
DISS. ETH No. 18851

Static Analysis for SystemC with Scoot:
From Verification to Simulation

A dissertation submitted to

ETH ZÜRICH

for the degree of

DOCTOR OF SCIENCES

presented by

NICOLAS BLANC

Master of Science, EPFL

born on the 24th of June 1979
in Sion/VS

accepted on the recommendation of

Prof. Dr.Gustavo Alonso,
Dr.Daniel Kröning, and

Dr. Luke Ong

2010

Contents

1 Introduction 3
1.1 Thesis . 4
1.2 Summary of the Contributions of this Dissertation 5
1.3 Organisation of the Thesis . 6

2 Background 9
2.1 Overview of System-Level Modeling Languages 9

2.1.1 Classic Design Methodologies 10
2.1.2 Design Methodologies using SystemC 10

2.2 Model Checking . 11
2.2.1 Bounded-Model Checking . 12
2.2.2 Predicate Abstraction . 13
2.2.3 Partial-Order Reduction . 14

3 A Research Compiler for C++ 17
3.1 Introduction . 17
3.2 Overview of the Frontend . 19
3.3 The Internal Representation . 20

3.3.1 Types . 20
3.3.2 Expressions . 23
3.3.3 Statements . 26

3.4 Inheritance . 27
3.5 Virtual Functions . 29
3.6 Templates . 31

3.6.1 Template Classes . 32
3.6.2 Template Functions . 32
3.6.3 Template Specialization . 33
3.6.4 Future Work . 34

3.7 Code Resynthesis . 34

4 Verification of C++/STL Programs 35
4.1 Introduction . 35
4.2 Axiomatic Semantics . 38

4.2.1 The Assertion Language . 39

3

CONTENTS CONTENTS

4.2.2 Iterators . 40
4.2.3 Sequential Containers . 41

4.3 An Operational Model for the STL 45
4.4 Experimental Results . 50
4.5 Bibliographic Notes . 53
4.6 Summary . 54

5 The SystemC Language 57
5.1 Introduction . 57
5.2 Method Processes and Threads . 57

5.2.1 Threads and Clocked Threads 58
5.2.2 Method Processes . 59

5.3 The Concurrency Model of SystemC 59

6 A Formal View of the SystemC Scheduler 63
6.1 Introduction . 63
6.2 The Evaluation Phase . 64
6.3 The Delta Phase . 65
6.4 The Simulation Time . 66
6.5 Correctness of Partial Order Reduction for SystemC 66

7 Static Analysis for SystemC with Scoot 69
7.1 Introduction . 69
7.2 Overview of Scoot . 69
7.3 Static Analysis of SystemC . 70

7.3.1 The Supported Subset . 71
7.3.2 Implementation of Modules 71
7.3.3 Implementation of Signals . 73
7.3.4 Implementation of Ports . 73
7.3.5 Discovering Module Hierarchy 74

7.4 Static Scheduling . 76
7.4.1 Conversion of Threads . 76
7.4.2 Code Re-synthesis . 77

7.5 Bibliographic Notes . 78
7.5.1 The SystemCXML Frontend 78
7.5.2 The ParSyC Frontend . 78
7.5.3 The Quiny Frontend . 78
7.5.4 The Pinapa Frontend . 79

8 Race-Analysis for SystemC 83
8.1 Introduction . 83
8.2 Introductory example . 84
8.3 Implementation . 85

8.3.1 A Scheduler with Partial Order Reduction 85
8.3.2 Computing the Process Commutativity Conditions 87

4

CONTENTS CONTENTS

8.3.3 The Running Example . 88
8.3.4 Implementation of the Strengthening Loop 89
8.3.5 Model Checking SystemC Threads 91

8.4 Experimental Evaluation . 92
8.4.1 The Running Example . 92
8.4.2 State Machines . 93
8.4.3 An Asynchronous Dual-Port Memory 99
8.4.4 A RISC Processor . 101

8.5 Bibliographic Notes . 102
8.6 Summary . 104

9 Conclusion 105

A Verification of Concurrent Device Drivers 107
A.1 introduction . 107
A.2 Predicate Abstraction in Presence of Concurrency 108

A.2.1 Concurrency . 109
A.3 Modelling the Linux Kernel . 110
A.4 Experiments . 115
A.5 Bibliographic Notes . 118
A.6 Summary . 120

B Synthesis of C/C++ test-benches for Formal Verification 121
B.1 The Running Example . 122
B.2 Extraction of Symbolic Constraints 123
B.3 System Verilog Harness . 125
B.4 Bibliographic Notes . 127

5

Summary

SYSTEMC is a description language for computer systems that is based on C++.
The language is used for modeling electronic devices at arbitrary levels of
abstraction. In particular, SystemC can describe models with both hardware

and software aspects. As today’s electronic designs are incredibly large and com-
plex, validation of new products remains time consuming as ever; hence the need
to keep improving state-of-the-art verification techniques.

We describe verification solutions for SystemC to improve reliability of com-
puter devices by combining formal reasoning and simulation at high-level of ab-
straction. In particular, our research indicates that formal methods have appli-
cations beyond property checking, namely for code optimizations, simulation,
and testing. We show that verification engines can be integreted into compilation
flows to compute information valuable at runtime, statically.

More specifically, our results demonstrate that an application of formal en-
gines at high abstraction level is practical provided that:

1. the system is partitioned into “small” and independent verification tasks,
as monolithic approaches are more subject to scalability issues,

2. the procedure takes advantage of today’s parallel computers to distribute
those tasks among many cores and

3. authorizes trading precision for time: It is often preferable to provide partial
results rapidly instead of complete results after a long period of time.

We investigate solutions for the analysis of systems with hardware and soft-
ware components, exploring how formal methods, classic static analysis tech-
niques, and simulation can be combined to improve state-of-the-art verification.
We have implemented these techniques in a compiler prototype for the analysis of
SystemC designs called SCOOT. Given a SystemC model written in C++, SCOOT

statically extracts the module hierarchy and generates a model in an intermedi-
ate representation that is suitable for formal verification and simulation. SCOOT

is the first compiler for SystemC that uses formal methods to improve simulation
performance and coverage. In particular, experimental evaluation indicates that
SCOOT can significantly speedup the execution of models relevant for industry.

Résumé

SYSTEMC est un langage de modélisation de systèmes informatiques basé sur
C++ pouvant être utilisé pour des spécifications de circuits logiques à haut
et bas niveaux d’abstraction. En particulier, SystemC est souvent employé

pour modéliser des systèmes qui comportent à la fois des aspects matériels et
logiciels.

Comme la taille et la complexité des nouvelles générations de systèmes infor-
matiques embarqués continuent de croître, les processus de validation ralentis-
sent toujours plus les cycles de développement de ces nouveaux produits; d’où
la nécessité de poursuivre des recherches afin d’améliorer les techniques de véri-
fication actuelles.

Dans cette thèse, nous décrivons des solutions nouvelles de validation de
modèles pour SystemC qui combinent à la fois des techniques classiques de simu-
lation et desméthodes récentes de raisonnement formel à haut niveau d’abstraction.
En particulier, nos recherches montrent que le domaine d’application des méth-
odes formelles va au-delà de la simple vérification et que ces méthodes peuvent
aussi fournir des résultats utiles pour l’optimisation de code et la simulation.

De manière plus spécifique, nos travaux démontrent qu’une utilisation prag-
matique des méthodes formelles à haut niveau d’abstraction est possible dès lors
que:

1. le système est partitionné en de petites tâches indépendantes de vérifica-
tion, car les approches de vérification monolithiques sont fortement sujettes
au phénomène d’explosion exponentielle de l’espace de recherche

2. ces tâches sont exécutées en parallèle sur plusieurs machines

3. le degré de précision de l’analyse peut être ajusté: il est souvent préférable
de procéder rapidement avec des résultats partiels que d’être bloqué en at-
tente de résultats complets.

Nous présentons des solutions pour l’analyse des systèmes informatiques qui
comportent des aspects logiciels etmatériels, en explorant comment les développe-
ments récents des méthodes formelles peuvent être combinés aux techniques
d’analyse statique et dynamique traditionnelles afin d’améliorer les procédures
de vérification actuelles. Nous avons construit un prototype de compilateur pour
SystemC nommé SCOOT pour évaluer ces solutions. Etant donné un modèle Sys-
temC écrit en C++, SCOOT peut extraire de manière statique des informations
concernant la structure du système et construire un modèle dans une représenta-
tion intermédiaire adéquate pour la vérification formelle et la simulation. SCOOT

est le premier compilateur pour SystemC qui utilise des méthodes formelles pour
améliorer les performances de simulation.

1
Introduction

VALIDATION accounts for most of the development time of today’s elec-
tronic devices. The Electronic Design Automation industry (EDA) is mov-
ing toward simpler and less error-prone design methodologies to main-

tain high design productivity. Bugs frequently arise due to poor language in-
teroperability that fragments design processes. With software models written
in C/C++ and hardware descriptions written in VERILOG [Verilog], engineers
often lack solutions to ensure convergence of development. Hence the emer-
gence of new system modeling languages, such as SystemC [SystemC] and SYS-
TEM VERILOG [SystemVerilog], that span the entire design flow: from high-level
software prototypes down to hardware descriptions. The Open SystemC Initia-
tive’s group (OSCI) ambitions to establish the SystemC language as a standard for
hardware and software development. The organisation has support form lead-
ing EDA companies. SystemC extends the C++ language to provide support for
hardware modeling by means of an external library. SystemC models are thus
plain C++ code that can be compiled with standard C++ compilers. The com-
plete language specification and the simulator are released free of charge from
www.systemc.org. Due to the complexity of C++, the development of static
analysis tools for SystemC is extremely difficult. At the moment, SystemC des-
perately needs solutions for static analysis. So verification relies entirely on sim-
ulation and testing. In this thesis, we present techniques to extract information
from SystemCmodels statically. We show that this information not only provides
key insight of the model statically but can be exploited at runtime to speedup
simulation, significantly.

Increasing design complexity keeps validation time consuming as ever. Prop-
erties of interest usually involve large parts of the designs and require very deep
exploration of the systems. Currently, system designers can only rely on sim-
ulation to verify the correctness of their implementation. Extensive simulation
alone can stimulate large parts of a design and catch errors rapidly but usually
fails to cover corner cases. In contrast, Formal Methods exhaustively explore the
behaviors of a system using symbolic techniques. Chip manufacturers recognize
the importance of formal verification for proving correctness of low-level circuit
transformations that are difficult to validate using testing techniques: the pres-
tigious Turing Award, which is sponsored by leading computer companies, was

3

www.systemc.org

CHAPTER 1. INTRODUCTION

granted in 2007 to Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis for
their work on Model Checking, acknowledging thus the major impact that their
research had on designers and manufacturers of semiconductor chips.

Raising the application domain of Formal Methods to software verification
has proven tremendously challenging, however. Software models of industrial
importance are extremely large, often rely on implicit architecture assumptions,
and frequently read data from inputs. In addition, those models contain hard
to analysis constructs such as: dynamic data structures, calls to external libraries
and dynamic functions, and unsafe pointer conversions. Most powerful simulation-
based validation techniques already integrate basic formal-method components
for solving constraints at runtime to guide the exploration and to improve cov-
erage. Additionally, recent developments of automated abstraction-refinement
techniques have simplified the usage of Formal Methods. Companies such as
Microsoft are now promoting model-checking tools for the verification of de-
vice drivers. Recent successes with hardware and software model-checking tech-
niques suggest to extend their application domain toward systems that integrate
software and hardware aspects.

1.1 Thesis

In this thesis, we provide solutions to improve reliability of computer devices
by combining formal reasoning and simulation at high-level of abstractions. In
particular, our research shows that Formal Methods have applications beyond property
checking, namely for code optimizations, simulation, and testing. We claim that appli-
cations of formal engines at high abstraction levels are practical provided that:

1. the system under test is partitioned into “small” and independent verifica-
tion tasks, as monolithic approaches are more subject to scalability issues,

2. the procedure takes advantage of today’s parallel computers to distribute
those tasks among many cores and

3. authorizes trading precision for time: It is often preferable to provide partial
results rapidly instead of complete results in long amount of time.

We provide evidence to support this statement by showing that state-of-the-
art model-checking techniques can be integrated into a compiler to take advan-
tage of the domain-specific semantics of SystemC. The compiler derives precise
predicates over fragments of SystemC models using formal engines and can con-
trol the time spent for analysis: Our technique iteratively weakens safe under-
approximations. The computation of the predicates can thus be stopped early
before reaching a fixed-point.

4

CHAPTER 1. INTRODUCTION

1.2 Summary of the Contributions of this Disserta-

tion

Hardware/software co-verification creates new verification challenges but is cru-
cial for the development of reliable systems. In this thesis, we investigate solu-
tions for the analysis of systems that combine software and hardware aspects, ex-
ploring how Formal Methods, classic static analysis techniques, and simulation
can be combined to improve state-of-the-art verification techniques. We have im-
plemented those techniques in a compiler prototype called SCOOT for the analy-
sis of SystemC designs. Given a SystemCmodel written in C++, SCOOT statically
extracts of an intermediate representation that is suitable for formal verification
and simulation. SCOOT is the first research compiler for SystemC that uses For-
mal Methods to improve simulation performance and coverage. We summarize
our contributions in the next paragraphs.

Research Compiler for C++ We extendmodel-checking techniques to C++. The
C++ language is one of the most widely adopted language and is used for ap-
plications such databases, games, embedded systems. We have built a research
compiler for C++ that supports a broad range of the language’s constructs such
as inheritance, method overloading, virtual functions, and template program-
ming. The compiler is tightly integrated in a formal verification framework that
offers decision procedures for boundedmodel checking and predicate abstraction
among others. We use this frontend for the verification of applications relevant
to industry such as the popular SAT solver MiniSAT and SystemC cryptographic
models. In contrast, all previous efforts to model check C++ code are based on
dynamic execution.

Model-checking Techniques for C++/STL The C++ standard also defines the
Standard Template Library (STL)[Stepanov and Lee, 1994] that offers generic com-
ponents such as vectors, lists, and maps, and iterators to manipulate them. In
general, considerable effort are necessary to abstract data structures operations,
which are not a strong suit for formal verification engines. The STL provides
clear separation between high-level manipulations concepts and their implemen-
tations. We develop an axiomatic semantics to capture the concepts of iterator
and container, providing a formal basis for reasoning about STL usage. From our
axiomatic semantics, we show how to derive an operational model to verify the
correctness of C++/STL programs.

Static Analysis of SystemC Models Technically, SystemC is a C++ library that
provides essential components for modeling synchronous systems such as mod-
ules, ports, and signals. SystemC models are plain C++ programs that can be
compiled and linked to the SystemC library. In contrast to other hardware de-
scription languages such as SYSTEM VERILOG, the module hierarchy of SystemC

5

CHAPTER 1. INTRODUCTION

models is built dynamically at runtime using complex design patterns unsuitable
for static analysis. We have developed SCOOT, a research compiler for SystemC.
Our approach is to build a static analyser with built-in knowledge of the SystemC
semantics and to replace the original SystemC library with simpler declarations
for the only purpose of typechecking. Our SystemC analysis relies on precise
data-flow information and is able to discover module hierarchy, communication
channels, and processes at compile time. The models extracted by SCOOT can
serve several purposes ranging from formal verification to simulation.

Static Scheduling Techniques for SystemC SCOOT uses its built-in knowledge
of SystemC to perform high-level code transformations. In particular, the orig-
inal SystemC scheduler contains several sources of inefficiencies: processes are
triggered using function pointers and the scheduling algorithm stores informa-
tion using dynamic data structures. Among other optimization, SCOOT can use
its static knowledge to replace function pointers with their actual targets. The
model generated by SCOOT can then be compiled to produce significantly faster
simulators. Experimental evidence shows that our tool can be used to improve
performance of dynamic execution up to five times.

