
Race Analysis for SystemC using Model
Checking

Nicolas Blanc, Daniel Kroening

www.cprover.org/scoot

Wednesday, 19 November 2008© Department of Computer Science | ETH Zürich

Supported by Intel and SRC

This Talk

Formal race analysis for SystemC and its applications

beyond verification.

Wednesday, 19 November 2008 Department of Computer Science

� Race analysis: based on Model Checking

� Exhaustive Simulation: Partial-Order Reduction

2

Race

� Race in a concurrent system:

the outcome of the computation depends on the

scheduling

Wednesday, 19 November 2008 Department of Computer Science

� Mechanism to model nondeterminism implicitly

� Design flaw: state corruption, deadlock,…

� Hard to verify: combinatorial explosion of schedules

� SystemC: language based on C++ for modeling

concurrent systems

3

The SystemC Scheduler

� Cooperative Multitasking Semantics:

� One process running at a time

� No preemption

Wednesday, 19 November 2008 Department of Computer Science 4

� Execution driven by events

� Two kind of processes:

� method process: forbidden to suspend its execution

� thread: can wait for event notifications

Introductory Example

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

• Two processes: guard,increment
• Shared variable: pressure

• Number of traces grows exponentially with

Wednesday, 19 November 2008 Department of Computer Science 5

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

• Number of traces grows exponentially with
the simulation time

• Pressure can exceed the limit.

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

0

1

increment

guard

guard

increment
1

0

Wednesday, 19 November 2008 Department of Computer Science 6

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

9

10

increment

guard

guard

increment

9

9

10

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

} Classic static analysis achieves

ReadRead

Wednesday, 19 November 2008 Department of Computer Science 7

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

Classic static analysis achieves
no reduction!

WriteWrite

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

Dynamic Partial-Order Reduction:

s

increment
Write

Wednesday, 19 November 2008 Department of Computer Science 8

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

increment

guard
Read

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

Dynamic Partial-Order Reduction:

s

increment
Write

s

guard
Read

Alternative Schedule

Wednesday, 19 November 2008 Department of Computer Science 9

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

increment

guard
Read

increment
Write

guard

Runtime analysis achieves
no reduction!

When are the processes independent?

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

States

φ

Wednesday, 19 November 2008 Department of Computer Science 10

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

increment

guard

guard

increment

Guarded Independence [C. Wang et al., TACAS 2008]
Derives directly from P. Godefroid’s notion of conditional independence.

Wednesday, 19 November 2008 Department of Computer Science 11

� Contribution:

� Formal technique to compute φ for SystemC

� Applications: formal verification, simulation, and testing

Exploration with Partial-Order Reduction

SC_MODULE(Module){

sc_clock clk;

int pressure;

void guard(){

if(pressure == 10)

pressure = 9;

}

Wednesday, 19 November 2008 Department of Computer Science 12

}

void increment(){

pressure++;

}

SC_CTOR(Module){

SC_METHOD(guard);

sensitive << clk;

SC_METHOD(increment);

sensitive << clk;

}

};

Computation of Guarded Independence

IDEA: exploit the cooperative execution model of

SystemC to compute φ iteratively using a harness.

We have found a trace such that:

Wednesday, 19 November 2008 Department of Computer Science 13

Counterexample

We have found a trace such that:
1. the execution of p1, p2

terminates, and
2. the order of execution is

irrelevant.

p1

p1p2

p2

Using the Counterexample

Weakest precondition:

Pπ is an under-approximation of φ :

Wednesday, 19 November 2008 Department of Computer Science 14

If Pπ holds in the pre-state, then:

1. the execution terminates, and
2. the execution order is

irrelevant.

