_3 = y_3$</td>
<td>$x_4 = 10$</td>
</tr>
<tr>
<td></td>
<td>$y_1 = 0$</td>
<td>$y_2 = 1$</td>
<td>$x_4 = y_4$</td>
<td>$y_4 \neq 10$</td>
</tr>
</tbody>
</table>
Invariants from Restricted Proofs

✓ The language restriction forces the solver to generalize!

▶ Algorithm:

▶ If the proof fails, increase L!
▶ If we fail to get a sufficiently strong invariant, increase n.

✓ This does work if we replace 10 by n!
The language restriction forces the solver to generalize!

Algorithm:

- If the proof fails, increase L!
- If we fail to get a sufficiently strong invariant, increase n.

This does work if we replace 10 by n!

Which L_1, L_2, \ldots is complete for which programs?