Race-Analysis for SystemC SCOOT is integrated in a formal verification frame-
work. We have developed the first SystemC compiler that uses formal analysis
to improve simulation performances. SystemC models are inherently concur-
rent and thus can exhibit nondeterministic behaviors. The SystemC language
offers race-free communication channel such as signals to describe synchronous
circuits. However the elimination of races is not always desirable: in practice, sys-
tem designers often model nondeterministic choices implicitly using constructs
that yield races. Due to the combinatorial explosions of process interleavings,
testing methods for concurrent programs alone are unlikely to discover errors
that depend on subtle interleavings. For each pair of processes, SCOOT uses an
original formal analysis technique to compute a process dependency predicate.
This information acquired at compile time is not only useful to prove or refute
process dependencies statically but can also be used to improve simulation cov-
erage. SCOOT offers to build a simulator for the exhaustive coverage of the sched-
ules that can prune the exploration at runtime, using information from our formal
analysis, to avoid visiting redundant schedules.

1.3 Organisation of the Thesis

In Chapter 2, we motivate the introduction of new design methodologies based
on SystemC, and we provide the necessary background on Model-Checking.

In Chapter 3, we provide an overview of our C++ frontend, and we describe
our support for key C++ mechanisms, e.g, inheritance, function overloading, and
templates. We also present the internal representation of our compiler in detail.

6

CHAPTER 1. INTRODUCTION

In Chapter 4, we extend Model-checking to the verification of C++/STL pro-
grams using SATABS. We specify operations on iterators and containers using
pre- and post-conditions and we show how to check the validity of iterators us-
ing Model-Checking.

In Chapter 5, we describe SystemC and its execution model at an informal
level. Subsequently, we provide a fixed-point semantics for SystemC in Chap-
ter 6 that captures the key aspects of the scheduling algorithm and abstract away
secondary details.

In Chapter 7, we present our static extraction technique for SystemC models.
We show that those models are useful to speedup simulation performances.

In chapter 8, we describe an application of Model-checking for race analysis.
The result of this formal analysis is not only useful to diagnose race statically, but
can also be used to improve exhaustive simulation.

In the appendixes, we provide additional material that is related to our re-
search. Our experience with the verification of Linux device drivers is described
in Appendix A. We present in Appendix B an automated technique that we de-
veloped to encode test benches written in C/C++ into a set of SYSTEM VERILOG

properties suitable for formal verification.

7

2
Background

2.1 Overview of System-Level Modeling Languages

TIME-TO-MARKET requirements have rushed the electronic design and au-
tomation (EDA) industry towards design paradigms that require a very
high level of abstraction. This high level of abstraction can shorten the de-

sign time by enabling the creation of fast executable verification models. This
way, bugs in the design can be discovered early in the design process.

As part of this paradigm, an abundance of system design languages such as
SPECC [Fujita and Nakamura, 2001], SYSTEM VERILOG [SystemVerilog], and Sys-
temC have emerged. A key feature is joint modeling of both the hardware and
software component of a system using a language that is well-known to engi-
neers. SPECC from the university of California, Irvine, extends the syntax of
ANSI-C to allow the description of hybrid systems. The language offers sup-
port for modular composition, primitive hardware channels, ports, and threads.
In contrast, SYSTEM VERILOG is a system-level modeling language that extends
the syntax of VERILOG to support software programming – SYSTEM VERILOG of-
fers object classes, polymorphism, pointers, and dynamic allocation of memory,
and comes with a powerful assertion language for verification.

In 1999, Synopsys (together with other industrial partners) funded the Open
SystemC Initiative (OSCI) to develop a standard system description language
based on C++. The first version of the language was released one year later in
2000. In 2005, IEEE approved the IEEE 1665 standard for SystemC. The open
nature of the project and support from key industrial actors contributed to the
world-wide acceptance of SystemC in industry. The design of SystemC is unique:
in contrast to SPECC/SYSTEM VERILOG, which extend the syntax of C/VERILOG,
SystemC is implemented as a C++ library. SystemC modules are, therefore, plain
C++ classes, which are compiled and then linked to a runtime scheduler. This
provides a simple and efficient way to simulate the behavior of the system. Sys-
temC continues to evolve: the OSCI group is extending the application domain
of SystemC above RTL by adding new libraries specialized for transaction-level
modeling (TLM). At the time of writing, SystemC v2.2 is the latest version of
the language and was released in 2007. In this document, we concentrate our
discussion on SystemC, noting that similar observations can be drawn for other

9

CHAPTER 2. BACKGROUND

system-level modeling languages.

2.1.1 Classic Design Methodologies

Figure 2.1 The diagram depicts a traditional design methodology. A fork occurs
in the development cycle, and the hardware and software parts are refined inde-
pendently.

DebugDebug

Manual Conversion

C/C++
System Model

Simulation

Simulation

HDL Desscription

Validation

Synthesis

Refine

Software Components

Figure 2.1 depicts a design methodology that starts with a high-level model
of the system written in C or C++. The behavior of the system is then refined
up to the point where the partitioning between the hardware and software com-
ponents is decided. Typically, hardware components are written in VERILOG.
Subsequently, a branch occurs in the development process, and the verification
for the software and hardware parts is performed independently. As a result,
the branches may unexpectedly diverge, corrupting the correctness of the global
system. Additionally, the lack of uniformity causes productivity losses as test
benches and code from previous phases cannot be reused easily. Finally, design-
ers must juggle with different languages and different environments, which re-
quire significant learning efforts and can be source of errors.

2.1.2 Design Methodologies using SystemC

In contrast, figure 2.2 depicts a design methodology that uses SystemC at
every stage of the development. The process starts with a system-level model,
which is refined until the partitioning is performed. Since SystemC can be used
to model circuits, both hardware and software components are described using
the same language, and thus, can be refined and verified conjointly. The consis-
tency of the global system can be tested at any time. Typically, methodologies
based on SystemC are simpler and less error prone. Test benches and modules

10

CHAPTER 2. BACKGROUND

Figure 2.2 The diagram depicts a design methodology that uses SystemC for the
description of both hardware and software components.

C/C++
System Model

Simulation

Refine

Debug/Refine

Partition

Hardware
Modules

Software
Modules

Simulation/
Validation

Synthesis

can be reused and exchanged more easily, which improves productivity and ac-
celerates the design cycle.

2.2 Model Checking

Simulation-based approaches and testing techniques only cover a subset of ex-
ecutions. In contrast, Formal Methods (FM) designates mathematic techniques
for reasoning about computer systems that ensure an exhaustive coverage of
the behaviors. The literature distinguishes FM based on Theorem Proving and
Model-Checking. Theorem Provers are semi-automated reasoning tools. Verifi-
cation using Theorem Prover is flexible but requires expertise and significant ef-
forts to craft proofs. Model Checkers implement fully automated decisions pro-
cedures and are, thus, accessible to a larger audience of designers. Automated
verification techniques for hardware and software have been developed since the
seventies [King, 1976, Cousot and Cousot, 1977, Clarke et al., 1983] and are now
promoted by major EDA companies. In the rest of this section, we provide an
overview the Model-Checking techniques that are integrated in our framework.

AModel Checker verifies that the system under test fulfills its specification. In
case the specification does not hold a Model Checker returns a counterexample
exposing the bad behavior, which provides useful information to the program-
mer for debugging. In general, checking whether a specification holds is unde-
cidable. Model-Checking is sound meaning that the absence of counterexample
is asserted correctly. Consequently, the verification process may not converge:
a Model Checker may fail to report an answer within a certain limit of time, in
which case, no conclusion can be drawn. Many systems of interest are actually
finite, e.g, circuits. For those systems, Model-Checking is also complete: Eventu-
ally a Model Checker produces an answer; though in practice, the execution may

11

CHAPTER 2. BACKGROUND

time out or exhaust memory resources.
The main limitation of Model Checkers is the so called state explosion issue

induced by storage elements: a state vector of n bits describes a set of 2n different
states, and in worst-case scenario, the Model Checker needs to enumerate all of
them for reachability. The theory of abstract interpretation [Cousot and Cousot,
1977], developed during the seventies and eighties, is now well understood and
provides mathematical solutions to tackle this explosion issue [Graf and Saïdi,
1997].

Combined with modern SAT solvers such, e.g, Chaff [Moskewicz et al., 2001]
andMinisat [Eén and Sörensson, 2003], and BDD techniques [Bryant, 1986,McMillan,
1993], the performance of Model Checkers have greatly improved during the
last decade. This enabled researchers to focus on solutions to verify concurrent
software, which poses greater challenges due to the additional explosion of pro-
cess interleavings. An abundance of techniques has been developed to overcome
this issue using Partial order reduction [Peled, 1994, 1993, Godefroid, 1996] and
Symmetry reduction [Emerson and Trefler, 1999, Miller et al., 2006]. The former
techniques can detect redundant schedules that can be skipped during explo-
ration, whereas the latter techniques exploit symmetry among processes to col-
lapse equivalent states and to reduce the size of the system.

As verification techniques for software and hardware are making progresses,
new applications for Model-Checking are emerging to verify concurrent models
with both hardware and software components [Kroening et al., 2003].

2.2.1 Bounded-Model Checking

A large number of verification tasks are successfully performed using decision
procedures based on SAT [Sheeran et al., 2000, McMillan, 2005, Biere et al., 2003]
thanks to the development of fast SAT engines.

Bounded-Model Checking (BMC) [Biere et al., 2003, Kroening et al., 2004] is one
of them: the Model Checker jointly unwinds a transition relation T and a specifi-
cation φ up to a certain bound i, starting from a set of initial states I . The Model
Checker builds then a Boolean formula that is satisfiable if and only if the model
mismatches its specification within i steps:

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ ... ∧ T (si−1, si) ∧ ¬φ(s0, s1, ..., si)

This formula is then passed to a SAT solver. In case the formula is satisfiable
the Model Checker reconstructs a counterexample in the original model from
the satisfiable assignment. The method is complete only if i exceeds the com-
pleteness threshold [Kroening and Strichman, 2003]. In practice, BMC is used to
assert safety properties up to a specific bound. To overcome the limitations of
BMC, designers can use other techniques based on SAT such as inductive reason-
ing [Sheeran et al., 2000] and interpolation-based reachability analysis [McMillan,
2005].

12

CHAPTER 2. BACKGROUND

Figure 2.3 CEGAR Loop
��

��
��
��
��

��
��
��
��

��������

��������

Concrete
Program

Correct

No trace

Spurious Trace

Abstract Prog.

Incorrect

Concrete
Trace

Abstract TraceNew
Predicates

Abstraction

Refinement

Model Checking

Simulation

BMC has been successfully applied for the verification of software and hard-
ware systems and has been adapted for HW/SW co-verification in [Kroening et al.,
2003] – Appendix B describes a similar technique in detail.

2.2.2 Predicate Abstraction

Automated software verification has taken a huge leap forward with the in-
troduction of predicate abstraction [Graf and Saïdi, 1997] and counterexample-
guided abstraction refinement (CEGAR) [Clarke et al., 2000]. Pioneered by the
model checking tools SLAM [Ball and Rajamani, 2002] and BLAST [Henzinger et al.,
2002], the technique has been successfully applied to analyze device drivers with
more than 10,000 lines of code [Ball et al., 2006, Henzinger et al., 2003a]. The CE-
GAR approach comprises four phases, namely abstraction, model checking, sim-
ulation, and refinement. These four phases are executed repeatedly, until either
a counterexample is found, or the program under test is proved correct. The CE-
GAR process is fully automated: except for providing the property to be verified,
no user interaction is required. Figures 2.3 illustrates the procedure:

1. Abstraction: In the first phase, predicate abstraction is used to generate a
finite state abstraction T̂ of the original program T . The variables of T̂ cor-
respond to a finite set of predicates over the variables of T . Each predicate
ϕi describes an observable “fact” about the program, and the valuation of
a variable bi in an abstract state determines whether the corresponding fact
holds or not. For each instruction of T , the corresponding abstract transition
is constructed independently of the surrounding instructions. The abstrac-
tion step preserves the control flow structure of the original program T . The
abstract program T̂ contains all execution traces of T , and potentially more.

2. Verification: In phase two, the abstract model T̂ is examined by a model

13

CHAPTER 2. BACKGROUND

checking tool. The abstract model contains only Boolean variables. For
this purpose, Model Checkers rely on verification engines for abstract pro-
grams such as BOPPO [Cook et al., 2005] and Cadence SMV [K.L. McMillan,
1992]. Several other efficient symbolic model checking algorithms based on
summarization and saturation can also be used (e.g., [Ball and Rajamani,
2000b, Schwoon, 2002, Basler et al., 2007]). In the presence of threads and
recursion, the reachability problem is undecidable. BOPPO deals with this
problem by over-approximating the abstract transition relation [Cook et al.,
2005]. If the model checker finds a witness for for the reachability of an error
location in T̂ , it is reported as an abstract counterexample. If no error traces
are found, we can conclude that the original program is correct.

3. Simulation: If a counterexample is found in the abstraction, the third phase
is entered. In that phase, symbolic simulation is used to determine whether
the counterexample can be replayed in the original program. The existence
of an abstract counterexample in T̂ does not necessarily imply that the error
state is reachable in the original program T . Since there is a one-to-one cor-
respondence between the locations of the abstract program and the original
program, it is sufficient to check whether there exists a feasible sequence
of transitions in T that traverses the same locations as the abstract counter-
example.

4. Refinement: In phase four, the abstract model is refined to block the abstract
trace (and potentially others) in a way that preserve soundness of the ver-
ification. This refinement is achieved by adding new predicates to the ab-
stract model that increase the accuracy of the transition relation and render
the current abstract trace infeasible.

2.2.3 Partial-Order Reduction

Model Checking is an algorithmic technique for exhaustive exploration of transi-
tion systems [Edmund M. Clarke et al., 1999]. However, Model Checking when
applied naïvely scales poorly on models with asynchronous concurrent compo-
nents, as the number of possible interleavings rapidly explodes. Partial order
reduction is a technique to explore the state space of concurrent systems in a
way that preserves the soundness of the verification result [Peled, 1994, 1993,
Godefroid, 1996]. The key idea is to exploit commutativity of transitions to ob-
tain a subset of all possible interleavings from a state such that the reduced-state
graph retains a representative behavior for each behavior that is removed. We
briefly survey partial order reduction using persistent sets and sleep sets in this
section [Godefroid, 1996]. We describe an implementation of these techniques for
SystemC in Chapter 8.

Persistent and Sleep Techniques

14

CHAPTER 2. BACKGROUND

Figure 2.4 Example of partial order reduction using persistent sets (1) and sleep
sets (2). The reduced state graph contains only the transitions depicted with solid
lines.

γ β
s0 γ β

α α α

γ β γ β

α α

(1) Exploration using persistent sets

γ β
s0 γ β

α α α

γ β γ β

α α

(2) Exploration using sleep sets

The persistent-set and sleep-set techniques both preserve deadlock states,i.e,
states without outgoing transition. The persistent-set and sleep-set techniques
are orthogonal and achieve better results when combined. Both techniques com-
pute a subset of the runnable transitions for each visited state and restrict future
exploration to transitions in this set.

Let (S, S0,→) denote a transition system with a set of states S, initial states
S0 ⊂ S, and a set of transitions →. A transition α ∈→ is a relation on S. For
α ∈→, we write s

α
→ t if 〈s, t〉 ∈ α. A transition α is runnable in a state s if there

exists a state t such that s
α
→ t, and we write α ∈ Runnable(s) to denote this fact –

Runnable is a function from S to 2→. Otherwise, α is sleeping in s.

Definition 2.2.1. [Wang et al., 2008] Two transitions α and β are guarded indepen-
dent with respect to a guard φ ⊆ S if and only if for all s ∈ φ the following hold:

1. α ∈ Runnable(s) ∧ s
α
→ t ⇒

β ∈ Runnable(s) ⇔ β ∈ Runnable(t)

2. β ∈ Runnable(s) ∧ s
β
→ t ⇒

α ∈ Runnable(s) ⇔ α ∈ Runnable(t)
3. α, β ∈ Runnable(s) ⇒

〈s, t〉 ∈ α ◦ β ⇔ 〈s, t〉 ∈ β ◦ α

The first two conditions guarantee that α and β cannot disable nor enable each
other in s, while the third condition requires α and β to be commutative in s. Tran-
sitions α and β are independent in s if and only if α, β are guarded independent
with respect to the guard {s} [Godefroid, 1996].

