
Fast Simulation of SystemC Designs with
Scoot
Nicolas Blanc, Daniel Kroening

www.cprover.org/scoot

Monday, 05 October 2009© Department of Computer Science | ETH Zürich

Supported by Intel and SRC

SYSTEM C

� System Description Language

� Based C++

Theme of the Presentation

Utilization of the semantics of SystemC for Simulation
speedup.

Monday, 05 October 2009 Department of Computer Science 2

SYSTEM C

Scoot

� Based C++

� Compilation using g++

� IEEE Std.

� Compiler for SystemC
� www.cprover.org/scoot

Execution Time (Oct 09, Linux 3Ghz, gcc 4.2.4, Linux)

Monday, 05 October 2009 Department of Computer Science 3

17 Oct 09

Simulation Speedup

Monday, 05 October 2009 Department of Computer Science 4

Outline

� Overview of SystemC

� Overview of Scoot

Monday, 05 October 2009 Department of Computer Science

�

� Demo AES128

5

System Description Languages

Transaction Level

Software ModelC++
(High-level
software view) New System Description

Monday, 05 October 2009 Department of Computer Science 6

Gate Level

Register -Transfer Level

Behavioral Level
Verilog
(Low-Level
hardware impl.)

Semantics Gap
New System Description
Languages:
SystemC,
SystemVerilog

2000

SystemC versus SystemVerilog

Software C++

C++ Library

Monday, 05 October 2009 Department of Computer Science 7

Verilog Hardware

Verilog Extension

SystemVerilog SystemC

Example: Memory Module

include <systemc.h>

#include <systemc.h>

SC_MODULE (Memory) {
sc_in<bool> clk, cs, we, re;
sc_in<sc_uint<32> > data_in;
sc_in<sc_uint<32> > addr1, addr2;
sc_out <sc_uint <32> > data_out ;

Inherits from sc_module

Module Interface

Monday, 05 October 2009 Department of Computer Science 8

SC_MODULE(
sc_out <sc_uint <32> > data_out ;

SC_CTOR(Memory){
SC_METHOD(read());
senstive << clk.pos();
SC_METHOD(write());
senstive << clk.pos()

}
void read();
void write();

};

Module Constructor

Processes

int sc_main(int argc, char* argv[])
{

sc_clock clk;
sc_signal<bool> cs, re, we;
...

Memory mem(« MEMORY »);
Testbench tb(« TEST BENCH »);

mem.clk(clk);

Signals

Modules

Port Binding

Monday, 05 October 2009 Department of Computer Science 9

mem.clk(clk);
mem.cs(cs); mem.re(re); mem.we(we);
...

sc_start(10,SC_US);
return 0;

}

Port Binding

Start Simulation

g++ main.cpp memory.cpp tb.cpp –lsystemc –o simulat or

SystemC Simulation:

The Concurrency Model

� Execution driven by events

� Cooperative Multitasking Model:

Monday, 05 October 2009 Department of Computer Science

�

� Only one process running at a time

� No preemption!

10

P1 P2

wait

wait

The SystemC Scheduler

Evaluation Phase

Begin

Monday, 05 October 2009 Department of Computer Science 11

Update Phase

Delta Notification

Time Notification

Time++

End

Observations

SYSTEM C
Library

C++
Files

SIMULATOR

Monday, 05 October 2009 Department of Computer Science 12

Files

� Elaboration of the Module Hierarchy at Runtime:
� Modules, processes, port binding,... The approach is flexible!

� C++ is fast: Fast execution of the processes!

� Yes ... but, GCC is not taking advantage of SystemC information!
� module hierachy, processes, and port binding.

� Scoot statically discovers:

� Module hierarchy, port binding, processes, and

sensitivity lists.

Overview of Scoot

Monday, 05 October 2009 Department of Computer Science 13

� Simulation benefits from:

� Resolution of dynamic calls (static-scheduling)

� Suppression of dynamic data structures in the

scheduler (lists, sets).

� Propagation of port binding information (pointers).

Scoot

Typechecker

Simplified
SYSTEM C

Library

C++
Files

SIMULATOR

Flat C++
Model

In-house

Monday, 05 October 2009 Department of Computer Science 14

Typechecker
(C++ frontend)

Control-Flow Graph

Pointer Analysis

SystemC Analysis

Static Scheduling

Code Re-Synthesis

Path and
field sensitive

Rely on
Pointer Analysis

In-house
development

Generates
C++ code

Demo

AES-128

Benchmark: Encrypt, decrypt, and then display 128-bit vectors .
Simulation Time: 800 Microseconds.

Scoot

Monday, 05 October 2009 Department of Computer Science 15

Test
Module

1 Process

clk

AES-128
Encoder/Decoder

31 Processes

Conclusion

� Elaboration of the Module Hierarchy at Compile Time:

� We sacrifice some flexibility in exchange for

� significant simulation speedup, and

Scoot

Monday, 05 October 2009 Department of Computer Science 16

� significant simulation speedup, and

� we can now reason about SystemC models statically!

- Formal Verification, e.g., previous talk
about static race analysis.

Thank You!

