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Abstract—SystemC is a system-level modeling language that
offers a wide range of features to describe concurrent systems
at different levels of abstraction. The SystemC standard permits
simulators to implement a deterministic scheduling policy, which
often hides concurrency-related design flaws. We present a novel
compiler for SystemC that integrates a formaland scalable race
analysis. This analysis combines both classic static analysis and
Model Checking techniques. The outcome of the analysis is not
only valuable to diagnose the effect of race conditions, butcan
also be used to improve simulation performance dramatically.
Our compiler produces a simulator that uses the race analy-
sis information at runtime to perform partial-order reduct ion,
thereby eliminating context switches that do not affect theresult
of the simulation. Experimental results show simulation speedups
of one order of magnitude and better.

I. I NTRODUCTION

Time-to-market requirements have rushed the Electronic
Design and Automation (EDA) industry towards design
paradigms that require a very high level of abstraction. This
high level of abstraction can shorten the design time by
enabling the creation of fast executable verification models.
This way, bugs in the design can be discovered early in the
design process. As part of this paradigm, an abundance of C-
like system design languages has emerged. They promise joint
modeling of both the hardware and software component of a
system using a language that is well-known to engineers.

SystemC offers a wide range of language features such
as hierarchical design by means of a hierarchy of modules,
arbitrary-width bit-vector types, and concurrency with related
synchronization mechanisms. SystemC permits different levels
of abstraction, from a very high-level specification of transac-
tions down to the gate level. The execution model of SystemC
is driven by events that start or resume processes. In addition to
communication via shared variables, processes can exchange
information through predefined communication channels such
as signals and FIFOs.

Technically, SystemC programs rely on a C++ template
library. SystemC modules are therefore plain C++ classes,
which are compiled and then linked to a runtime scheduler.
This provides a simple and efficient way to simulate the be-
havior of the system. Methods of a module may be designated
as threadsor processes. Interleaving between those threads
is performed at pre-determined program locations, e.g., at
the end of a thread or when thewait() method is called.
When multiple threads are ready for execution, the ordering
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of the threads is nondeterministic. Nevertheless, the SystemC
standard allows simulators to adopt a deterministic schedul-
ing policy. Consequently, simulators can avoid problematic
schedules, which often prevents the discovery of concurrency-
related design flaws.

When describing synchronous circuits at the register trans-
fer level, system designers can prevent races by restricting
inter-process communication to deterministic communication
channels such assc signals. However, the elimination of
races from the high-level model is often not desirable: In
practice, system designers often use constructs that yieldraces
in order to model nondeterministic choices implicit in the
design. In particular, models containing standard transaction-
level modeling (TLM) interfaces are frequently subject to race
phenomena. TLM designs usually consist of agents sharing
communication resources and competing for access to them.
An example is a FIFO with two clock domains – the races
model the different orderings of the clock events that can arise.

Contribution: Due to the combinatorial explosion of
process interleavings, testing methods for concurrent soft-
ware alone are unlikely to detect bugs that depend on sub-
tle interleavings. Therefore, we propose to employ formal
methods to statically pre-compute thread-dependency relations
and predicates that predict race conditions, and to use this
information subsequently during the simulation run to prune
the exploration of concurrent behaviors. There are two possible
ways of exploiting the information:

1) Using the statically computed dependency relations be-
tween the threads, we can generate a static scheduler,
replacing the dynamic scheduler shipped with the Sys-
temC library. This accelerates simulation using a single,
deterministic schedule.

2) The statically computed race conditions improve the
performance of partial order reduction, which results in a
greatly reduced number of interleavings. The remaining
interleavings can then be explored exhaustively, which
is a valuable validation aid.

We have implemented this technique in SCOOT [1], a novel
research compiler for SystemC. The static computation of the
race conditions relies on the Model Checking engine of SAT-
ABS [2], a SAT-based model checker implementing predicate
abstraction. Our experimental results indicate that strong race
conditions can be computed statically at reasonable cost, and
result in a simulation speedup of a factor of ten or better.