Definition 2.2.2. [Godefroid, 1996] Let D ⊆ →×→ be a symmetric and reflexive rela-
tion over the transitions of the system. The relation D is a valid dependency relation
for→ if and only if (α, β) 6∈ D implies that α, β are independent in all reachable states.

Definition 2.2.3. [Godefroid, 1996] Let (S, S0,→) be a transition system, and s0 ∈ S
denote one of its states. A set of transitions T ⊂ Runnable(s0) is persistent in s0 if

and only if for all β ∈ T and all sub-traces s0
α0→ s1

α1→ s2...sn
αn→ sn+1 obtained from

transitions αi 6∈ T , β, and αi are independent in si.

15

CHAPTER 2. BACKGROUND

The Definition 2.2.3 is, thus, concerned about what can happen in the future.
The persistent-set technique computes a persistent set of runnable transitions in
each visited state and restricts the exploration to transitions in this set only. Model
Checkers typically compute persistent sets using information from a preliminary
static analysis.

Figure 2.4.1 illustrates the effects of the persistent-set technique. In state s0, the
exploration uses the persistent set T = {α} to avoid visiting some of the states. In
contrast, the sleep-set technique maintains a set of runnable transitions that can
be skipped during the exploration (the sleep set). The method is concerned with
branching information from the past. Figure 2.4.2 shows a typical exploration us-
ing sleep sets. Unlike the previous approach, the sleep-set technique only reduces
the number of explored transitions and has no effect on the number of explored
states. The exploration backtracks early when the sleep set contains all runnable
transitions.

16

3
A Research Compiler for C++

3.1 Introduction

IN this chapter, we describe the research compiler for C++ that we have devel-
oped as part of our project to build a static analyser for SystemC. The frontend
of our compiler was successfully employed for the analysis of large SystemC

models from industrial partners. We provide an overview of the compilation pro-
cess to clarify how key C++ mechanisms are implemented. This information is
valuable when analysing C++models and provides insight into performance and
verification issues when programming.

The C++ language is one of themost effective programming languages for fast
execution results and is generally regarded as the most-efficient object-oriented
language. Indeed, most computationally-intensive applications such as compil-
ers, virtual machines, 3D engines, and SAT solvers are generally written in C++.
The language was first developed at Bell Labs as an extension to C and was orig-
inally named “C with Classes”. Minor details apart, C++ is a superset of C, i.e,
most C programs can be compiled using C++ compilers1

C++ offers support for traditional object-oriented mechanisms such as encap-
sulation, inheritance, and polymorphism. As with traditional object-oriented lan-
guages, C++ classes are used to group data and functions together within a same
programming structure. The programmer of a class can then hide low-level rou-
tines and choose to expose only the functionalities that are relevant to the end-
user. In addition, C++ offers to combine classes usingmultiple inheritance, which
is a mechanism that is extensively used in many libraries including SystemC. Fi-
nally, polymorphism can be used in C++ to adjust the behavior of an object at
runtime using function overriding and virtual methods.

In software engineering, encapsulation, inheritance, and polymorphism are
the key concepts that enable the development standard and reusable solutions
to frequent programming tasks, e.g., container iterators and the visitor design
pattern [Gamma et al., 1993]. In addition to object-oriented paradigms, C++ im-
plements a powerful template programming language for writing generic code.
C++ templates provide clear benefits in term of code compactness and execution

1Program 3.1 illustrates an incompatibility issue between C and C++.

17

CHAPTER 3. A RESEARCH COMPILER FOR C++

Program 3.1 In general, C++ is viewed as an extension of C. The example below
illustrates one of the few discrepancies between these two languages. The lazy
declaration of the function func is legal in C but illegal in C++.

int main(int argc, char* argv[]){
// The declaration of ‘func’ comes later.
return func();

}

// Declaration of ‘func’
int func(){
return 0;
}

performances over C. Among other characteristics, C++ has support for template
functions, template classes, template specialization, and automatic inference of
template parameters. As reported by Todd [1996], C++ templates are expres-
sive enough for meta programming: programmers can use templates to compute
complex tasks at compile time.

On the down side, C++ is a language hard to master with numerous syntactic
and semantic issues: it is an error prone language for programmers. The C++
standard describes the language using informal (and often vague) English text
that is subject to interpretation. Moreover, some aspects of the semantics of C++
are left to the implementation, others aspects are unspecified or undefined as
confirmed by the IEEE standard:

“Certain aspects and operations of the abstract machine are described in this
International Standard as implementation-defined (for example, sizeof(int)).
These constitute the parameters of the abstract machine. Each implementa-
tion shall include documentation describing its characteristics and behavior
in these respects. Such documentation shall define the instance of the ab-
stract machine that corresponds to that implementation (referred to as the
“corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in
this International Standard as unspecified (for example, order of evaluation
of arguments to a function). Where possible, this International Standard de-
fines a set of allowable behaviors. These define the nondeterministic aspects
of the abstract machine. An instance of the abstract machine can thus have
more than one possible execution sequence for a given program and a given
input.

Certain other operations are described in this International Standard as un-
defined (for example, the effect of dereferencing the null pointer).”

The ISO 14822 C++ Standard, page 5.

18

CHAPTER 3. A RESEARCH COMPILER FOR C++

Needless to mention that compilers provide incomplete information about
their implementation choices, at best. Consequently, C++ programs may be sub-
ject to portability issues. Even more problematic, unspecified behaviors, e.g., the
evaluation order of expressions, may cause execution discrepancies among bina-
ries compiled with a same compiler but using different optimization modes. This
lack of formal model renders verification of C++ programs particularly tedious.
We propose to overcome this semantic issue by considering that the compiler pro-
vides the operational definition of the language: The frontend converts C++ pro-
grams into an intermediate representation that has a clear semantics. This model
can then be verified statically using formal methods and compiled to produce
an executable binary. By construction, our compilation flow reduces the risk of
mismatches between simulation and verification – previous model-checking at-
tempts for C++ were based exclusively on explicit-state-exploration techniques
to avoid mismatches [Musuvathi et al., 2002].

The development of a frontend for C++ is vast enterprise due to the complex-
ity of the syntax and the semantics – the official standard describes the languages
over more than 700 pages. As of today, C++ is rightfully regarded as one of the
most difficult language for both humans and compilers, which explains the cur-
rent lack of analysis tools that support C++ compared to more recent languages
such as Java or C#. Our C++ parser and the typechecker alone contain 30’000
lines of codes. In order to facilitate the development, we chose to reuse a scanner
and a parser that were originally developed by Shigeru Chiba from the Tokyo
Institute of Technology and to adapt them to our needs. As C++ derives from C,
we also decided to build our frontend for C++ on top of a C frontend available in
our framework.

3.2 Overview of the Frontend

The frontend is regarded as the most important, and complex, part of a C++
compiler as it performs syntactic and semantics analysis of the source files. Fig-
ure 3.1 provides an overview of the frontend of our compiler. First, the scanner
reads characters from the C++ file, filtering white space and comments, and con-
verts the stream of character to a sequence of tokens, e.g., identifiers, keywords,
constants, punctuation. Subsequently, the parser reads the stream of tokens and
verifies the syntax of the input program in a top-down style. During the recursive
descent, the parser enforces syntactic conventions such as operator precedence
and associativity and builds parse trees to capture the syntactic structure of the
C++ program. Parse trees contain constructs specific to the C++ language that
must be rewritten in more general form. So the typechecker performs semantical
analysis and converts parse trees into abstract syntax trees (AST), which are easier
to analyse and language independent. Beside verifying the type of expressions,
the typechecker instantiates templates, resolves overloaded function calls, and
performs implicit conversions. Additionally, the typechecker associates a unique

19

CHAPTER 3. A RESEARCH COMPILER FOR C++

Figure 3.1 Overview of the C++ frontend.

LL(k) Parser

Scanner (flex)

Typechecker

C++
File

Tokens

Parse Trees

GOTO Conversion

La
ng

ua
ge

 S
pe

ci
fic

Backend

Symbol Table + Abstract Syntax Trees

Symbol Table + Control−Flow Graph

The typechecker typechecks the parse trees,

and stores the new symbols in a symbol table.
builds abstract syntax trees,

Originally developped by
Shigeru Chiba,

2001
Tokyo Institure of Technology

graph, and removes side−effects from expressions.
The goto−conversion phase builds a control−flow

La
ng

ua
ge

. I
nd

ep
.

symbol to each declaration of variable, type, function, and template. Those sym-
bols and their related informations are then stored in a symbol table. This process
is repeated for each C++ file given as input. After typechecking, the symbol ta-
bles of each file are merged together. At this stage, the program has been fully
converted to a language independent-tree representation, which is subsequently
converted into a control-flow graph.

3.3 The Internal Representation

In this section, we provide an informal overview of our language-independent
representation, focusing on the original constructs used to facilitate symbolic rea-
soning. We use this intermediate language as a portable representation that can
be interpreted by mean of a simulator or compiled into machine code for fast
execution performances.

3.3.1 Types

Figure 3.2 shows the syntax of types. In addition to the fundamental types
for booleans, integers, floating-point numbers, and fixed-point numbers, our in-
termediate representation offers types for pointers, arrays, functions, and com-

20

CHAPTER 3. A RESEARCH COMPILER FOR C++

Figure 3.2 Types.

Type ::= bool | empty | aliasid | IntbvType | FloatbvType | FixedbvType
| PtrType | ArrayType | FuncType | FuncType

IntbvType ::= signedbv <widthN> | unsignedbv <widthN>
FloatbvType ::= floatbv < widthN,mantissaN>
FixedbvType ::= fixedbv < widthN, integer

N
>

PtrType ::= SubType *
ArrayType ::= SubType [sizeN]

StructType ::= struct { {field
id
Type} }

FuncType ::= ReturnType ({ ArgType })

pound data structures. In the usual way, we write bool to denote a Boolean
type. Many languages provide an empty type to indicate that a function returns
no value or that a pointer is pointing to an object of unknown type and cannot,
thus, be dereferenced. We write empty to denote this empty type. Given a type
tsub and a strictly positive integer s, we write tsub [s] to denote an array of s el-
ements of type tsub. In a similar way, tsub ∗ denotes a pointer type to objects of
type tsub. Note that C++ offers reference types. Technically, references are plain
pointers. This distinction between references and pointers is relevant only during
typechecking: internally, the typechecker converts references to pointers. Func-
tion types define inputs and outputs of functions. Given a return type tret and
two argument types t1 and t2, we write tret (t1, t2) to denote the type of the func-
tions that take as input two arguments of types t1 and t2 and returns a value of
type tret. Our intermediate representation also supports type aliases. They are
used for breaking cycles that may appear in declaration of compound types. In
the next paragraphs, we describe bit-vector types and compound types.

Bit-Vector Types

When modeling circuits, system designers need to represent bit vectors of arbi-
trary length. Languages such as VERILOG or VHDL have built-in support for
bit-vector arithmetic. In contrast, software programming languages such as C or
C++ only provide similar functionalities through external libraries that are dif-
ficult to analyse statically. Our intermediate representation handles bit-vector
types natively to facilitate formal reasoning.

Given a strictly positive integer w, wewrite signedbv<w> and unsignedbv<w>
to denote signed and unsigned bit-vector types of width w, respectively – note

21

CHAPTER 3. A RESEARCH COMPILER FOR C++

that unsignedbv<1> and signedbv<1> denote types different from bool. On
32-bit machines type int is mapped to type signedbv<32>.

Additionally, our intermediate representation supports arbitrary floating-point
and fixed-point types: floatbv<w,m>denotes a floating-point type for bit-vectors
of width w. The second type parameter m indicates the size of the mantissa. In a
similar way, fixedbv<w,i> denotes a fixed-point type for bit-vectors of width
w. The second type parameter i indicates the size of the integer part.

Compound Types

Structures enable to aggregate heterogeneous data together and to access them
randomly using labels. For instance, we write

struct{ unsignedbv<32> x , unsignedbv<32> y }

to denote a structure with two fields named x and y, respectively. Both fields are
32-bits unsigned integers. Note that we restrict our discussion to non-recursive
data-types, that is, a structure S cannot contain values of same type as S. Our
internal representation of classes and structures is compatible with C: members
are laid out in memory in their declaration order.

Methods The C++ language offers to encapsulate data and methods together,
providing a clear way of organizing code. In addition to methods, a C++ class
may declare several constructors to initialize the state of a newly created object
and a destructor to release the resources owned by an object before it is destroyed.
Encapsulation is a high-level programming concept. Internally, the frontend flat-
tens encapsulation, i.e., Methods, constructors, and destructors are converted to
plain C functions. The next lines shows the declaration of a structure B with a
constructor, a destructor, and two overloaded methods:

s t r u c t B {
B () ; / / C on s t ru c t o r
~B () ; / / D e s t ru c t o r
void s e t (in t v) ; / / Over loaded Method
void s e t (bool v) ; / / Over loaded Method

} ;

The previous declaration yields the following function symbols after type-
checking:

Symbol Table
Identifier Type

B_ctorB empty (B*)
B_dtorB empty (B*)
B_set_int empty (B* , unsignedbv<32>)
B_set_bool empty (B* , bool)

22

CHAPTER 3. A RESEARCH COMPILER FOR C++

The first parameter corresponds to the this pointer – the object associated
with the call – and is added implicitly by the typechecker. As for data mem-
bers, methods are renamed using a complex renaming scheme that refer to the
identifier of the class that declare them, e.g., constuctor B is renamed B_ctorB 2.
Additionally to permit overloaded declarations, the identifier of amethod reflects
its signature: in previous example, the two methods set(int) and set(bool) are re-
named to B_set_int and B_set_bool. Note that the type of the this parameter is
left apart.

Figure 3.3 Syntax of Expressions.

Expr ::= true | false | null | variableid | string_of_bits | string_of_chars
| Expr(+ | - | * | / | mod) Expr
| Expr(shl | lshr | ashr) Expr
| Expr(bitand | bitor | bitxor) Expr
| bitnot Expr
| Expr(= | < | > | <= | >=) Expr
| Expr(and | or | xor) Expr
| not Expr
| Expr. member_nameid
| Expr [Expr]
| array_of(sizeN, Exprarray_of)
| & Expr
| * Expr
| typecast < Type > (Expr)
| array_with(Expr, Expr, Expr)
| struct_with(Expr,memberid, Expr)
| concat(Expr, Expr)
| extractbit(Expr, Expr)
| extractbits(Expr, Expr, Expr)
| Expr?Expr:Expr
| nondetType
| newType

3.3.2 Expressions

Figure 3.3 shows the prefix-notation of the internal representation for expres-
sions. Expressions represent values, not actions, and thus, expressions have no

2For the sake of clarity and conciseness, we use renaming scheme in the examples that is sim-
pler than the actual one.

23

CHAPTER 3. A RESEARCH COMPILER FOR C++

side-effects. The language offers traditional operators for integers, boolean val-
ues, pointers, arrays, and structures. In addition to the classic operators, our in-
termediate representation offers operators for bit-extraction, concatenation, and
member substitutions. Most of the constructs are standard expressions and we
skip their presentations to focus on the more unusual operations.

L-Value Expressions

The next grammar is used to distinguish l-value expressions, i.e, expressions that
can appear on the left-hand side of an assignment, from other expressions:

LValue ::= variableid

| * Expr
| LValue.member_nameid LValue
| LValue[Expr]

At its core, an l-value is either a variable, a dereference expression, or an array
element. The grammar extends the set of l-values to member expressions and
index expressions built from l-values.

According the syntax of l-value expressions, variables of type array yield l-
value expressions: Our compiler supports copy of arrays to facilitate formal rea-
soning. In contrast, C and C++ do not support array assignments – C++ program-
mers must use vectors to achieve similar effects.

AddressOf Expressions

AddressOfExpr ::= & Expr0

The address-of operator & returns the address of an l-value expression.

Dereference Expressions

DerefExpr ::= * Expr0

In a standard way, the dereference operator * returns the value at the memory
location indicated by the operand.

ArrayOf Expressions

ArrayOfExpr ::= array_of(sizeN, Expr0)

An expression array_of(s, e0) creates an array of s elements that are equal
to e0.

24

CHAPTER 3. A RESEARCH COMPILER FOR C++

Concatenation Expressions

ConcatExpr ::= concat(Expr1, Expr0)

The expression concat(e1, e0) concatenates the two unsigned bit-vector e1

and e0 such that e1 and e0 represent the upper part and the lower part of the
concatenation, respectively.