States

Computing Preconditions

Hoare’s rule for assignments:

PostconditionPostconditionPreconditionPrecondition
CommandCommand

Wednesday, 19 November 2008 Department of Computer Science 15

CommandCommand

y := tmp;

x := y;

tmp := x;

Strengthening the set of initial states

Remove using

Wednesday, 19 November 2008 Department of Computer Science 16

Automated Procedure
set to true initiallyset to true initially

SatAbsSatAbs

Strengthening Loop:

Wednesday, 19 November 2008 Department of Computer Science 17

Scoot: Research Compiler for SystemC

Wednesday, 19 November 2008 Department of Computer Science 18

Benchmark: Memory Components

� Often subject to race phenomenon

� Present in most electronics designs:

Wednesday, 19 November 2008 Department of Computer Science 19

� FIFOs, bridges, processors

Asynchronous Dual Port RAM
SC_MODULE (ram_dp_ar_aw) {

...

sc_uint <DATA_WIDTH> mem [RAM_DEPTH];

void READ_0 ();

void WRITE_0 ();

void READ_1 ();

void WRITE_1 ();
2x2 processes2x2 processes

shared memoryshared memory

Wednesday, 19 November 2008 Department of Computer Science 20

void WRITE_1 ();

};

void READ_0 () {

if (cs_0.read() && oe_0.read() && !we_0.read())

data_0 = mem[address_0.read()];

}

void WRITE_0 () {

if (cs_0.read() && we_0.read())

mem[address_0.read()] = data_0.read();

}

...

2x2 processes2x2 processes

exclusive RD/WRexclusive RD/WR

Benchmark Results

Processes Indep? #Stren. Predicates SMV Total Time

Rd1, Rd0 yes 16 23 13s 40s

Wr0, Rd0 yes 5 38 12s 50s

Wr0, Rd1 no 12 169 17m 6s 28m

Wednesday, 19 November 2008 Department of Computer Science 21

Linux, Intel Xeon 3GHz.

Wr0, Rd1 no 12 169 17m 6s 28m

Wr1, Rd0 no 12 169 28m 38s 39m 18s

Wr1, Rd1 yes 5 38 12s 53s

Wr1, Wr0 no 9 104 38s 5m 24s

run, Rd0 yes 12 69 3m 3m 47s

run, Rd1 yes 12 69 2m 47s 3m 35s

run, Wr0 yes 9 75 2m 17s 3m 35s

run, Wr1 yes 9 75 2m 17s 3m 35s

Processes Indep? # Stren. Predicates SMV Total Time

Wr0, Rd1 no 12 169 17m 6s 28m

Trading Precision for Time

Wednesday, 19 November 2008 Department of Computer Science

Wr0, Rd1 no 12 169 17m 6s 28m

Wr0, Rd1 no 11 42 27s 1m 30s

Wr1, Rd0 no 12 169 28m 38 39m 18s

Wr1, Rd0 no 11 42 27s 1m 30s

22

Exhaustive Simulation

10000

100000

1e+06

E
x
p

lo
re

d
 T

ra
n

s
it
io

n
s

Wednesday, 19 November 2008 Department of Computer Science 23

10

100

1000

0 5 10 15 20

E
x
p

lo
re

d
 T

ra
n

s
it
io

n
s

Simulation Time

POR
No-POR

Due to the combinatorial

explosion of schedules,

the time spent for static

analysis is rapidly amortized!

Conclusion

� “Formal” has applications beyond property checking:

optimization, simulation, testing

� Partition the system into “small” verification tasks

Wednesday, 19 November 2008 Department of Computer Science

� Partition the system into “small” verification tasks

� Distribute those tasks among many cores

� Trade precision for time

� Pragmatic approach to successful application of

formal engines at high abstraction levels

24

Related Work

� “Partial order reduction for scalable testing of SystemC TLM

designs”,

Sudipta Kundu et al., DAC 2008

� “Automatic generation of schedulings for improving the test

coverage of systems-on-a-chip”,Claude Helmstetter et al.,

Wednesday, 19 November 2008 Department of Computer Science 25

coverage of systems-on-a-chip”,Claude Helmstetter et al.,

FMCAD 2006

� “Dynamic partial-order reduction for model checking software”,

Cormac Flanagan et al., SIGPLAN, 2005

� Patrice Godefroid’s PhD thesis, 1994

Thank you

for your attention.

Wednesday, 19 November 2008 Department of Computer Science 26