Outline: We discuss the related work and the basics of
partial-order reduction in Sec. II and Sec. III. The use of a



Model Checker to obtain dependency information is motivated
by means of an example in Sec. IV. We formalize the relevant
semantics of the SystemC scheduler in Sec. V. Experimental
results are reported in Sec. VII.

II. RELATED WORK

Concurrent threads with nondeterministic interleaving se-
mantics may give rise toraces. A data race is a special
kind of race that occurs in a multi-threaded application when
several processes enter a critical section simultaneously, thus
corrupting the consistency of the system [3]. Flanagan and
Freund use a formal type system to detect race-condition
patterns in Java [4].Eraser[5] is a dynamic data-race detector
for concurrent applications. It uses binary rewriting techniques
to monitor shared variables and to find failures of the locking
discipline at runtime. Other tools, such asRacerX [6] and
Chord [7], rely on classic pointer-analysis techniques to stati-
cally detect data races. Data races can also occur in SystemC
if processes call synchronization routines while holding shared
resources. SystemC offers semaphores and mutex variables for
protecting critical sections.

Model Checkers are frequently applied to the verification of
concurrent applications; see [8] for a survey on software Model
Checking. Vardi identifies formal verification of SystemC
models as a research challenge [9]. Prior applications of formal
analysis to SystemC or similar languages are indeed limited.
We therefore briefly survey recent advances in the application
of such tools to system-level software.DDVerify [10] is a
tool for the verification of Linux device drivers. It places
the modules into a concurrent environment and relies on
SATABS for the verification.KISS [11] is a tool for the
static analysis of multi-threaded programs written in C. It
reduces the verification of a concurrent application to the
verification of a sequential program with only one stack by
bounding the number of context switches. The reduction never
produces false alarms, but is only complete up to a specific
number of context switches.KISS uses SLAM [12], a Model
Checker based onPredicate Abstraction[13], [14], to verify
the sequential model.

Verisoft [15] is a popular tool for the systematic exploration
of the state space of concurrent applications and could, in
principle, be adapted to SystemC. The execution of processes
is synchronized atvisible operations, which are system calls
monitored by the environment.Verisoft systematically ex-
plores the schedules of the processes without storing infor-
mation about the visited states. Such a method is, therefore,
referred to as astate-less search. Verisoft’s support for partial-
order reduction relies exclusively on dynamic informationto
achieve the reduction. In a recent paper, Sen et al. propose a
modified SystemC-Scheduler that aims to detect design flaws
that depend on specific schedules [16]. The scheduler relies
on dynamic information only, i.e., the information has to be
computed during simulation, which incurs an additional run-
time overhead. In contrast, SCOOT statically computes the
conditions that guarantee independence of the transitions. The
analysis is very precise, as it is based on a Model Checker,

and SCOOT is therefore able to detect opportunities for partial-
order reduction with little overhead during simulation.

Flanagan and Godefroid describe a state-less search tech-
nique with support for partial-order reduction [17]. Their
method runs a program up to completion, recording infor-
mation about inter-process communication. Subsequently,the
trace is analyzed to detect alternative transitions that might
lead to different behaviors. Alternative schedules are built
using happens-beforeinformation, which defines a partial-
order relation on all events of all processes in the system [18].
The procedure explores alternative schedules until all relevant
traces are discovered. Helmstetter et al. present a partial-
order reduction technique for SystemC [19]. Their approach
relies on dynamic information and is similar to Flanagan
and Godefroid’s technique [17]. Their simulator starts with
a random execution, and observes visible operations to detect
dependency between the processes and to fork the execution.
Our technique performs a powerful analysis statically that
is able to discover partial-order reduction opportunitiesnot
detectable using only dynamic information.

Kundu et al. propose to compute read/write dependen-
cies between SystemC processes using a path-sensitive static
analysis [20]. At runtime, their simulator starts with a ran-
dom execution and detects dependent transitions using static
information. The novelty of our approach is to combine
conventional static analysis with model checking to compute
sufficient conditions over the global variables of the SystemC
model that guarantee commutativity of the processes.

Wang et al. introduce the notion ofguarded independence
for pairs of transitions [21]. Their idea is to compute a
condition (or guard) that holds in the states where two specific
transitions are independent. We show how to compute these
conditions for SystemC using a Model-Checking approach
based on Predicate Abstraction.