Bit-Extraction Expressions

ExtractBitExpr ::= extractbit(Exprsrc, Exprindex)

The bit-extraction operator extractbit takes as parameter two bitvector ex-
pressions esrc and eindex and extracts the bit at the position indicated by eindex

from esrc, e.g., expression extractbit e 0 extracts the first bit of the bit-vector
expression e.

Bits-Extraction Expressions

ExtractBitsExpr ::= extractbits(Exprsrc, Expr1, Expr0)

The ternary bits-extraction operator is used to extract a subset of bits from
a bit-vector expression. The first operand is a bit-vector. The second and the
third operands are constant bit-vector expressions that specify the left- and right-
hand index positions, respectively: extractbits(esrc, 3, 1) returns a bit-vector
of width 3 that holds the value of the third, second, and first bits of esrc.

Member Expressions

MemberExpr ::= Expr0. memberid

In the usual way, a member expression e0.field takes as parameter an object e0

and extracts its member named field. The expression is ill-formed if field is not a
member of e0.

New Expressions

NewExpr ::= new Type

The operator new is used for dynamic memory allocation. Expression new t
returns a new object of type t.

Non-Deterministic Expressions

NonDetExpr ::= nondet Type

Operator nondet returns a randomvalues upon evaluation. Non-deterministic
expressions are used to model external inputs such as files or user commands.

25

CHAPTER 3. A RESEARCH COMPILER FOR C++

ArrayWith Expressions

ArrayWithExpr ::= array_with(Expr, Expr, Expr)

ArrayWith expressions are used for model-checking purposes to express pred-
icates over arrays in compact form. Let e0 denote an expression array of type
t0[s], where t0 indicates the subtype of the array and s the size of the array. Ad-
ditionally, let e1 denote an integer expression and e2, a value of type t0. The
expression array_with(e0, e1, e2) represents the same value as array e0 except
that the value of the element at position e1 is equal to e2.

StructWith Expressions

StructWithExpr ::= struct_with(Expr, memberid, Expr)

Let e0 denote an expression of type structure with a member named field of
data type t1, and let e1 denote of value of type t1.

The expression struct_with(e0, field, e1) represents the same value as ex-
pression e0 except that the value of field is equal to e1.

3.3.3 Statements

Command ::= Expr := Expr
| Expr ({ Expr })
| Expr := Expr ({ Expr })
| assert Expr
| assume Expr
| goto Expr locationid

Our intermediate representation recognizes the traditional commands: as-
signments, function calls, assert statements, assume statements, and control state-
ments that form the basic nodes of control-flow graphs.

Assignments

Assignment ::= Expr := Expr

In the standard way, the left-hand side of an assignment must be a l-value
expression. As mentioned before, our intermediate representation supports copy
of arrays.

Function Calls

FuncCall ::= Expr ({ Expr })
| Expr := Expr ({ Expr })

Our intermediate representation considers expressions without side-effects.
Function calls are thus expressed using function-call statements. The return value
of a function can be directly assigned to a l-value expression.

26

CHAPTER 3. A RESEARCH COMPILER FOR C++

Assert Statements

Assert ::= assert Expr

An assert statement defines a safety property that must hold when the com-
mand is executed. The execution is stopped and an error is reported if the prop-
erty is violated.

Assume Statements

Assume ::= assume Expr

An assume statement defines a safety properties that must hold when the
command is executed. In contrast to assert statements, the execution is stopped
silently if the property is unsatisfied. Assume statements are exclusively used for
formal verification purposes.

Control Statements

Goto ::= goto Expr locationid

Control statements are used to implement control flow. A goto instruction
takes as parameter an boolean expression that represents the guard of the state-
ment and a destination identifier that indicates the location where the execution
shall jump if the guard evaluates to true – otherwise the execution shall continue
with the next instruction.

3.4 Inheritance

Type inheritance is a high-level programming concept. Internally, the frontend
considers structural equivalence, that is, a structure A derives from a structure B if
the structure of B subsumes the structure of A – any field of B is also field of A. It
is the duty of the typechecker to verify the concordance of types and to perform
implicit conversions if necessary. Single inheritance provides a limited way of
expressing relation among classes. In many cases, however, we wish to combine
behaviors of different classes. C++ offers multiple inheritance for that purpose,
and indeed, the implementation of SystemC is based on this mechanism. Our
compiler handles multiple inheritance in a classic way. The next lines shows the
declaration of three C++ structures A1, A2, and B:

s t r u c t A1 { bool a ; } ;
s t r u c t A2 { in t a ; } ;
s t r u c t B : A1 , A2 { bool b ; } ;

27

CHAPTER 3. A RESEARCH COMPILER FOR C++

These structures yield the following types in the symbol table after conver-
sion:

Symbol Table
Identifier Type

A1 struct{ bool A1_a }
A2 struct{ unsignedbv<32> A2_a }
B struct{ bool A1_a , unsignedbv<32> A2_a , bool B2_b }

Structure B inherits from A1 and A2, and therefore, B contains a copy of the
members of each of its base classes. The compiler automatically renames mem-
bers using the identifier of the enclosing class to avoid name clashes, e.g., “A1_”.
From the table above, B derives from both A1 and A2 as the fields A1_a and A2_a
of A1 and A2 are both fields of B.

Virtual Inheritance In general, a new class inherits a copy of all the members
of its parents. As shown in the previous example, the frontend renames members
to avoid name clashes using class identifiers. This schema is applicable only if
classes do not inherit multiple times from a same parent. In order to avoid du-
plicated copies of parents, the programmer can specify virtual bases that can be
inherited several times – these virtual bases are then shared among other base
types. We illustrate this mechanism with an example. The next lines shows the
declaration of four C++ structures A, B, C and D:

s t r u c t A { bool a ; } ;
s t r u c t B : v i r tua l A { in t b ; } ;
s t r u c t C: v i r tua l A { char c ; }
s t r u c t D:B ,C{ bool d ; } ;

Classes B and C both inherit from the virtual base class A, meaning that A can
be shared between B and C. Subsequently, class D inherits from B and C. These
structures yields the following types after conversion:

Symbol Table
Identifier Type

A struct{ bool A_a }
B struct{ bool A_a, unsignedbv<32> B_b }
C struct{ bool A_a, signedbv<8> C_c }
D struct{ bool A_a, unsignedbv<32> B_b,signedbv<8> C_c,

bool D_d }

Note that member A_a appears only once in the definition of D. Therefore, A_a
is well defined in D.

28

CHAPTER 3. A RESEARCH COMPILER FOR C++

Program 3.2 Example with virtual functions

s t r u c t A {
v i r tua l in t f () { return 0 ; } ; / / v i r t u a l f u n c t i o n

} ;

s t r u c t B : A {
void f () { return 1 ; } / / f () i s v i r t u a l i m p l i c i t l y
v i r tua l void g () { return 2 ; } / / v i r t u a l f u n c t i o n

} ;

in t main ()
{
A a ;
a . f () ; / / r e t u r n s 0
B b ;
b . f () / / r e t u r n s 1 ;
((A&)b) . f () / / r e t u r n s 1 ;

} ;

3.5 Virtual Functions

A method is virtual if it is declared with the virtual keyword or if it overrides a
virtual method from a base class, in which case the method is said to be virtual
implicitly. C++ requires compilers to handle call to virtual methods in a dynamic
way: The actual target of the call is chosen at runtime according to the final type
of the object associated with the method. To achieve this goal, the compiler im-
plicitly creates a virtual table for holding pointers to methods. Those tables are
used to resolve function addresses at runtime. Each virtual function in a class has
a corresponding entry in the virtual table for that class. Virtual tables are filled
statically by the compiler. When necessary, the compiler adds references to vir-
tual tables inside the body of a class. Those references are then set dynamically
during the construction of the objects.

We use Program 3.2 as a running example to illustrate the mechanisms un-
derneath virtual functions. The program defines two classes A and B. Class A
declares a virtual function f(). Class B inherits from A, declares a virtual func-
tion g(), and overloads function f() – observe that the declaration of f() in B
is implicitly virtual as f() is virtual in A. Subsequently, the main function instan-
tiates two variables a and b of respective types A and B and then calls a.f(),
b.f(), and ((A&)b).f(). Note that the call a.f() returns zero, which means
that the function f() from A is executed. In contrast, both expressions b.f() and
((A&)b).f() return one, which means that the function f() from B is chosen,
as f() is virtual and overloaded in B.

The next table shows the structures after conversion. Upon semantics analy-

29

CHAPTER 3. A RESEARCH COMPILER FOR C++

sis, the compiler creates the virtual-table types A_vt and B_vt for holding refer-
ences to the virtual methods. The compiler then adds to the body of the classes
A and B the two pointers A_vtptr and B_vtptr for holding references to virtual
tables.

Symbol Table
Identifier Type

A struct{ A_vt* A_vtptr }
B struct{ A_vt* A_vtptr, B_vt* B_vtptr }
A_vt struct{ signedbv<32> (A*)* A_vt_f }
B_vt struct{ signedbv<32> (B*)* B_vt_f,

signedbv<32> (B*)* B_vt_g }

In addition, the next table shows the functions that are created during conver-
sion. Symbol A_f denotes the method f() in A. Similarly, B_f and B_g denote the
methods f() and g() in B, respectively. In addition to those methods, the com-
piler creates a function B_f_A implicitly. This function is identical to function B_f
except that its first parameter is a pointer to an object of type A (instead of pointer
to an object of type B). The first argument corresponds to the this parameter of
the method and is converted at runtime to a pointer to elements of type B. The
purpose of function B_f_A is to override the behavior A_f in A.

Symbol Table
Identifier Type

A_f unsignedbv<32> (A*)
B_f unsignedbv<32> (B*)
B_g unsignedbv<32> (B*)
B_f_A unsignedbv<32> (A*)

The compiler generates virtual tables statically. Those virtual tables are then
shared among all object instances. In the previous example, the compiler creates
three global virtual tables vtAA, vtAB, and vtBBwith static storage duration:

Symbol Table
Identifier Type

vtAA A_vt
vtAB A_vt
vtBB B_vt

30

CHAPTER 3. A RESEARCH COMPILER FOR C++

Virtual table vtAA is used for calls made in the context of class A if the final
type of the object is A. Otherwise, virtual table vtAB is used if the call occurs in
the context of A and if the final type of the object is B. Finally, virtual table vtBB
is used if the call is made in the context of B and the final type of the object is B.
Our compiler initializes those variables in the following way:

vtAA.A_vt_f := &A_f
vtAB.A_vt_f := &A_f_B
vtBB.B_vt_f := &B_f
vtBB.B_vt_g := &B_g

Figure 3.4 summarizes the situation. The virtual table of a is set to vtAA.
Variable b has two virtual tables. The first one is set to vtAB and is used to
override the behavior of the base type of b. The second one is set to vtBB.

Figure 3.4 Layout of virtual tables for Program 3.2

A_vtptr

a

b

A_vtptr

B_vtptr

vtAA

A_vt_f

A_vt_f

vtAB

B_vt_g

B_vt_f

vtBB

B_f_A

B_f

B_g

A_f

Our compiler provides a complete support for virtual functions, multiple in-
heritance, and virtual bases. Additionally, we have a full implementation of func-
tion overloading, including operator overloading and virtual operators.

3.6 Templates

Generic programming is a key concept for writing efficient and reusable pro-
grams. In C++, a template is essentially a pattern for functions and classes that is
parameterized and can be instantiated to produce ordinary functions and classes.
The parameters of a pattern can be types or constant expressions whose values
can be determined at compile time. As it was discovered after its creation, C++
templates provide a complete meta-programming language [Todd, 1996]. The
syntax of C++ templates is generally regarded as awkward and difficult to read

31

CHAPTER 3. A RESEARCH COMPILER FOR C++

and is poorly described in the standard. The implementation of templates is cer-
tainly the trickiest part of C++ compilers, which explains why for a long time
compilers only had limited support for templates. Nevertheless, C++ templates
are extremely powerful and widely popular. They are key to the implementation
of many libraries, including SystemC and the Standard Template Library (STL)
that provides standard generic containers and algorithms. In this section, we
provide an overview of our implementation of templates noting that the fron-
tend already supports a broad subset of templates that is large enough to analyse
SystemC models and many programs that contain STL containers.

3.6.1 Template Classes

We begin the review with template classes, which are fully supported by our
compiler. The next example defines a generic class array for arrays of fixed size.
The template has the two parameters T and C for the subtype and size of the
array, respectively. Subsequently, the code instantiate the template and creates
the arrays a_int10 and a_bool4 for holding ten integers and four boolean values,
respectively:

/ / t emp l a t e c l a s s
template < c l a s s T , in t C>
c l a s s array {

public :
T& operator [] (in t i) { return t [i] } ;
private :
T [C] t ;

} ;

array <int ,10 > a_int10 ; / / t emp l a t e i n s t a n t i a t i o n
array <bool ,4 > a_bool4 ; / / t emp l a t e i n s t a n t i a t i o n

3.6.2 Template Functions

The next example defines a generic function max that takes as parameter two
arguments and returns a reference to the greatest one. The unique template pa-
rameter T denotes the type of the arguments. Note that any template instantiation
is ill-formed if no suitable operator exists to compare the arguments. The type-
checker must then report an error.

/ / t emp l a t e f u n c t i o n
template < c l a s s T>
T& max(T& t1 , T& t2) { return t 1 < t2 ? t1 : t2 ; }

max<int >(i , j) ; / / t emp l a t e i n s t a n t i a t i o n

32

CHAPTER 3. A RESEARCH COMPILER FOR C++

Our compiler supports template functions. In additions to template functions,
our frontend can also handle template methods, which are illustrated in the fol-
lowing example:

c l a s s A
{

public :
/ / t emp l a t e method
template < c l a s s T>

void func (T t) { v = t ; } ;
bool v ;

} ;

A a ;
a . se t <int > (0) ; / / t emp l a t e i n s t a n t i a t i o n

In the example above, class A declares the method template func. An error
is generated at compile time if the template parameter T cannot be implicitly
converted to bool.

3.6.3 Template Specialization

The idea of template specialization is to override the default definition of a tem-
plate to handle a particular type in a different way. For instance, the next example
shows a possible generic type for arrays of fixed size:

template < c l a s s T , in t C>
c l a s s array {

public :
T& operator [] (in t i) { return t [i] } ;
private :
T [C] t ;

} ;

Whendealingwith boolean values, a programmermight decide to pack boolean
values more efficiently using integers. The next example illustrate such a case:

/ / S p e c i a l i z a t i o n f o r b o o l e an a r r a y s o f width 32
template <>
c l a s s array <bool ,32 >
{

public :
bool get (in t i) const { . . . }
bool s e t (in t i , bool b) const { . . . } ;
private :
unsigned t ;

} ;

33

CHAPTER 3. A RESEARCH COMPILER FOR C++

Our frontend currently supports template specialization for classes and func-
tions. The implementation of SystemC relies on this mechanism in several places,e.g.,
to specialize the behavior of boolean signals and ports.

3.6.4 Future Work

As part of our work to build a full C++ compiler, we are working to extend our
support for partial specialization of templates and automatic inference of tem-
plate parameters:

/ / t emp l a t e f u n c t i o n
template < c l a s s T>
T& max(T& t1 , T& t2) { return t 1 < t2 ? t1 : t2 ; }

/ / i n s t a n t i a t i o n us ing au t oma t i c i n f e r e n c e o f t emp l a t e p a r ame t e r s .
in t i , j ;
max(i , j) ;

template <c l a s s T>
c l a s s {

T a ; T& get () { return a ; }
} ;

/ / (p a r t i a l) s p e c i a l i z a t i o n
template <c l a s s T∗>
c l a s s {

T∗ pa ; T& get () { return ∗pa ; }
} ;

At the current time, we overcome compilation issues related to partial special-
ization by adding specialized versions of the templates. In a similar way, we can
overcome compilation issues related to automatic inference of template parame-
ters by providing those parameters explicitly.

