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Abstract. SystemC is a system-level modeling language and offers sup-
port for concurrency and arbitrary-width bit-vector arithmetic. The ex-
isting static analyzers for SystemC consider only small fragments of the
language. We present Scoot, a model extractor for SystemC based on
a C++ frontend. The models generated by Scoot can serve multiple
purposes, ranging from verification and simulation to synthesis. Exem-
plarily, we report results indicating that our tool can be used to improve
the performance of dynamic execution up to a factor of five.

1 Introduction

SystemC is a system-level modeling language implemented as a C++ library. It
offers support for concurrency and arbitrary-width bit-vector arithmetic. Along
with an event-driven simulation environment, the library provides a notion of
timing, which is well-suited for modeling circuits. SystemC permits describing a
system at several levels of abstraction, starting at a high-level functional descrip-
tion, down to synthesizable gate-level. Due to the complexity of C++, existing
static analyzers for SystemC consider only small fragments of the language, es-
sentially searching for specific key-words. We present Scoot, a model extractor
for SystemC . The tool sypports a wide range of language constructs, as it based
on our C++ front-end. The models generated by Scoot can serve several pur-
poses, ranging from verification and simulation to synthesis. The tool is tightly
integrated with verification back-ends for Bounded Model Checking (CBMC) [4]
and SAT-based predicate abstraction (SATABS) [2]. Results on applying model
checking to models generated by Scoot have been reported before [5].

As an example of the utility of Scoot beyond formal verification, we re-
port results indicating that our tool can be used to improve the performance of
dynamic execution up to five times.

2 Overview of Scoot

A SystemC program consists of a set of modules. Modules may declare pro-
cesses, ports, internal data, channels and instances of other modules. Processes
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Fig. 1. Overview of Scoot

implement the functionality of the module, and are sensitive to events. As in Ver-
ilog or VHDL, ports are objects through which the module communicates with
other modules. Although variables are shared between processes, classic inter-
process communication is achieved through predefined channels such as signals
and FIFOs.

Scoot uses a C++ front-end to translate the SystemC source files into a
control flow graph. The nodes of the graph are annotated with assignments
and guards (implemented in the typechecking and CFG-conversion phases in
Figure 1). Subsequently, static analysis techniques are used to determine the
following information, which is specific to SystemC :

– The module hierarchy,
– the sensitivity list of the processes, and
– the port bindings.

The SystemC library makes heavy use of virtual functions and dynamic data
structures, which are not easily analyzed by static analysis techniques. Scoot

abstracts implementation details of the library by using simplified header files
that declare only relevant aspects of the API and omit the actual implementa-
tion.

3 Static Scheduling for Dynamic Verification

Technically, SystemC modules are plain C++ classes that can be compiled and
linked to a runtime scheduler, providing thus a way to simulate the behavior of
the system. The model hierarchy is discovered at run-time only and therefore,
the compiler is missing opportunities to take advantage of this knowledge. To
illustrate the utility of the model generated by Scoot, we re-synthesize more
efficient C++ code from the model.

SystemC has a co-operative multitasking semantics, meaning that the exe-
cution of processes is serialized by explicit calls to a wait() method and that
threads are not preempted. The scheduler tracks simulation time and delta cy-

cles. The simulation time corresponds to a positive integer value (the clock),



while delta cycles are used to stabilize the state of the system. A delta cycle
consists of three phases: evaluate, update, and notify.

1. The evaluation phase selects, from the set of runnable processes, a process
and triggers or resumes its execution. The process runs immediately up to
the point where it returns or invokes the wait function. The evaluation phase
iterates until the set of runnable processes is empty. The order in which
processes are selected from the set of runnable processes is implementation-
defined.

2. In order to simulate synchronous executions, processes can delay change-
of-state effects by scheduling update requests. After the evaluation phase
terminates, the kernel executes any pending update request. This is called
the update phase. Typically, signal-assignments are implemented using the
update mechanism. Therefore, signals keep their value for a whole evaluation
phase.

3. Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such process
instances to the set of runnable processes.

Delta cycles are executed until the set of runnable processes is empty. Subse-
quently, the simulation time is increased, and processes waiting for the current
time-event are notified.

Formally, let S represent the set of states of a SystemC model. We write Up

to denote the function from 2S to 2S that updates a set of states as described by
the update phase. Similarly, let Ev : 2S

→ 2S denote the evaluation phase. The
delta phase performs a fix-point computation defined by δ(S) = δ ◦Up ◦Ev(S).
Finally, we concisely express the semantics of the scheduler with the function
Sim(t) = δ ◦Uptime ◦Sim(t− 1) that computes the set of final states at a time t.
The function Uptime updates the clock.

The standard SystemC scheduler contains several sources of inefficiency: first,
the scheduler stores data in containers that allocate memory at run-time, and sec-
ond, it triggers processes using function pointers. Scoot generates a completely
static scheduler by fixing the evaluation order of the processes and resolving dy-
namic calls. Finally, processes are sequentialized using a similar technique used
by KISS [7] that implements context switches with fast goto statements.

Code Re-synthesis The intermediate representation used by Scoot was origi-
nally designed for model checking, and uses bit-vector arithmetic expressions.
After static scheduling, Scoot translates the intermediate representation back
to a flat C++ program that does not rely on the SystemC library anymore.
The generated model is subsequently passed to g++, which results in a faster
simulator.

The following table quantifies the advantages of static scheduling compared
to dynamic scheduling on a 3 GHz Intel Pentium 4 processor. We use an AES en-
cryption/decryption core as benchmark. For each module, we report the number
of processes, the number of signals, the execution time with dynamic scheduling,
the execution time using Scoot, and the speedup obtained.



Module # Proc. # Sig. Dyn. Sched. [s] Stat. Sched [s] Speedup

Byte Mixcolum 2 7 22.94 4.33 5.3

Word Mixcolum 7 16 65.82 18.01 3.65

Mixcolum 11 30 75.7 28.6 2.65

Subbytes 15 30 49.73 9.84 5.05

128-bits AES 32 97 319.2 99.73 3.2

192-bits AES 32 99 344.21 105.45 3.26

4 Related Work and Conclusion

Due to the complexity of the C++ language, the development of any tool for
SystemC is a difficult task. Hardware synthesis tools for SystemC only consider
a small subset of the C++ syntax [3, 1]. In [8], Savoiu et al. propose to use
Petri-net reductions for SystemC , and report a speedup of 1.5 for an AES core.
In [6], Pérez et al. present a static-scheduling technique restricted to method pro-
cesses. Our sequentialization technique extends the benefits of static scheduling
to general threads by eliminating the overhead caused by context switches.

We provide a tool that extracts formal models from SystemC code. The tool
supports a broad subset of the language, as it is built on top of our C++-front-
end. The main applications are formal analysis, e.g., by model checking, and
synthesis. Exemplarily, we show that formal models have value even in dynamic
verification: we show a significant improvement in simulation performance by
using a statically scheduled model.

We are continuing to improve the SystemC support of our tool. It currently
handles the most commonly used features of the SystemC API. We are also
investigating additional formal techniques to further enhance static scheduling.
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