III. B ACKGROUND ON PARTIAL -ORDER REDUCTION

Model Checking is an algorithmic technique for exhaustive
exploration of transition systems. However, Model Checking
when applied naı̈vely scales poorly on models with asyn-
chronous concurrent components, as the number of possible
interleavings rapidly explodes.Partial-order reduction is a
technique to explore the state space of concurrent systems
in a way that preserves the soundness of the verification
result [22], [23], [24]. The key idea is to exploit commutativity
of transitions to obtain a subset of all possible interleavings
from a state such that the reduced-state graph retains a
representative behavior for each behavior that is removed.
SCOOT uses partial-order reduction to compile a simulator that
explores only necessary interleavings. We briefly survey the
standard definitions from the literature in this section [24].

The literature distinguishes between partial-order reduction
based onpersistent setsand reduction based onsleep sets. The
two approaches are orthogonal and achieve better results when
combined. Both techniques compute a subset of the enabled
transitions for each visited state and restrict future exploration
to transitions in this set.



Let (S, S0,→) denote a transition system with a set of states
S, initial statesS0 ⊂ S, and a set of transitions→. A transition
α ∈→ is a relation onS. For α ∈→, we write s

α
→ t if

〈s, t〉 ∈ α. A transitionα is enabledin a states if there exists
a statet such thats

α
→ t, and we writeα ∈ Enabled(s) to

denote this fact. Otherwise,α is disabledin s.

Definition 1. [21] Two transitions α and β are guarded
independentwith respect to a guardφ ⊆ S if and only if
for all s ∈ φ the following hold:

1. α ∈ Enabled(s) ⇒
β ∈ Enabled(s) ⇔ β ∈ Enabled(α(s))

2. β ∈ Enabled(s) ⇒
α ∈ Enabled(s) ⇔ α ∈ Enabled(β(s))

3. α, β ∈ Enabled(s) ⇒ α(β(s)) = β(α(s))

The first two conditions guarantee thatα and β cannot
disable nor enable each other ins, while the third condition
requiresα andβ to be commutative ins. SCOOT uses Model
Checking to compute the conditionφ. Transitionsα andβ are
independent ins if and only if α, β are guarded independent
with respect to{s} [24].

Definition 2. [24] Let D ⊆ →×→ be a symmetric and
reflexive relation over the transitions of the system. The
relation D is a valid dependency relationfor → if and only if
(α, β) 6∈ D implies thatα, β are independent in all reachable
states.

Similar to [20], SCOOT uses a data-flow analysis in order
to compute an over-approximating dependency relation.

Definition 3. [24] Let T = (S, S0,→) be a transition system,
and s0 ∈ S denote one of its states. A set of transitionsT ⊂
Enabled(s0) is persistentin s0 if and only if for all β ∈ T

and all sub-tracess0
α0→ s1

α1→ s2...sn
αn→ sn+1 obtained from

transitionsαi 6∈ T , β and αi are independent insi.

Definition 3 is, thus, concerned about what can happen in
the future. The persistent-set technique computes a persistent
set of enabled transitions in each visited state and restricts
the exploration to transitions in this set only. Model Checkers
typically compute persistent sets using information from static
analysis.

In contrast, the sleep-set technique maintains a set of
enabled transitions that can be skipped during the exploration
(the sleep set). The method is concerned with branching
information from the past. Unlike the previous approach,
the sleep-set technique only reduces the number of explored
transitions and has no effect on the number of explored states.
The exploration backtracks early when the sleep set contains
all enabled transitions.