3.7 Code Resynthesis

After typechecking and conversion to a control-flow graph, our framework offers
the possibility to re-synthesize a flat C++ model of our intermediate representa-
tion that can be compiled to native code using an external an compiler such as
g++. This provides a flexible, and portable, way of generating binaries. Addi-
tionally, the C++ models that we generate contains the original file-location infor-
mations to simplify debugging. Similar compilation flows are used for languages
such as Haskell [Jones et al., 1992] and Verilog.

34

4
Verification of C++/STL Programs

4.1 Introduction

C++ offers many useful features not provided by C, including support for
object-oriented programming and generic programming, where general pur-
pose algorithms or data structures can be applied to many types of data,

with proper type-checking. Software model checking for C programs is widely
recognized as providing real benefits for suitable programs, and is implemented
by a number of tools [Ball and Rajamani, 2000a, Henzinger et al., 2002, Chaki et al.,
2004, Clarke et al., 2004]. All previous efforts to model check C++ code are based
on explicit-state exploration and execution of the program; we propose to extend
the popular predicate abstraction framework [Graf and Saïdi, 1997, Ball and Rajamani,
2000a] to the verification of C++ programs using abstract data types.

We concentrate our efforts on uses of the Standard Template Library (STL)
[Stepanov and Lee, 1994], which provides a clear example of an advantage over
verifying C code. Use of interesting data structures in C typically involves direct
pointer manipulation and “hand-crafted” approaches to even common structures
such as lists. Considerable effort must be spent in directly abstracting pointer
behavior, not a strong suit of typical predicate abstraction engines. In contrast,
code using the STL makes the operations explicit at the level of the data structure
— the STL has made the most difficult part of the abstraction trivial, e.g., by
replacing a for-loop stepping through next pointers of a struct with a for-
loop incrementing an STL iterator into a list variable. Liskov and Zilles noted
that abstract data types (such as those provided by STL) allow programmers to
abstract away from the implementation details of commonly used structures and
concentrate on the task at hand [Liskov and Zilles, 1974]. We observe that abstract
data types (ADTs) provide the same facility in abstraction for verification tools.

We verify the use of STL calls rather than behavior for any particular STL im-
plementation. STL implementations are precisely the kind of pointer-manipulation
intensive, optimized-for-efficiency code that is difficult to abstract. Choosing a
particular implementation to verify would also be difficult. Additionally, the STL
implementations are typically well-tested, and even subtle bugs are likely to be
revealed given the large amount of code depending on correct behavior. Discov-
ering errors in a pattern of STL calls is therefore more useful to C++ programmers

35

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

than verification of STL implementations. Ignoring the implementation details
is simply following the underlying principle of using abstract data types. It is
precisely the implementation details that make testing of STL code difficult: an
incorrect use of the STL may, in fact, work in a particular implementation of the
STL. However, this “correct” behavior will be both non-portable and likely to
break if changes are made to the code, such as the ordering of structures in mem-
ory. This difficult-to-test, difficult-to-reproduce behavior, typical of pointer and
memory errors, makes a strong case for verification that code relies only on be-
havior guaranteed by the Standard Template Library’s definition in the C++ language
standard [ISO/IEC, 2003], which is precisely what we provide.

We therefore assume the correctness of STL implementations, and pursue the
more fruitful (and more likely to catch errors) path of checking the correctness
of STL use according to the guarantees of the C++ language definition [ISO/IEC,
2003]. This is analogous to checking the correctness of code using standard “hand-
defined” data structures in C, a difficult task for many current software model
checkers: we leverage the power of abstract data types to avoid the usual diffi-
culties.

Our approach is to produce an operational model of the behavior guaranteed
by the STL standard and apply predicate abstraction to a modified C++ program
in which STL calls have been replaced by the operationally equivalent model.
In particular, our verification tool, SATABS [Clarke et al., 2004], is a predicate
abstraction-based model checker that handles a large subset of the C++ language,
and our operational model is written in (a variation of) C++. The operational
model is not an implementation of the Standard Template Library, as it makes
use of non-executable features such as infinite arrays — supported by the logic of
our model checker, but not realizable in compiled code. The C++ model checker
handles STL code, once it has been rewritten using the operational model, with
the same standard abstraction-refinement loop as is used for the rest of the pro-
gram. We show that it suffices to verify correctness using the operational model
by proving that the preconditions on operations in the model imply the precon-
ditions guaranteed by the language definition for those operations, and the post-
conditions given by the standard imply the strongest post-conditions for the op-
erational model.

The contribution of this work is to extend the powerful predicate abstraction
technique for software model checking to apply to C++ programs, and in partic-
ular to use an operational model and the principles of abstract data types to ef-
ficiently verify usage of the C++ Standard Template Library [Stepanov and Lee,
1994, ISO/IEC, 2003] in an implementation-independent manner.

An Example

Program 4.1 shows a toy program using the STL vector container. This pro-
gram declares an STL vector, a. On line 9, the program pushes a value into a
(push_back expands into a call to the vector’s insert method). Line 10 de-

36

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Program 4.1 example.cpp

4 in t main () {
5 in t x ;
6 vector <int > a ;
7
8 / / a . r e s e r v e (5) ;
9 a . push_back (1 0) ;
10 vector <int > : : c o n s t _ i t e r a t o r i = a . begin () ;
11 a . push_back (6) ;
12 x = (∗ i) ;
13 }

clares an STL iterator i, initially pointing to the first element of a. Line 11 pushes
another value into a, and line 12 dereferences the iterator from line 10. We wish
to consider the question: is this program memory-safe? Is the dereference on line
12 guaranteed to succeed?

The answer is no. Our tool produces a counterexample demonstrating that
the iterator i may be invalid at line 12, after 4 iterations, using 17 predicates
(Prog. 4.1).

Figure 4.1 example.cpp counterexample
\ldots
State 57 file example.cpp line 11 thread 0

c::main::1::a={ .size=1, .capacity=1,
.version=2, .data={ } }

Violated property:
file example.cpp line 12
dereferencing of invalidated iterator
a.version == i.version

The standard makes no guarantee about the initial capacity of a vector. When
an insertion exceeds the current capacity, the vector must be expanded, which
may invalidate all iterators into that vector. Uncommenting line 8 produces a
memory-safe program: the standard guarantees that after a reserve call, the ca-
pacity of awill be at least the value reserved. Until vector size exceeds this limit,
no expansions (and thus invalidations) will occur. The model checker produces
an abstraction proving the memory-safety of the fixed example.cpp in 9 itera-
tions, using 45 predicates.

Themodel checker produces the counterexample and proof via standard predicate-
abstraction techniques, after replacing the STL operations on lines 8, 9, 10, and 11

37

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

with our operational semantics. For example, the call to reserve becomes:

i f (s>capac i ty) {
capac i ty=s ;
vers ion ++;

}

where s is the argument to reserve (5), and capacity and version are fields
in our model of the vector container. The field version is critical: Iterators also
have version fields, and we construct the operational model such that an itera-
tor is guaranteed valid iff the version field of the iterator matches the version
field of the container (as discussed in Section 4.3).

The push_back call expands, in part, into:

reserve (s i z e +1) ;
s i z e ++;

with the reserve call expanded as shown above.
The 45 predicates used to prove correctness include a.capacity >= 5, 1 +

a.size <= 5 and a.version == i.version. Program 4.1 is incorrect because the
condition s > capacity in the reserve produced by the push_back cannot be
shown to be false, resulting in a possible change of version. In the fixed pro-
gram, the new size is provably less than or equal to the capacity of the vector. The
erroneous program executes successfully on many platforms, demonstrating the
difficulty of testing such implementation-dependent errors.

4.2 Axiomatic Semantics

Table 4.1 Axiomatization of Iterators

c.begin()
0

֌ c
(it-begin)

c.end()
c.size
֌ c

(it-end)

it1
i

֌ c ∧ it2
i

֌ c

it1 = it2
(it-eq)

it1
i

֌ c ∧ it2
j

֌ c ∧ i 6= j

it1 6= it2
(it-neq)

it
i

֌ c ∧ i < c.size

it + 1
i+1
֌ c

(it-inc)
it

i
֌ c ∧ 0 < i

it − 1
i−1
֌ c

(it-dec)

The C++ standard defines the semantics of the STL informally using pre- and
post-conditions — in potentially ambiguous English text that is not machine-
readable. We axiomatically formalize the semantics of the standard sequential
containers list, vector, and deque, providing a basis for correctness of an
abstract implementation. The semantics of associative containers such as map,

38

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.2 Rules for iterator

{ P ∧ it
i

֌ c ∧ 0 ≤ i + j ≤ c.size } it+=j (it-mut-inc)

{ P [it/it′] ∧ it
i+j

֌ c } c ∈ A

{ P ∧ it
i

֌ c ∧ i < c.size} ∗ it := t (it-deref1)
{ P [c/c′] ∧ ci = t∧ c ∈ A

∀j 6= i . cj = c′j∧

∀it2, j . it2
j

֌ c′ ⇒ it2
j

֌ c}

multimap, set and multiset are defined in a similar manner (we omit their
presentation). We define Hoare triples in the ”forward”-style for the methods of
the container classes. ”Backward”-style axioms for the purpose of generating ver-
ification conditions can be derived using the consequence rule. Hoare-style ax-
iomatizations of languages that permit aliasing are problematic [Hoare and Wirth,
1973, Bornat, 2000, Reynolds, 2002, Ishtiaq and O’Hearn, 2001]; we reduce the
aliasing problem between iterators to aliasing between elements of an array.

As the constructors of the containers have trivial semantics (either creating
an empty container, or copying an existing container), we omit their axiomati-
zations. Methods such as push_back() and pop_front() are syntactic sugar for
insert() and erase(). We therefore limit the presentation to insert() and erase().
Furthermore, the standard defines several forms of insert() and erase() methods.
As some of these variations can be implemented in terms of other versions, we
present only one of each category — a minimal basis for formalization.

4.2.1 The Assertion Language

We distinguish three types of variables: we define the set of container variables
C, the set of integer variables N , and the iterator variables I. The set of variables
is denoted by V = C∪̇I∪̇N . By convention, we assume {c, l, v} ⊂ C, {i, j, n} ⊂ N ,
and {it, it1, it2} ⊂ I. We assume that the containers contain elements of some
type T. We denote the set of variables of this type by T , and by convention, t ∈ T .

We distinguish two different kind of container variables: active and inactive
containers. By convention, we denote active containers with unprimed variables,
e.g., c, v, l, and inactive containers by primed variables, e.g., c′, v′, l′. Inactive con-
tainer variables are used in post-conditions to denote the pre-state of containers.
The set of active containers is denoted by A ⊂ C.

39

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

We define the syntax for integer expressions (IntExpr) in the usual manner:

IntExpr := N | Z

| C.size | C.capa

| IntExpr (+ | − | ∗ | ...) IntExpr

The expressions c.size and c.capa denote the size and the capacity of a container
c, respectively. We define the following iterator expressions:

ItExpr := I | ItExpr (+ | −) IntExpr
| C.begin | C.end

Note that expressions of iterator type used in the programmay contain additional
operators, e.g., the dereferencing operator defined below. These operators are not
permitted in assertions. We define the following expressions of type T:

TExpr := T | CIntExpr

The expression ci denotes the value of the ith element of the container c.
Note that in order to avoid some substitution details in the following rules,

we assume the expressions in commands to be variable expressions.
Assertions may relate integers, compare container elements and iterators, re-

late iterators to container elements, and may contain the usual Boolean connec-
tives:

Assert := IntExpr (< | = | ...) IntExpr
| TExpr = TExpr | ItExpr = ItExpr

| ItExpr
IntExpr
֌ C

| ¬Assert | Assert (∨ | ∧ | ...) Assert
| ∀v . Assert | ∃var . Assert

By it
i

֌ c we denote the fact that the iterator it points to the ith element of the
container c. As a special case, i may be equal to the number of elements in the
container. In this case, we say that i points to the end of the container c. The

operator
i

֌ c is only defined for offsets i ∈ {0, . . . , c.size}.

4.2.2 Iterators

We first formalize the concept of the Iterator, which is technically a pointer to
an element inside of a container. Besides iterators, the C++ standard permits
references to the elements inside a container. For all containers except deque<T>,
references can be replaced trivially by iterators.

We postpone the discussion of how references to elements inside a deque are
handled.

Table 4.1 shows the axiomatization of the semantics of the operations on it-
erators. Iterators are typically created using the begin() and end() methods of
containers. This is axiomatized by the two schemata it-begin and it-end.

40

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.3 Basic Rules for Sequential Containers

{ P ∧ it1
i

֌ c} it2 := c.insert(it1, t) (seq-ins)
{ P [c/c′][it2/it

′
2] ∧ i′ = i[c/c′]∧

it2
i′

֌ c ∧ c.size = c′.size + 1 ∧ ci′ = t∧
∀j < i′ . cj = c′j ∧
∀j ≥ i′ . cj+1 = c′j }

{ P ∧ it1
i

֌ c ∧ i < c.size} it2 := c.erase(it1) (seq-era)
{ P [c/c′][it2/it

′
2] ∧ i′ = i[c/c′]∧

it2
i′

֌ c ∧ c.size = c′.size − 1∧
∀j < i′ . cj = c′j∧
∀j > i′ . cj−1 = c′j }

Two iterators that point to the same location are equal (schema it-eq). To argue
that two iterators are not equal it is necessary to show that they point to two
different positions inside the same container (schema it-neq).

All containers permit incrementing and decrementing an iterator. If it points
to the position i inside container c, then it + 1 points to the position i + 1 (schema
it-inc). Note that it + 1 may be c.end(). Similarly, if it points to the position i and
i is greater than zero, then it − 1 points to the position i − 1 (schema it-deq).

In addition to the previous axiom schemata, we provide the semantics of the
mutation of iterators and one dereferencing command in Table 4.2.

4.2.3 Sequential Containers

The sequential containers list, vector and deque conform to a common
basic semantics described by the rules seq-ins and seq-era given in Table 4.3.

Let c denote an instance of a sequential container with elements of type T.
The insert() method takes an iterator it1 and a reference to an object of type T
as arguments. As a pre-condition, it1 must point to an element in c or be equal
to c.end(). The post-condition guarantees that it2 points to the newly inserted
element.

The erase()method removes the element pointed to by the iterator it1 from the
container c. The post-condition guarantees that the iterator it2 points to the posi-
tion in the sequence that was just beyond the erased element. The post-conditions
of insert() and erase() for the validity of iterators depend on the particular con-
tainer type, and are formalized in the following.

The list Container

Table 4.4 shows the additional rules for lists. Let l be an active instance of

41

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.4 Additional Rules for list

{ P ∧ it1
i

֌ l} it2 := l.insert(it1, t) (lst-ins)
{ P [l/l′][it2/it

′
2] ∧ i′ = i[l/l′]∧

∀it, j < i′ . it
j

֌ l′ ⇒ it
j

֌ l∧

∀it, j ≥ i′ . it
j

֌ l′ ⇒ it
j+1
֌ l }

{ P ∧ it1
i

֌ l ∧ i < l.size} it2 := l.erase(it1) (lst-era)
{ P [l/l′][it2/it

′
2] ∧ i′ = i[l/l′]∧

∀it, j < i′ . it
j

֌ l′ ⇒ it
j

֌ l∧

∀it, j > i′ . it
j

֌ l′ ⇒ it
j−1
֌ l }

list<T>. The insert() method takes an iterator it1 and a reference to an object of
type T. As a pre-condition, it1 must point to an element of l or be equal to l.end().
The post-condition guarantees that an iterator valid in the pre-state is also valid
in the post-state.

The erase()method removes the element pointed to by the iterator it1 from the
list l. The post-condition provides no guarantee about the validity of the iterators
that were pointing to the erased element, but any other iterators are not affected
by the removal. Note that the post-condition does not guarantee that iterators
pointing to the erased element are invalid; however, previous guarantees about
the validity of such iterators cannot carry over from the pre-condition, as the
container is renamed. Thus, no conclusions can be made about the validity or
invalidity of such iterators in the post-state.

The vector Container

Table 4.5 shows the additional rules for vectors. Let v be an instance of vector<T>.
A vector v has a capacity v.capa that corresponds to the number of elements v can
hold without having to reallocate its content. Therefore, there are two differ-
ent rules for the insert() method. If no reallocation occurs (schema vec-ins1), the
post-condition guarantees that the iterators pointing before the inserted element
are still valid. Otherwise (schema vec-ins2), no guarantee is provided in the post-
state about the validity of the iterators that are pointing into v in the pre-state.

The erase()method removes the element contained in the vector v and pointed
to by the iterator it1. The post-condition does not provide any guarantees about
the validity of the iterators that were pointing to or beyond the erased element.
The validity of other iterators is not affected by the removal.

The reserve() method adjusts the capacity of the vector. After its invocation,
the capacity of the vector is greater or equal to the argument n. If the capacity
in the pre-state is less than n, a reallocation occurs and the capacity is increased.
Otherwise, the invocation has no effect.

42

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.5 Additional Rules for vector

{ P ∧ it1
i

֌ v ∧ v.size < v.capa} it2 := v.insert(it1, t) (vec-ins1)
{ P [v/v′][it2/it

′
2] ∧ i′ = i[v/v′] ∧ v.capa = v′.capa∧

∀it, j < i′ . it
j

֌ v′ ⇒ it
j

֌ v}

{ P ∧ it1
i

֌ v ∧ v.size = v.capa} it2 := v.insert(it1, t) (vec-ins2)
{ P [v/v′][it2/it

′
2] ∧ v.capa ≥ v.size}

{ P ∧ it1
i

֌ v ∧ i < v.size} it2 := v.erase(it1) (vec-era)
{ P [v/v′][it2/it

′
2] ∧ i′ = i[v/v′] ∧ v.capa = v′.capa∧

∀it, j < i′ . it
j

֌ v′ ⇒ it
j

֌ v}

{ P ∧ n ≤ v.capa} v.reserve(n) {P } (vec-res1)

{ P ∧ n > v.capa} v.reserve(n) (vec-res2)
{ P [v/v′] ∧ v.size = v′.size ∧ v.capa ≥ n ∧ ∀j . vj = v′

j }

The formal definitions provided here are adapted from the informal English
text of the ISO standard. For example, schemata vec-res1 and vec-res2 are equiv-
alent to “Reallocation happens at this point if and only if the current capacity
is less than the argument of reserve()” [ISO/IEC, 2003] and vec-era is a for-
malization of “Invalidates all the iterators and references after the point of the
erase” [ISO/IEC, 2003].

The deque Container

The deque is a container for which insert and erase operations at either end of
the sequence are optimized. The deque differs from other containers. The validity
of the iterators and references to the elements in the sequence do not follow the
same policy. For instance, an insert at either end of a deque invalidates all the
iterators but has no effect on the references. Therefore, we have to distinguish
references from iterators.

The rule dqe-ins describes the effects of an insertion at either end of a deque.
Let d be an instance of deque<T>. The pre-condition asserts that the iterator it1
points either to the first element of d or to its end. The post-condition guarantees
that the validity of the references ref do not change. It provides no guarantee
about the validity of the iterators of d. An insertion in the middle of a deque
invalidates both the references and the iterators. Thus, there is no specific rule for
this case.

The erase() method removes the element pointed to by the iterator it1 from

43

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.6 Additional Rules for deque

{ P ∧ it1
i

֌ d ∧ (i = d.size ∨ i = 0)} it2 := d.insert(it1, t) (dqe-ins)
{ P [d/d′][it2/it

′
2] ∧ i′ = i[d/d′]∧

∀ref, j < i′ . ref
j

֌ d′ ⇒ ref
j

֌ d∧

∀ref, j ≥ i′ . ref
j

֌ d′ ⇒ ref
j+1
֌ d}

{ P ∧ it1
i

֌ d ∧ (i = d.size − 1 ∨ i = 0)} it2 := d.erase(it1) (dqe-era)
{ P [d/d′][it2/it

′
2] ∧ i′ = i[d/d′]∧

∀it, j < i′ . it
j

֌ d′ ⇒ it
j

֌ d∧

∀it, j > i′ . it
j

֌ d′ ⇒ it
j−1
֌ d∧

∀ref, j < i′ . ref
j

֌ d′ ⇒ ref
j

֌ d∧

∀ref, j > i′ . ref
j

֌ d′ ⇒ ref
j−1
֌ d }

the deque d. If the element is at either end of d, then the operation has no ef-
fect on the validity of the iterators and references that were not pointing to the
erased element (rule dqe-era). A removal of an element in the middle of a deque
invalidates both the references and the iterators.

The map Container

A map<K,T, ≺ > associates unique keys of type K to values of type T . The
template argument≺ is a predicate function that must induce a strict weak order-
ing relation on the elements of K. The equivalence of the keys noted ∼= is defined
as follows:

k1
∼= k2 ⇔ ¬(k1 ≺ k2) ∧ ¬(k2 ≺ k1)

The insert() method described here takes an argument t ∈ K × T (Table 4.7).
The first component is denoted by t.first and corresponds to a key. The sec-
ond component is denoted by t.second and corresponds to the value the key is
mapped to. The tuple t is inserted into the map m if and only if no key is equiv-
alent to t.first. The returned value is a pair of an iterator and a Boolean value.
Its second component is true if and only if t is inserted. In this case, the iterator
p.first points to the newly inserted tuple t. The post-condition guarantees that the
validity of the iterators is not affected by the insertion.

The erase() method removes the tuple pointed to by the argument it from the
map. The post-condition does not provide any guarantees about the new value
of the iterators that were pointing to the erased element. The validity of other
iterators is not affected by the removal.

44

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.7 Rules for map

{ P ∧ ∀i .¬mi.f irst ∼= t.first} p := m.insert(t)
{ P [m/m′][p/p′]∧

∃i ≤ m′.size .∧
∀j < i . m′

j.first ≺ t.first∧
∀j ≥ i . t.first ≺ m′

j.first∧

p.first
m
֌ i ∧ p.second = true ∧ mi = t ∧ m.size = m′.size + 1∧

∀it, j < i . it
j

֌ m′ ⇒ it
j

֌ m∧

∀it, j ≥ i . it
j

֌ m′ ⇒ it
j+1
֌ m∧

∀j < i . mj = m′
j∧

∀j ≥ i . mj+1 = m′
j }

{ P ∧ mi.first ∼= t.first} p := m.insert(t)
{ P [p/p′] ∧ p.second = false }

{ P ∧ it
i

֌ m ∧ i < m.size} m.erase(it)
{ P [m/m′] ∧ i′ = i[m/m′] ∧ m.size = m′.size − 1∧

∀it2, j < i′ . it2
j

֌ m′ ⇒ it2
j

֌ m∧

∀it2, j > i′ . it2
j−1
֌ m′ ⇒ it2

j
֌ m∧

∀j < i . mj = m′
j∧

∀j > i . mj−1 = m′
j }

{ P ∧ mi.f irst ∼= k} it := m.find(k){P [it/it′] ∧ it
i

֌ m }

{ P ∧ ∀i .¬mi.f irst ∼= k} it := m.find(k){P [it/it′] ∧ it
m.size
֌ m }

The erase() and insert() methods of the multimap, set and multiset con-
tainers behave in the same way as the ones of map: the insertion of an element
does not invalidate iterators; erasing of an element only invalidates the iterators
pointing to that element.

The find() method searches for a tuple of map m with a key equivalent to
the argument k. If such a tuple exists, then the returned value is an iterator
pointing to it. Otherwise, the returned iterator points to the end of the map.
Since the definition of the semantics of other methods such as lower_bound(),
upper_bound(), and equal_range() follows a similar pattern, we skip their
presentation.

4.3 An Operational Model for the STL

45

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.8 The definitions of the functions and sets of the operational model.

It = {VCont ∪⊥} × N0 × N0 (vcont, offset, version) ∈ It
Cont = (N0 → T) × (N0 → N0) (data, version, size, capa) ∈ Cont

×N0 × N0

Σ = (VZ → Z) × (VIt → It)× (σZ, σIt, σCont, σT) ∈ Σ
(VCont → Cont) × (VT → T)

J KX : (X Expression× Σ) → X
J Kcmd : (Command× Σ) → Σ

In order to verify that a program using the STL obeys the pre-conditions of
the methods of the containers and iterators as formalized above, we use an op-
erational model. The operational model assumes that variables with an array
type of infinite size can be declared, i.e., mappings from N0 into some arbitrary
domain. Note that the operational model is therefore optimized for verification
purposes, and is not actually executable.

The model is expressed using operational semantics. In the following, we use
X and Y as meta types. Let It and Cont denote respectively the set of iterators
and container values. The set of variables of a specific type X is written VX . The
set of states is denoted by Σ. A state s is a tuple of functions from variables to
values. The symbol JKX denotes a function from states and expressions to values
of type X . We write JcKXs to represent the evaluation of the expression c in the
state s. The symbol JKcmd denotes a function from states and commands to states.
We employ the standard notation sJcKcmds

′ to signify that executing the command
c in the state s yields the state s′. The definitions of the previous sets and functions
are shown in Table 4.8. Furthermore, note that containers have a field capa, which
is only used if the container is a vector.

We relate the sets of the axiomatic model and the sets of the operational model
in the following way: VIt ⊂ I, VCont = A, VT ⊂ T and VZ ⊂ N .

Table 4.9 The Operational Semantics of the Expressions.

JxKXs = s.σX(x) (expr-var)
J̊cKVCont

s = c (expr-vcont)
Je0 ? e1 : e2KXs = Je0Kbools ? Je1KXs : Je2KXs (expr-ite)
Jλx. eKX→Y s = λx′. JeKY s〈x, x′〉 (expr-λ)
Je0(e1)KY s = Je0KX→Y s(Je1KXs) (expr-func)
JceKT s = Jc.data(e)KT s (expr-at)

Let x denote a variable, e an expression and c a container variable. Table 4.9
shows the meaning of some of the expressions of the language. The semantics of
the trivial expressions are skipped. For the sake of conciseness, the language used
for the operational model has new constructs such as the ones found in expr-ite,

46

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

expr-vcont or expr-func. Note that in expr-vcont, c̊ denotes the variable c itself and
not its value.

A version number is associated with each offset of the data array of a con-
tainer. The version and data arrays can be seen as functions N0 to respectively
N0 and T . Each iterator has a field called version, which is a number. The field
vcont ∈ VCont∪̇{⊥} identifies the container into which an iterator points, or is ⊥
in the case of an iterator that has not yet been assigned to.

Our operational modelmaintains the following invariant: An iterator it points
into a container c if and only if the version of the iterator matches the version of
the element it points to:

s � it
i

֌ c ⇐⇒ s � it.vcont = c̊ ∧ it.offset = i∧
it.version = c.version(i)

(ass-ptsto)

We use s〈a, x〉 to denote the state equal to s except that the value of the vari-
able a is x. If a has a field named b, then s〈a.b, x〉 denotes the state that is equal to
s except that a.b is x. For arrays, we use the notation s〈ci, t〉 to refer to the state
equal to s except that the ith element of c is equal to t. For convenience, we use
s〈..|ai, xi|..〉 to denote the state obtained from s by simultaneously substituting all
ai by xi.

We translate the axiomatic semantics of the iterators into an operational model
(Table 4.10). Note that I denotes a macro used for shortening the formulas.

To argue that incrementing an iterator it yields a state that is equal to the
previous state except that both the offset and the version of it are updated, it is
necessary to show that it points inside of a container c and that incrementing its
offset produces a position that is still in the bounds of c (opm-it-muc-inc).

The Operational Semantics of Vectors

We present the operational semantics of the insertion and the removal of an el-
ement of a vector in Table 4.11. The rule opm-vec-ins describes the operational
semantics of the command it2 := v.insert(it1, t); by means of the program Ivec

given in Table 4.1. The program Ivec inserts the value t into the vector c just be-
fore the position pointed to by the iterator it1. The iterator it2 is then set to the
newly inserted element. The validity of the iterators depends on the capacity of
the vector.

The rule opm-vec-era describes the effect of removing an element form a vector
by means of the program Evec, given in Alg. 4.2. Note that only the iterators that
point beyond the erased element are invalidated.

47

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Table 4.10 The Operational Semantics of Iterators

s � it
I

֌ c ∧ 0 ≤ I + j < c.size
sJit+ = jKcmds

〈

I, JI + jKN0
s |V, Jc.version(I + j)KN0

s
〉 (opm-it-mut-inc)

I = it.offset
V = it.version

s � it
I

֌ c ∧ I < c.size
sJ∗it := tKcmds

〈

cJIKN0
s, JtKT s

〉 (opm-it-deref1)

I = it.offset

s � it
I

֌ c ∧ I < c.size
sJt := ∗itKcmds

〈

t, JcIKT s
〉 (opm-it-deref2)

I = it.offset

s � it2
it2.offset
֌ c ∧ it1

it1.offset
֌ c

sJi := it2 − it1Kcmds
〈

i, it2.offset− it1.offset
〉 (opm-it-dist)

Table 4.11 The Operational Semantics of Vectors

sJIvecKcmds
′ ∧ s � it1

I

֌ v
sJit2 := v.insert(it1, t)Kcmds

′ (opm-vec-ins)

I = it1.offset

sJEvecKcmds
′ ∧ s � it1

I

֌ v ∧ I < v.size
sJit2 := v.erase(it1)Kcmds

′ (opm-vec-era)

I = it1.offset

The Operational Semantics of a List

Alg. 4.3 shows a program that inserts a value into a list. Note that due to the
universal quantifier in the post-condition of the rule lst-ins, every iterator variable
may need to be updated. In order to overcome the issues that arise with the use
of universal quantifiers we propose an over-approximation. Note that we require
the over-approximation to be sound, i.e., the checker does not incorrectly report
that a program is correct.

One possible over-approximation for a list consists in keeping valid only the
iterators whose offsets are not affected. The checker may as a result report spuri-
ous counterexamples, but the approximation may be sufficient for proving some
properties. We hope to implement a refinement procedure for ruling out some
spurious counterexamples introduced by the over-approximation.

The translation of the remaining axiomatic rules for STL into our operational
semantics can be carried out in the same manner. We therefore omit their presen-
tation. The translation of the operational model into a C++ library that is used for

48

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Algorithm 4.1 The program Ivec inserts into the vector v the element t.
1: procedure insert_vec
2: v.size := v.size + 1;
3: v.data := λ i. i < it1.offset ? v.data(i) : i = it1.offset ? t : v.data(i-1) ;
4: if v.size ≤ v.capa then
5: v.version := λ i. i < it1.offset ? v.version(i) : v.version(i)+1;
6: else
7: v.version := λ i. v.version(i)+1;
8: ⊲ NonDetVal stands for a non-deterministic non-zero positive value
9: v.capa := v.capa + NonDetVal;

10: it2 := (̊v, it1.offset, v.version(it1.offset));

Algorithm 4.2 The program Evec removes from the vector v the element pointed
to by it1.
1: procedure erase_vec
2: v.size := v.size - 1 ;
3: v.version := λ i. i < it1.offset ? v.version(i) : v.version(i)+1;
4: v.data := λ i. i < it1.offset ? v.data(i) : v.data(i+1);
5: it2 := (̊v, it1.offset, v.version(it1.offset));

model checking an application is straight-forward, though an over-approximation
is necessary to handle the quantifiers.

Depending on the property being checked, it may even be sufficient to adopt
a coarser over-approximation that has the benefit of making the verification more
efficient. Instead of considering an array of version numbers, one can associate
a single version number with an entire container. Every time the version of a
container is increased, all the iterators pointing to it are invalidated.

Correctness

One can show correctness of the operational model with respect to the formal
semantics given in Section 4.2. The following three claims are shown for each of
the methods:

1. The invariant is maintained (ass-ptsto),

2. the pre-condition of the operational model is at least as strong as the pre-
condition required by the standard, and

3. the post-condition of the operational model is at most as strong as the post-
condition guaranteed by the standard.