IV. I NTRODUCTORY EXAMPLE

Program 1 serves as running example and illustrates the
need for a Model Checking approach. The modulem declares
two processesguard and increment. Processguard watches
the value of shared variablepressure, which shall not exceed
value PMAX and is incremented by processincrement. Both

Program 1 Example of race condition

SC MODULE(m){
s c c l o c k c l k ; i n t p r e s s u r e ;

void guard ( ) {
i f ( p r e s s u r e == PMAX) p r e s s u r e = PMAX−1;

}

void i nc remen t ( ){ p r e s s u r e ++; }

SC CTOR(m) {
SC METHOD( guard ) ; s e n s i t i v e<< c l k ;
SC METHOD( inc remen t ) ; s e n s i t i v e<< c l k ;

}
} ;

processes are sensitive to the clock signalclk. The semantics
of the SystemC scheduler guarantees that a method process
is executed without interruption up to the point where it
returns. Thus, the scheduler has to choose either the scheduling
sequence(guard; increment) or (increment; guard) each time
the clock is updated. Consequently, the pressure can exceedthe
limit if its value reachesPMAX and processincrementis trig-
gered beforeguard. It is clear that the number of traces grows
exponentially with the number of clock cycles. As a result,
systematic exploration of all interleavings rapidly becomes
unmanageable, and the bad behavior might go unnoticed.

A conventional static analysis can discover thatguard
reads the pressure and thatincrementmodifies the pressure,
concluding that the processes are indeed dependent and that
all interleavings must be explored. However, such analysis
fails to detect thatguard and incrementare commutative in
most cases. Our tool uses a Model Checker to compute the
weakest predicate over the pre-state variables that guarantees
the absence of races between the processes. In this example,
the execution ofincrementand guard is commutative if and
only if

pressure6= PMAX − 1 ∧ pressure6= PMAX

holds. SCOOT generates a simulator for the systematic explo-
ration of the state space that checks this condition at runtime
to avoid exploring redundant schedules.

V. M ODELING THE SYSTEMC SCHEDULER

In this section, we present a formalization of the SystemC
concurrency model in terms of fix-point computations over the
reachable states of the model.

Partial-order reduction has been studied mainly in the con-
text of asynchronous concurrent programs, in which running
processes are preempted. SystemC is different as it is designed
for simulation of synchronous models. Its scheduler has aco-
operative multitaskingsemantics, meaning that the execution
of processes is serialized by explicit calls to await() method
and that threads are not preempted.

The scheduler tracks simulation time anddelta cycles. The
simulation time is a positive integer value (the clock). Delta



cycles are used to stabilize the state of the system. A delta
cycle consists of three phases:evaluate, update, andnotify.

1) The evaluation phase selects a process from the set of
runnable processes and triggers or resumes its execution.
The process runs immediately up to the point where
it returns or invokes thewait function. The evaluation
phase is iterated until the set of runnable processes
is empty. The SystemC standard allows simulators to
choose any runnable process, as long as the policy is
consistent between runs.

2) In order to simulate synchronous executions, processes
can delay change-of-state effects by scheduling update
requests. After the evaluation phase terminates, the
kernel executes any pending update request. This is
called theupdate phase. Signal assignments are typically
implemented using the update mechanism. Therefore,
signals keep their value for an entire evaluation phase.

3) Finally, during thedelta-notification phase, the scheduler
determines which processes are sensitive to events that
have occurred, and adds all such processes to the set of
runnable processes.

The scheduler executes delta cycles until the set of runnable
processes is empty at the beginning of the evaluation phase.
Subsequently, it updates the simulation time and notifies
processes waiting for the time event.

Formally, letS denote the set of states of a SystemC model.
A processρ is a functionS −→ 2S . Note that the execution
of the process may not terminate, or may abort with an error.
We assume the existence of a failure state⊥ ∈ S such that
⊥ ∈ ρ(s) if the execution of the process can diverge when
started in states. We denote the set of runnable processes
in s by Runnable(s). The evaluation phaseEv : 2S → 2S

performs a fix-point computation defined by:

Ev(S) = {s∈S|Runnable(s)=∅} ∪ Ev(
⋃

s∈S

⋃

ρ∈Runnable(s)

ρ(s))

Similarly, we writeUp : 2S → 2S to denote the function that
updates the set of states as described by the update phase. The
delta cycle performs the fix-point computation defined by:

δ(S) = δ ◦ Up ◦ Ev(S)

Finally, letUptime : 2S → 2S denote the function that updates
the simulation time and notifies the processes waiting for
this event. We model the semantics of the scheduler with the
functionSim(t) that computes the set of states at timet. Sim(0)
is the set of initial states.