49

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Algorithm 4.3The program Ilst inserts in the list l the element t before the position
pointed to by iterator it1.
1: procedure insert_lst
2: l.size := l.size + 1 ;
3: l.data := λ i. i < it1.offset ? l.data(i) : (i = it1.offset ? t : l.data(i-1));
4: for all var ∈ VIt/{it1, it2} do
5: var.offset := var.offset < it1.offset ? var.offset : var.offset+1;
6: var.version := l.version(var.offset);
7: it2 := (̊l, it1.offset, l.version(it1.offset));
8: it1.offset := it1.offset + 1;
9: it1.version := l.version(it1.offset);

Algorithm 4.4 The program Ilst2 inserts into the list l the element t. Note that this
is an over-approximation
1: procedure insert_lst2
2: l.size := l.size +1 ;
3: l.data := λ i. i < it1.offset ? l.data(i) : i = it1.offset ? t : l.data(i-1) ;
4: l.version := λ i. i < it1.offset ? l.version(i) : l.version(i)+1;
5: it2 := (̊l, it1.offset, l.version(offset));

4.4 Experimental Results

Our implementation is based on SATABS. SATABS implements counterexample-
guided abstraction refinement, and, as a distinguishing feature, uses a SAT-solver
to compute the abstract model [Clarke et al., 2004]. It is therefore sound with
respect to the bit-vector semantics of C and C++. Besides predicate abstraction,
SATABS also implements static analysis with two powerful abstract domains: a
‘may’ analysis, mostly used for pointers, and a ‘must’ analysis, mostly used for
integer variables.

The operational model uses an unbounded array in order to store the con-
tainer elements. We therefore extend SATABS in order to support unbounded
arrays in the predicates and in the transition relation. We first reduce the for-
mula with array operations to a formula over uninterpreted functions. This for-
mula is then reduced to bit-vector logic by means of Ackermann’s reduction.
This is an eager reduction, and is therefore similar to the implementation in
UCLID [Bryant et al., 2002].

Our front-end to SATABS supports a large subset of the C++ language. We cur-
rently lack support for template partial specialization and automatic inference of
template parameter. We do implement template classes, overloading and virtual
methods. We refer the reader to Chapter 3.6.

We use the source code of MiniSAT as a benchmark for our technique. Min-

50

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

iSAT is “a minimalistic, open-source SAT solver,” recognized in the SAT 2005
competition as one of themost efficient SAT solvers available [Eén and Sörensson,
2003]. The importance of effective SAT solvers to many applications, particularly
verification, is well known, and MiniSAT is a popular base for cutting-edge re-
search in Boolean satisfiability.

A number of variants of MiniSAT are available. The standard release is writ-
ten in C++. One of these variants replaces the custom made dynamic vector used
in the main releases with the vector class provided by the C++ Standard Template
Library. The MiniSAT code is hand-crafted for high performance, and makes use
of templates, references, and operator overloading.

We obtain a total of 299 non-trivial safety properties for the MiniSAT code, out
of which 272 are due to the pre-conditions of our operational version of the vector
class. The benchmarks were performed on a Linux machine with a 2.8 GHz Intel
Xeon processor. Within 13s (including parsing), the static analysis is able to prove
150 of the properties. The remaining ones are passed to the predicate-abstraction
engine. We use a limit of 20 refinement iterations. The times are split up into the
time taken by the abstraction, model checking, simulation, and refinement.

Avg. Time (s)
No. Total Abs. Mc. Sim. Ref. It.

CE 5 324.8 18.3 276.7 5.6 23.8 6.4
Success 229 52.8 7.6 38.1 1.5 5.6 2.6
Failed 65 420.6 14.8 331.8 29.1 44.9 20.0

We were able to prove 229 properties (76%) in an average of about one minute
each, and obtained counterexamples for 5 properties. The counterexamples are
due to imprecise modeling of the environment. As an example, MiniSAT con-
tains an assertion that compares an integer read from a file with a constant. For
65 properties, the iteration limit was exceeded. Those cases were mostly due
to vector indexing by values taken from non-STL dynamic memory. The model
checker and the operational model of STL are available to other researchers for
experimentation1.

Limitations and Future Work

Proving full memory-safety for C++ programs is, of course, no easier than
for C programs. Most real code mixes STL containers amenable to our abstrac-
tion with more “C-like” allocation and memory management. As discussed in
the introduction, finding a good abstraction for low-level memory management
is far more difficult than abstracting usage of a well defined ADT. Program 4.2
shows a portion of the MiniSAT code mixing STL usage with a C-style allocation
involving an empty declaration (for data), malloc, and a cast into a float. The
ADT-based approach used to show safety for STL constructs is not applicable,

1http://www.cprover.org/satabs/ and http://www.cprover.org/stl/.

51

http://www.cprover.org/satabs/
http://www.cprover.org/stl/

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Program 4.2 Problematic code from MiniSAT

c l a s s Clause {
u int s i z e _ l e a r n t ;
L i t data [0] ;

public :
/ / NOTE: Thi s c o n s t r u c t o r cannot be used d i r e c t l y
/ / (doesn ’ t a l l o c a t e enough memory) .
Clause (bool l e a rn t , const vector <Lit >& ps) {

s i z e_ l e a rn t = (ps . s i z e () << 1) | (in t) l e a rn t ;
for (in t i = 0 ; i < (in t) (ps . s i z e ()) ; i ++) data [i] = ps [i] ;
i f (l e a rn t) a c t i v i t y () = 0 ; }

/ / −− use t h i s f u n c t i o n i n s t e a d :
friend Clause∗ Clause_new (bool l e a rn t , const vector <Lit >& ps) {

a s s e r t (s izeof (L i t) == s izeof (u in t)) ;
a s s e r t (s izeof (f l o a t) == s izeof (u in t)) ;
void∗ mem = xmalloc <char >(s izeof (Clause) +

s izeof (u in t) ∗ (ps . s i z e () + (in t) learn
return new (mem) Clause (l earn t , ps) ;

}

in t s i z e () const { return s i z e _ l e a r n t >> 1 ; }
bool l e a rn t () const { return s i z e _ l e a r n t & 1 ; }
L i t operator [] (in t i) const { return data [i] ; }
L i t& operator [] (in t i) { return data [i] ; }
f l o a t& a c t i v i t y () const { return ∗ ((f l o a t ∗)\&data [s i z e ()]) ; }

} ;

and so we are only able to show memory-safety for the STL usage, not the entire
program. This highlights the value of ADTs for verification tools. Code directly
manipulatingmemory is more difficult to abstract for both a programmer seeking
code understanding and a model checker seeking a correctness proof than code
making use of the STL.

ADTs and Invariants

A problematic pattern appearing in MiniSAT is the use of a literal taken from a
clause vector as an index into another vector, as in this code fragment:

L i t q = c [j] ;
i f (! seen [var (q)] && l e ve l [var (q)] > 0) {

where c originally derives from a clause database. In order to prove safety for
the accesses to seen and level, SATABS must derive and manipulate a pred-
icate involving a pair of quantifiers, e.g. ∀i.(i < db.size()) ⇒ (∀j.(j <

52

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

db[i].size()) ⇒ db[i][j] < seen.size()) if c[j] derives from a vec-
tor of clauses db. Such a nested quantifier predicate is beyond the state-of-the-art
for predicate abstraction tools at this stage. However, we note that the property
we really wish to prove is that var of a Lit is always a valid index into a set of
vectors. This is a class invariant of the Lit class. As future work in the spirit
of our approach to STL, we hope to introduce annotations for such class/type
invariants, enabling proofs for programs making judicious use of ADTs.

4.5 Bibliographic Notes

Our approach to model checking code calling the Standard Template Library
is based on a variation of predicate abstraction [Graf and Saïdi, 1997], and in-
spired by the recent success of software model checkers [Ball and Rajamani, 2002,
Henzinger et al., 2002, Chaki et al., 2004, Clarke et al., 2004] based on predicate
abstraction and counterexample-guided abstraction refinement [Clarke et al., 2000].

We extend our SAT-based predicate abstraction [Clarke et al., 2004] to handle
a large subset of the C++ language, including objects, (operator) overloading, ref-
erences and templates. Previous abstraction-based model checkers neither han-
dle C++ programs nor provide an operational semantics supporting implementation-
independent verification of code using the STL.

Wang and Musser’s present a dynamic approach for verifying template code
(using gdb, which provides correctness proofs only if loop invariants are pro-
vided by a programmer [Wang and Musser, 1997].

The CMC model checker [Musuvathi et al., 2002] can, in theory, verify C++
code compiled with templates and STL constructs, but checks implementation-
dependent behavior as it performs explicit-state exploration, actually executing
the code (with the attendant scaling and completeness problems). JPF 2 [Visser et al.,
2003] has been applied to Java code that makes use of standard Java containers,
but also relies on explicit exploration. At the other end of the spectrum, SAVCBS
2006 presented iterator specification as a challenge problem, resulting in a num-
ber of approaches, focusing mainly on logical specification rather than practical
verificationmethods [Jacobs et al., 2006,Weide, 2006, Bierhoff, 2006, Krishnaswami,
2006]. Cok shows how to use ESC/Java 2 and JML to verify usage in some cases,
but notes the serious limitations of such an approach[Cok, 2006].

Gregor and Schupp [Gregor and Schupp, 2003, 2006] describe STLlint, a static
analysis tool for checking properties of the STL. Their goals are quite similar
to ours: checking the implementation-independent properties of STL usage in
source code. STLlint relies on symbolic execution of an executable specification,
similar in spirit to our approach, but without a formalization to establish the link
between the operational semantics and the STL definition, or the power of model
checking to produce counterexample traces for errors. The latter is critical both for
determining which errors are spurious and which are genuine, and for correct-
ing real errors. Our approach additionally provides correctness proofs in cases

53

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Program 4.3 example2.cpp

1 in t main (in t argc , char ∗ argv)
2 {
3 in t x ; / / no t i n i t i a l i z e d
4 std : : vector <int > vec ;
5 vec . reserve (x) ;
6
7 vec . push_back (0) ;
8 s td : : vector <int > : : i t e r a t o r i t =
9 vec . begin () ;
10 vec . push_back (1) ;
11
12 i f (x > 1) ∗ i t =1;
13 }

where STLlint produces a false positive (due to a lack of disjunctions in invari-
ants, for example), including in example.cppwith the addition of a single loop
and boolean variable.

Program 4.3 is correct because if x is greater than one, then vector v can hold
at least two elements without reallocating its content. In such cases, STLlint pro-
duces an error while more powerful model checking techniques such as predicate
abstraction confirm the correctness of the code.

More importantly, STLlint misses errors related to container lifetime easily de-
tectable by SATABS, as in this code, where the assignment to *it references a
destroyed vector v.

vector <int > : : i t e r a t o r i t ;
{

vector < int > v ;
v . push_back (0) ;
i t = v . begin () ;

}
∗ i t = 10 ;

Our approach is also able to detect STL errors related to container lifetime
undetectable by STLlint. Program 4.4 declares a function bad_func that returns
an iterator to the local container v — a container which is destroyed when the
function returns. After the first call of bad_func on line 16, iterator it_bad is
not valid but is used as parameter in the second call of bad_func on line 19.

4.6 Summary

We have shown how an operational semantics for the defined behavior of the
C++ Standard Template Library may be used to verify programs with STL data

54

CHAPTER 4. VERIFICATIONOF C++/STL PROGRAMS

Program 4.4 example3.cpp

1 vector <int > : : i t e r a t o r
2 bad_func (vector <int > : : i t e r a t o r i t)
3 {
4 vector < int > v ;
5 v . push_back (0) ;
6 ∗ i t = 10 ;
7 return v . begin () ;
8 }
9
10 in t main ()
11 {
12 vector < int > v ;
13 v . push_back (0) ;
14
15 vector < int > : : i t e r a t o r i t_bad =
16 bad_func (v . begin ()) ;
17
18 / / c au s e a s s e r t i o n f a i l u r e on l i n e 7
19 bad_func (i t_bad) ;
20 }

structures in an implementation-independent manner, leveraging the high-level
nature of abstract data types to aid predicate abstraction. The success of this effort
demonstrates that ADTs may be as useful in assisting automated reasoning tools
in “understanding” code as they are in assisting programmers in organizing code:
theorem provers and abstraction engines find ADTs easier to reason about than
low-level pointer manipulations, as the implicit relationships in structures are
made explicit, in an implementation-independent way. This approach relies on
the first reported symbolic model checker for complex C++ code, implemented
in the SATABS model checker.

55

5
The SystemC Language

5.1 Introduction

SYSTEMC is a system-level modeling language implemented as a C++ library.
It offers support for concurrency and arbitrary-width bit-vector arithmetic.
Along with an event-driven simulation environment, the library provides a

notion of timing, which is well-suited for modeling circuits. SystemC permits
describing a system at several levels of abstraction, starting at a high-level func-
tional description, down to synthesizable gate-level. A SystemC program con-
sists of a set of modules. Modules may declare processes, ports, internal data,
channels and instances of other modules. Processes implement the functional-
ity of the module, and are sensitive to events. As in Verilog or VHDL, ports are
objects through which the module communicates with other modules. Although
variables are shared between processes, classic interprocess communication is
achieved through predefined channels such as signals and FIFOs. The architec-
ture of the SystemC language is shown in Figure 5.1. SystemC is essentially a C++
library with concurrency support. The library offers a set of data types useful for
hardware modeling and certain types of software programming. These include
2-valued and 4-valued bit-vectors of arbitrary width, and fixed-point representa-
tions. Additionally, the library also includes a set of built-in primitive channels
such as signals and FIFOs.

5.2 Method Processes and Threads

Processes are plain C++ functions that are registered at runtime to the SystemC
kernel using low-level routines. In general, processes are created during the elab-
oration of the module hierarchy before the simulation starts – technically, the
language offers the possibility to create processes dynamically during simulation
but this feature is rarely used. The scheduler maintains a list of runnable processes
to execute. Those processes are run sequentially one by one in arbitrary order.
Upon execution, a process is removed form the set of runnable processes. Addi-
tionally, the scheduler keeps track of a sensitivity list of events for each process.
Sensitivity lists are used to notify processes waiting for events. Upon notification

57

CHAPTER 5. THE SYSTEMC LANGUAGE

Figure 5.1 The SystemC language architecture

4−valued logic type
4−valued logic vectors
Bit vectors

Limited−precision integer
Fixed−point types

Data types:

Finite−precision integer

Signal, Clock, FIFO,
Mutex, Semaphore

Predefined channels:

Ports
Exports
Processes

Modules
Scheduler

C++ Language

SystemC Library

End−User Code

Tracing

Utilities:

Report handling,

Core language:

Interfaces

Events
Chanels

of events, the scheduler inserts all the processes waiting for these events in the
set of runnable processes. The SystemC language distinguishes three classes of
processes: threads, clocked threads, and method processes 1, which we are reviewing
next.

5.2.1 Threads and Clocked Threads

The execution of both threads and clocked threads is driven by events, the main
distinction between those two classes being that clocked threads are sensitive
only to one clock signal – the scheduler can then uses this distinction to improve
simulation performances. In comparison, the SystemC standard imposes no re-
striction on the sensitivity list of threads. So, we employ the term ‘thread’ to
designate both classes indiscriminately.

Typically, threads are meant for modeling non-hardware components such as
test-benches. Threads can suspend their execution by calling the function wait.
Otherwise, threads run without interruption. Upon context switches, the sched-
uler must preserve the program counter and the stack of the thread that is re-
turning control. Subsequently, the scheduler continues with the evaluation of the
remaining processes. To resume the execution of a thread, the scheduler restores
the corresponding context, and the execution proceeds as if the most recent call
to the function wait is returning. The execution of a thread terminates definitively
if the execution reaches the end of the function.

1As a convention, we employ the term ‘process’ without the adjective ‘method’ to designate a
(clocked) thread or a method process indiscriminately.

58

CHAPTER 5. THE SYSTEMC LANGUAGE

5.2.2 Method Processes

The implementations of threads andmethod processes differ significantly. Method
processes are designed for fast execution of hardware logic. Like threads, method
processes are sensitive to events. But unlike threads, the SystemC standard for-
bids method processes to call the function wait. Method processes runs without
interruption – the scheduler gains control back only when the execution of the
method process terminates. In this way, the scheduler needs to preserve no con-
text information for method processes.

From a technical point of view, method processes can be implemented us-
ing threads. Program 5.1 illustrates such a reduction. Module mod declares one
thread and one method processes called thread and method_process, respectively.
Both processes are sensitive to the same signal b, and they perform equivalent
computations except that the solution with a method process is faster at runtime.