Sim(t) = δ ◦ Uptime ◦ Sim(t − 1)

VI. I MPLEMENTATION

A. Overview ofSCOOT

Figure 1 shows an overview of SCOOT. We use an in-house
C++ front-end to translate the SystemC source files into a
control flow graph (CFG). The front-end of SCOOT accepts a
large subset of C++ including inheritance, overloading, virtual
functions, and simple forms of templates.

Figure 1 Overview of SCOOT
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Algorithm 2 Computation of persistent sets

Set g e t p e r s (Set r u n n a b l e )
2 Set p e r s i s t e n t s ;

f o r a l l ( P r o c e s s pi ∈ r u n n a b l e ) do
4 f o r a l l ( P r o c e s s pj ∈ r u n n a b l e ) do

i f (pj ≥ pi ) then c o n t i n u e ;
6 i f ( commutat i ve (pi, pj ) ) then

i f (pi 6∈ p e r s i s t e n t s ) then
8 p e r s i s t e n t s := p e r s i s t e n t s∪{pj} ;

e l s e
10 p e r s i s t e n t s := p e r s i s t e n t s∪{pi, pj} ;

re tu rn p e r s i s t e n t s ;

SCOOT abstracts implementation details of the SystemC li-
brary by using simplified header files that declare only relevant
aspects of the API and omit the actual implementation. Subse-
quently, SCOOT uses static analysis techniques to discover the
module hierarchy, the sensitivity list of processes, and the port
bindings. The next step is the computation of race conditions
for each pair of processes, which is explained in Sec. VI-C.
SCOOT then generates the code for the exhaustive simulator.
Finally, SCOOT translates the CFG back to a flat C++ program,
which no longer requires the SystemC library. We useg++ to
compile the C++ file and to obtain an executable simulator.

We forbid dynamic creation of processes and dynamic
modifications of sensitivity lists (next trigger functions). The
support for SystemC currently comprises static creation of
processes, static sensitivity lists, waiting using sensitivity lists,
waiting for a specific event, waiting for a certain amount of
time, delta notification, time notification, and communication
channels such assc signals, sc fifos, and tlm fifos.

B. A Scheduler with Partial-Order Reduction

Algorithm 1 is SCOOT’s implementation of the evaluation
phase. The soundness of the scheduling algorithm relies on
the assumption that processes cannot enable each other during
the evaluation phase and therefore, that event notificationis



Algorithm 1 Evaluation Phase: the commutativity condition checked bycommutative(pi, pj) is a predicate over states computed
statically at compile-time.

void e v a l u a t i o n p h a s e (Set r u n n a b l e )
2 Set s l e e p s ;

whi le ( r u n n a b l e6= ∅ ) do
4 i f ( r u n n a b l e= {p} ) then begin

r u n n a b l e := ∅ ; run (p ) ; r e t u r n ;
6 end ;

i n d e p e n d e n t s := g e ti n d e p ( r u n n a b l e ) ;
8 f o r all ( P r o c e s s pi ∈ i n d e p e n d e n t s )do

r u n n a b l e := r u n n a b l e\ {pi} ; run (pi ) ;
10 end fo r ;

p e r s i s t e n t s := g e tp e r s ( r u n n a b l e ) ;
12 awakes := p e r s i s t e n t s\ s l e e p s ;

i f ( awakes= ∅ ) then e x i t ( 0 ) ;
14 Map n e x t s l e e p s ; / / P r o c e s s−> Set

fo r a l l ( P r o c e s s pi ∈ awakes ) do
16 f o r a l l ( P r o c e s s pj ∈ s l e e p s ) do

i f ( commutat i ve (pi, pj ) )
18 n e x t s l e e p s [pi ] :=

n e x t s l e e p s [pi ] ∪{pj} ;
20 end fo r

s l e e p s := s l e e p s∪{pi} ;
22 end fo r

P r o c e s s p := n o n d e t s e l e c t ( awakes ) ;
24 r u n n a b l e := r u n n a b l e\ {p} ; run (p ) ;

s l e e p s := n e x t s l e e p s [p ] ;
26 end wh i le

restricted to time notification and delta notification.1 This
restriction is benign in the context of system-level modeling
and gives rise to the following theorem:

Theorem 1. Suppose that for a processα that is runnable in
a states ∈ S, the execution of the processα does not affect
the set of runnable processes:

Runnable(α(s)) = Runnable(s)\{α}

Any two processesα, β ∈ Runnable(s) that obey this restric-
tion are independent ins if they are commutative ins.

In contrast to the related work,evaluationphaseschedules
runnable processes using informationstatically collected to
reduce the number of interleavings explored. We are not aware
of tools that compute equally strong conditions statically.

The evaluation phase terminates once the setrunnable is
empty. The algorithm performs partial-order reduction using
persistent sets and sleep sets and is a variation of techniques
presented in [24]. In line 4, ifrunnablecontains one process
only, then the scheduler triggers its execution and returns.

Otherwise, the procedure retrieves the set of independent
processes. SCOOT statically computes a dependency condi-
tion for each pair of processes using a location- and field-
sensitive pointer analysis. At simulation time, the scheduler
calls get indep() (line 7) to search for runnable processes
without data dependencies and adds all such processes to
independents. Subsequently, on lines 8–9, the scheduler runs
all pi ∈ independentsin a deterministic order.

On line 11, the algorithm callsget pers to compute the set
persistentsof persistent processes. The subsequent part of the
algorithm uses the setsleeps, declared outside the main loop
on line 2, to perform partial-order reduction. On line 12, the
set awakesconsists of the persistent processesnot in sleeps.
If the set of awaken processes is empty (line 13), then other
traces are covering all subsequent behaviors, and therefore,
the simulator stops the execution. Otherwise, the scheduler

1This rules out immediate notifications. The technique can beextended to
support immediate notification by augmenting the computation of the process
commutativity condition with support for the set of notifiedprocesses, as
suggested in [20].

computes the sleep sets for the next iteration using the map
next sleeps, which maps processes to a set of processes
(lines 14–22). One line 17, the call tocommutativereturnstrue
if the processespi andpj are independent in the current state.
SCOOT relies on Model Checking to compute a conservative
condition that guarantees commutativity of the processes in the
current state; the details of this pre-computation are presented
in the following subsection. In contrast, traditional approaches
need to rely on either executing the processes to determine
which transitions are independent in the current state, which
adds overhead, or on an imprecise data-flow analysis.

Finally, on lines 23–25, the scheduling algorithm nonde-
terministically runs a process fromawakesand computes the
sleep set of the next iteration.

Algorithm 2 computes the set of persistent processes and is
the implementation of the functionget pers(). As mentioned
above, the call tocommutativereturns true if the processes
pi and pj are independent in the current state. In casepi

and pj are dependent, the scheduler adds both processes to
persistents, which ensures that both schedules(pi, pj) and
(pj , pi) are explored (line 10). Otherwise,pj is inserted only
if pi is absent frompersistent. Informally, the scheduler tries
to avoid the execution of(pj , pi) if (pi, pj) is going to be
explored.

C. Computing the Process Commutativity Conditions

Predicate Abstractionis a Model Checking technique that
abstracts a transition system by mapping sets of concrete states
to a new, smaller abstract state space in a way that conserves
the relevant behaviors of the system [13], [14]. Each predicate
in the abstract model is represented by a Boolean variable,
while the original variables are removed. The abstract program
is created using existential abstraction, which is a conservative
abstraction for reachability properties. If the property holds on
the abstract model, it also holds on the original program. In
case a trace in the abstract model violates the property, the
feasibility of the counterexample must be tested in the concrete
model. The counterexample is calledspuriousif it does not
correspond to a concrete trace. In that case, a refinement
procedure adds new predicates in a way that removes the



spurious trace. This is automated byCounterexample Guided
Abstraction Refinement(CEGAR) [25] and promoted by the
Model Checker SLAM [12]. Predicate abstraction has been
applied to SpecC [26] and SystemC [27].

Figure 2 Iterative computation of the process commutativity
condition using predicate abstraction
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The commutativity condition for a given pair of processes
p1 andp2 is checked during simulation by Alg. 1. In general,
SystemC processes need not terminate, and thus computing the
strongest possible commutativity condition for a given pair of
processesp1 andp2 is undecidable. We compute a conservative
approximation by applying a software model checker to the
harness given as Program 2.

The basic idea of the harness is to runp1(); p2(), and
compare the result with the result of runningp2(); p1() on the
same initial state. The harness operates as follows: Initially, φ

is set totrue. Theassumestatement in the first line restricts the
search to states that satisfyφ. Then the values of the visible
variables are stored ins0, the pair of processesp1(); p2() is
run, and the state is stored ins1,2. The state is restored tos0,
andp2(); p1() is run. The state is stored ins2,1.

This harness is passed to the Model Checker SATABS [2].
SATABS checks the reachability of the last line, which is
modeled by means of an assertion. If SATABS returns a
counterexample, we have a traceπ with an initial state
satisfyingφ, passing through both processes, and ending in a
state that violates the assertion. The path therefore begins in a
state in which the two processes are commutative. SCOOT then
computes the weakest precondition ofs1,2 = s2,1 alongside
that path. LetPπ denote this condition.Pπ is non-trivial due
to the assertion on line 8, which guarantees progress. The
executions ofp1(); p2() andp2(); p1() from a states terminate
and yield an equal state ifs satisfiesPπ .

Finally, SCOOT strengthensφ using¬Pπ, yielding φ′. This
removes the traceπ. This procedure iterates until all terminat-
ing traces are discovered. The predicateP =

∨
π Pπ represents

the weakest condition such that the executions ofp1(); p2()
andp2(); p1() terminate and thatp1 andp2 are commutative.
Note that the procedure is easily integrated into the standard
counterexample-guided abstraction refinement loop (Figure 2).
Thus, there is no need to restart the abstraction procedure,and
the abstract model obtained during the previous iteration is

Program 2 Harness for the analysis of race conditions for
a given pair of processesp1 and p2. The pre-conditionφ is
true initially, and is iteratively strengthened by the algorithm
in Fig. 2.

assume (φ ) ;
2 s0 := c u r r e n t s t a t e ;

p1 ( ) ; p2 ( ) ;
4 s1,2 := c u r r e n t s t a t e ;

c u r r e n t s t a t e := s0 ;
6 p2 ( ) ; p1 ( ) ;

s2,1 := c u r r e n t s t a t e ;
8 a s s e r t (s1,2 6= s2,1 ) ;

retained.
In practice, we observe that the number of facts that SCOOT

tracks during the computation of the weakest precondition of
s1,2 = s2,1 may explode. Therefore, instead of comparing the
entire state vectorss1,2 ands2,1, we restrict the comparison to
the variables written by the processes. This set is determined
by means of a standard data-flow analysis.

We have implemented this procedure in SCOOT using SAT-
ABS for model-checking.

VII. E XPERIMENTAL EVALUATION

In this section, we evaluate the benefits of combining
partial-order reduction techniques with Model Checking. The
experiments that we present are difficult instances. Com-
mutativity of processes depends on control flow and data,
and the computation of the condition is susceptible to the
state-space explosion problem. We obtained the results on
a 3GHz Linux machine. The race analysis uses the model-
checking engine of SATABS, and the abstract programs are
verified using Cadence SMV. We make the benchmarks and
the tool available for experimentation by other researchers at
www.cprover.org/scoot/.

A. The Running Example

We continue our running example (Program 1). Figure 3
depicts the number of backtracks and the number of explored
transitions as a function of the number of simulation steps.
We set PMAX to 10. The simulator performs a state-less
search, that is, backtracking is an expensive operation, asthe
simulator has to replay the prefix. The partial-order reduction
combines persistent sets and sleep sets. In this example,
only persistent sets actually achieve a reduction. With this
technique, both numbers grow polynomially in the number
of steps, whereas without partial-order reduction, the number
of backtracks grows exponentially.

B. State Machines

We use two large-scale benchmarks to evaluate the effect of
statically computed race conditions. The first benchmark (B1)
consists of a synchronous model with three processes. One
process plays the role of a server waiting for requests, while
the other two compete for access to the service. Program 3



Figure 3 Number of backtracks and transitions on the running
example as a function of the number of simulation steps
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bool l ocked ; i n t op ;
2 void p r o c e s s c l i e n t ( ) {

i f ( ! l ocked ){ op= g e t p i d ( ) ; l ocked =t rue ;}
4 }

void p r o c e s s s e r v e r ( ){
6 swi tch ( s t a t e ) {

. . .
8 case I d l e : { swi tch ( op ) { . . .} break ;}

case End : { s t a t e = I d l e ; l ocked = f a l s e ;}
10 }

}

contains the skeleton of the benchmark. When triggered, the
clients and the server execute functionsprocessclient and
processserver, respectively. The clients communicate with the
server via two shared variablesop andlocked. If locked is set,
then the server is busy processing the requestop. Otherwise,
the clients compete for access to the service. The processes
are sensitive to a clock. Figure 4 compares the number of
explored transitions, the number of backtracks, and the total
exploration time as a function of the number of simulation
steps. We present results without partial-order reduction(No-
POR), using persistent sets (P), using sleep sets (S), and using
their combination (P+S). The exploration is limited to107

transitions.
The results indicate that partial-order reduction using stati-

cally computed commutativity conditions is able to reduce the
number of explored transitions, the number of backtracks, and
the exploration time by about three orders of magnitude.

Our second benchmark (B2) consists of two synchronous
state machines communicating via shared variables. The model
has three processes. The state machines are implemented using
case switches. Figure 5 compares the effects of different
partial-order-reduction techniques on the simulation times. The
reduction is not as impressive as on B1, but still within the
range of one to two orders of magnitude.

For each pair of processes, Table I shows the time required
for the static analysis running SATABS and the number of

Benchmark Pair SATABS [s] # Strengthenings
B1 0 < 1 3
B1 1 23 17
B1 2 21 17
B2 0 1111 65
B2 1 396 24
B2 2 638 23

TABLE I: Runtime and number of iterations required to compute the
race conditions for each of the process-pairs

strengthening iterations. The latter is an indicator of the
complexity of the control flow. The cost for B1 is negligible;
the results for B2 indicate that a precise analysis can be
time consuming. However, the computation can be distributed
onto multiple machines, as the computation for each pair of
processes is independent. Furthermore, the precision of the
analysis can be controlled by bounding the number of strength-
ening iterations, which yields a conservative approximation.
Finally, as shown by the experiments, the time required for
a full exploration grows exponentially with the number of
simulation steps, and therefore, the time spent staticallyfor
a precise analysis eventually pays off.

VIII. C ONCLUSION

We presented SCOOT, a novel compiler for SystemC that
integrates static analysis and formal verification techniques in
order to improve simulation performance. The structure of
the SystemC model (hierarchy, port bindings) is computed
at compile time by means of a value-set analysis. We use
a second value-set analysis to detect independent processes.
The next step is to invoke a modified software Model Checker
on each pair of dependent transitions in order to compute a
sufficient condition for commutativity of the transitions.Our
technique benefits from the fact that SystemC processes are not
preempted, and thus, only few such pairs have to be checked.
Note that the Model Checker is never applied to the entire
model, but only to pairs of transitions – the static part of
the analysis is therefore typically polynomial in the size and
number of processes.

SCOOT uses the commutativity condition during simulation
in order to eliminate unnecessary interleavings. Our analysis is
fully automatic and requires no annotation of the source code
by the user. Using Model Checking, our analysis is able to
detect reduction opportunities that depend on subtle control-
flow properties.

The experimental results indicate that our formal race-
analysis technique produces valuable information for pruning
the state space at runtime. To the best of our knowledge,
this work uses the strongest conditions for commutativity of
processes reported in the literature. Furthermore, the trade-off
between precision and computational cost can be controlled,
and the entire flow can be distributed on multiple machines.
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Figure 4 Performance effect of static partial-order reduction on B1
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Figure 5 Performance effect of static partial-order reduction on B2
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