Program 5.1 Example of implementation of a method process with a thread.

SC_MODULE(mod)
{

bool a ;
sc_s ignal <bool> b ;

SC_COTR(mod) {
SC_THREAD(thread) ; s e n s i t i v e << b ;
SC_METHOD(method_process) ; s e n s i t i v e << b ;

}

void thread () {
while (true)

{ a = ~b ; wait () ; }
}

void method_process ()
{ a = ~b ; }

} ;

5.3 The Concurrency Model of SystemC

The scheduler of SystemC follows a co-operative multitasking policy, meaning
that the execution of processes is serialized by explicit calls to a wait()method
and that threads are not preempted.

The scheduler tracks simulation time and delta cycles. The simulation time is
a positive integer value (the clock). Delta cycles are used to stabilize the state of

59

CHAPTER 5. THE SYSTEMC LANGUAGE

Figure 5.2 The SystemC scheduler

Runnable

Processes?instance

No

Run a process

Update Phase

Delta Notification

Runnable
Processes?

No

Time Notification

Delta Cycle

Yes

Evaluation Phase Yes

the system. A delta cycle consists of three phases: evaluate, update, and notify:

1. The evaluation phase selects a process from the set of runnable processes
and triggers or resumes its execution. The process runs immediately up
to the point where it returns or invokes the function wait. The evaluation
phase is iterated until the set of runnable processes is empty. The SystemC
standard allows simulators to choose any runnable process, as long as the
policy is consistent between runs.

2. In order to simulate synchronous executions, processes can delay change-
of-state effects by scheduling update requests. After the evaluation phase
terminates, the kernel executes any pending update request. This is called
the update phase. Signal assignments are typically implemented using the
update mechanism. Therefore, signals keep their value for an entire evalu-
ation phase.

3. Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such pro-
cesses to the set of runnable processes.

60

CHAPTER 5. THE SYSTEMC LANGUAGE

The scheduler executes delta cycles until the set of runnable processes is empty
at the beginning of the evaluation phase. Subsequently, it updates the simulation
time and notifies processes waiting for the time event as shown in Figure 5.2.

61

6
A Formal View of the SystemC

Scheduler

6.1 Introduction

THE SystemC standard defines the semantics of the concurrency model us-
ing English text that is not machine readable. We formalize the relevant
aspects of the concurrency model of SystemC. Different approaches have

been proposed to formalize SystemC: Ruf et al. [2001] described the semantics
of SystemC using an operational semantics, Salem [2003] using a denotational
semantics, Kroening and Sharygina [2005] using Kripke structures, Savoiu et al.
[2005] using petri-nets. In contrast to this related work, we express the concur-
rency model of SystemC using a fixed-point semantics – a choice motivated by
the iterative nature of scheduling algorithm.

We refer the reader to Slonneger and Kurtz [1995] for an introduction to fixed-
point semantics. We first recall standard definitions from the literature:

Theorem 6.1.1. If D is a finite set, D with ⊆ forms a complete partial order, and f :
D → D is monotone (and total), then f is also continuous.

Theorem 6.1.2 (Kleene fixed-point theorem). Let D with ⊆ be a complete partial
order, and let f : D → D be any continuous (and therefore monotone) function. Then
the least fixed point of f is the least upper bound of the ascending chain ⊥ ≤ f(⊥) ≤
(f ◦ f)(⊥) ⊆ ... ⊆ fn(⊥) ⊆ ...

We formalize the behavior of SystemC programs by means of transition sys-
tems.

Definition 6.1.3 (Transition system). A transition system is a triple (S, S0, θ) with a
set of states S, initial states S0 ⊆ S, and a set of transitions θ ⊆ P(S × S). A transition
α ∈ θ is a relation on S.

Note that the state comprises not only of the data of the processes, but also of
the data required for the scheduler (process queue, event notifications). A pro-
cess α ∈ θ is a relation between states, that is, a process can exhibit both nonde-
terministic and non-terminating behavior. Nondeterminism is typically caused

63

CHAPTER 6. A FORMAL VIEW OF THE SYSTEMC SCHEDULER

by external inputs. The execution of the process may not terminate due to an
unbounded loop, or may simply abort with an error. We assume then that the
execution enters a special error state. For α ∈ θ, we write s

α
→ t if 〈s, t〉 ∈ α. A

transition α is enabled in a state s if there exists a state t such that s
α
→ t, and we

write α ∈ Enabled(s) to denote this fact – Enabled is a mapping from S to P(θ).
Otherwise, α is sleeping in s. In the context of SystemC, an enabled process is
usually called runnable.

In the subsequent definitions, we formalize the semantics of the evaluation
and delta phases in terms of functions from P(S) to P(S). Both phases are
the least solution f of a fixed-point equation of the from F (f) = f , where F :
(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

is a higher-order function. We apply the
usual ordering for two functions fi, fj : P(S) → P(S):

fi ⊆ fj ⇒ ∀X ∈ P(S). fi(X) ⊆ fj(X) .

The set of all functions from P(S) to P(S) with this ordering forms a complete
partial order. Let ⊥ : P(S) → P(S) denote the minimum, i.e., ⊥(X) = ∅. Using
the Theorems 6.1.2 and 6.1.1 we make the usual observations: A least fixed point
exists if F is continuous – the application of F preserves the least upper bound. To
show that F is continuous, it is sufficient to prove that F is monotone and that the
set of all functions from P(S) to P(S) is finite. Provided that F is continuous,
the least solution of F (f) = f can be computed iteratively by beginning with
f0 = ⊥, and applying the recurrence fn+1 = F (fn) until saturation. If the set of
all functions from P(S) to P(S) is infinite, then continuity has to be proven in a
different way.

6.2 The Evaluation Phase

We start with the formalization of the evaluation phase. Definition 6.2.1 models
the evaluation phase ǫ : P(S) → P(S) as the least function that satisfies the
equation E(ǫ) = ǫ where E is the higher-order function given in the definition.

Definition 6.2.1. Let E :
(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

denote the follow-
ing function:

E(f)
∆
= λX.

(

{s∈S|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Enabled(s)

ρ(s)
)

)

.

The evaluation phase ǫ : P(S) → P(S) is the least solution of the fixed-point equa-
tion E(ǫ) = ǫ .

Note that this definition of ǫ models the choice of ordering of processes the
scheduler can make.

Given two functions ǫi+1, ǫi : P(S) → P(S) such that ǫi+1 = E(ǫi), the func-
tion ǫi+1 contains more information than ǫi in the sense that for any set of states

64

CHAPTER 6. A FORMAL VIEW OF THE SYSTEMC SCHEDULER

X in P(S), ǫi(X) is an under-approximation of ǫi+1(X). Informally, ǫi describes
all computations up to bound i, whereas ǫi+1 describes all computations up to
bound i + 1. Definition 6.2.1 gives rise to Lemma 6.2.2, which establishes the
monotonicity of E.

Lemma 6.2.2. Function E (Def. 6.2.1) is monotone: E(f) describes a function smaller
than E(g) if f describes a function smaller than g.

Proof. Let us we write A and B for “{s∈X|Enabled(s)=∅}” and “
⋃

s∈X

⋃

ρ∈Enabled(s)

ρ(s)”, re-

spectively. If f ⊆ g, then E(f)(X) =
(

A∪ f(B)
)

⊆
(

A∪ g(B)
)

= E(g)(X). Thus,
we conclude that E(f) is smaller than E(g).

From Lemma 6.2.2 and Theorems 6.1.1, 6.1.2 we conclude that the evaluation
phase is well-defined if S is finite:

Theorem 6.2.3. The evaluation phase ǫ is well-defined for models with bounded memory.

Proof. Wewrite P(S) → P(S) to denote the set of all (total) functions from P(S)
to P(S). As mention before, the set P(S) → P(S) together with the standard
⊆ operator forms a complete partial order. Since E is monotone (Lemma 6.2.2),
it is sufficient to show that P(S) → P(S) is finite to prove that E is continuous
(Theorem 6.1.1). Note that if S is finite then P(S) → P(S) is also finite – there
exists only a finite number of functions over P(S). Hence, E is continuous if S is
bounded. Finally, if E is continuous then Theorem 6.1.2 guarantees the existence
of a least fixed point and provides an iterative method to compute it.

Additionally, we introduce Lemma 6.2.4, which establishes that ǫ is additive,
e.g, ǫ(X) =

⋃

s∈X ǫ({s}). The proof is by induction over the ascending chain of
the successive approximations of ǫ given by ǫi+1 = E(ǫi) and ǫ0 = ⊥.

Lemma 6.2.4. The evaluation phase ǫ is additive: ǫ(X ∪ Y) = ǫ(X) ∪ ǫ(Y) .

Proof. We demonstrate by induction that ǫn is additive for all functions in the
chain defined defined by ǫn+1 = E(ǫn) and ǫ0 = ⊥. The property holds for n = 0
as ǫ0(A ∪ B) = ⊥(A ∪ B) = ⊥(A) ∪ ⊥(B) = ǫ0(A) ∪ ǫ0(B). The case for n + 1
follows directly from the definition of E (Def. 6.2.1) and the induction hypothesis
ǫn(A ∪ B) = ǫn(A) ∪ ǫn(B), so we conclude that the property holds for any ǫn.
In particular, this remains true when the computation of ǫn+1 reaches the fixed
point.

6.3 The Delta Phase

We continue with the formalization of the delta cycle in this style. Definition 6.3.1
expresses the delta cycle as the least function δ : P(S) → P(S) that satisfies the
equation D(δ) = δ where D is the higher-order function given in the definition.

65

CHAPTER 6. A FORMAL VIEW OF THE SYSTEMC SCHEDULER

Definition 6.3.1. Let Up : P(S) → P(S) denote the function that updates the state
and notifies the processes as described by the standard. The function D :

(

P(S) →
P(S)

)

−→
(

P(S) → P(S)
)

is the following higher-order function:

D(f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ (f ◦ Up ◦ ǫ)(X)
)

.

The delta cycle δ : P(S) → P(S) is the least solution of the fixed-point equation
D(δ) = δ .

Definition 6.3.1 gives rise to Lemma 6.3.2, which guarantees the monotonicity
of D. Subsequently, Theorem 6.3.3 establishes that the delta phase is well defined
if S is finite.

Lemma 6.3.2. Function D (Def 6.3.1) is monotone.

Proof. Let us we write A and B for “{s∈X|Enabled(s)=∅}” and “(Up ◦ ǫ)(X)”, respec-
tively. If δi ⊆ δj , then E(δi)(X) =

(

A ∪ δi(B)
)

⊆
(

A ∪ δj(B)
)

= D(δj)(X). Thus,
we conclude that D(δi) is smaller than D(δj).

Theorem 6.3.3. The least fixed point δ is well-defined for models with finite memory.

Proof. Same argument as for Theorem 6.2.3.

6.4 The Simulation Time

We conclude the formalization of the concurrency model of SystemC with Defi-
nition 6.4.1, which captures the simulation semantics of SystemC.

Definition 6.4.1. Let N denote the set of positive integers, let S0 ⊆ S denote the set
of initial states, and let Up

time
: P(S) → P(S) denote the function that updates the

simulation time and notifies the processes waiting for this event. The execution semantics
of SystemC is given by the function Sim : N → P(S), which defines the states of the
system as a function of the simulation time:

Sim(0) = S0, Sim(t + 1) = (δ ◦ Uptime ◦ Sim)(t) .

6.5 Correctness of Partial Order Reduction for Sys-

temC

Partial order reduction restricts the analysis of the behaviors of a concurrent sys-
tem to a set of representative traces. For a specific class of properties, the reduc-
tion is sound: if the property of interest holds in the reduced model, it also holds
in the original one. In the context of this paper, we assume that the property can

66

CHAPTER 6. A FORMAL VIEW OF THE SYSTEMC SCHEDULER

be defined as a state predicate, which is evaluated at the end of the evaluation
phase.1 We formalize a sufficient condition for the soundness of partial order
reduction as follows.

Definition 6.5.1. Let ǫ̂ : P(S) → P(S) denote a function that models the evaluation
phase when applying a reduction technique, e.g., by restricting the ordering of evaluation.
We say that ǫ̂ is sound for reachability if ǫ ⊆ ǫ̂.

Definition 6.5.1 and Lemma 6.2.4 yield the following theorem that provides a
method to show correctness of a partial order reduction ǫ̂:

Theorem 6.5.2. Let ǫ̂ : P(S) → P(S) denote a function that models the evaluation
phase. ǫ̂ is sound for reachability if:

1. ǫ̂(A ∪ B) = ǫ̂(A) ∪ ǫ̂(B),

2. and for all s in S, ǫ({s}) ⊆ ǫ̂({s}).

Typically, ǫ̂ is defined as the least solution of a fixed-point equation, and there-
fore, additivity is usually demonstrated by induction over the ascending chain of
ǫ̂i.

Note that Def. 6.5.1 permits over-approximation. We restrict the discussion
to precise reductions ǫ = ǫ̂ in order to prevent spurious counterexamples. In
the following, we illustrate our correctness criterion by means of definitions of
the persistent-set and sleep-set techniques in terms of a fixed-point semantics.
Both approaches preserve deadlock states, i.e., states without enabled (runnable)
transitions Godefroid [1996].

Definition 6.5.3. Let Persistent : S → P(θ) denote some function that returns a set
of persistent processes (Def. 2.2.3). Additionally, we require that Persistent(s) is empty

only if no process is runnable in s. We define ÊP :
(

P(S) → P(S)
)

−→
(

P(S) →
P(S)

)

as the following higher-order function:

ÊP (f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Persistent(s)

ρ(s)
)

)

.

The persistent-set technique is the least solution ǫ̂P : P(S) → P(S) of the fixed-point

equation: ÊP (ǫ̂P) = ǫ̂P .

During exploration, techniques based on sleep sets maintain a set of enabled
transitions that can be skipped. Thus, we extend the states in S to carry sleep
sets, and we write Sleep(s) to denote the set of enabled processes in s that can
be skipped; that is, Sleep : S → P(θ). Additionally, let NextSleep : (S × θ) → S
denote a function that takes as argument a state s and a process α ∈ θ and returns
a state equal to s except that (Sleep ◦ NextSleep)(s, α) describes the next sleep set,
i.e., the sleep set for the states in α(s). Definitions 6.5.4 and 6.5.5 formalize this
technique.

1Assertions within an atomic block are verified by considering their post-image.

67

CHAPTER 6. A FORMAL VIEW OF THE SYSTEMC SCHEDULER

Definition 6.5.4. Sleep ◦ NextSleep(s, α) is a sleep set if and only if α ∈ Enabled(s)
and β ∈ (Sleep ◦ NextSleep)(s, α) implies that the following holds:

1. β ∈ Enabled(s),

2. α and β are independent in s, and

3. α ∈ (Sleep ◦NextSleep)(s, β) ⇒ β ∈ Sleep(s).

Definition 6.5.5. Let NextSleep(s, ρ) denote a function that computes sleep sets (Def. 6.5.4).

We define ÊS :
(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

as the following function:

ÊS(f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Enabled(s)\Sleep(s)

(ρ ◦NextSleep)(s, ρ)
)

)

.

The sleep-set technique is the least solution ǫ̂S : P(S) → P(S) of the fixed-point

equation: ÊS(ǫ̂S) = ǫ̂S .

68

7
Static Analysis for SystemC with

Scoot

7.1 Introduction

DDUE to the complexity of C++, existing static analyzers for SystemC con-
sider only small fragments of the language, essentially searching for spe-
cific key-words [Berner and Talpin, 2005, Kostaras and Vergos, 2005]. In

this chapter, we present SCOOT, a model extractor for SystemC. The tool sup-
ports a wide range of language constructs, as it based on our C++ front-end.
The models generated by SCOOT can serve several purposes, ranging from ver-
ification and simulation to synthesis. The tool is tightly integrated with verifi-
cation back-ends for Bounded Model Checking (CBMC) [Kroening et al., 2004]
and SAT-based predicate abstraction (SATABS) [Clarke et al., 2005]. Results on
applying model checking to models generated by SCOOT have been reported be-
fore [Kroening and Sharygina, 2005]. As an example of the utility of SCOOT be-
yond formal verification, we report results indicating that our tool can be used to
improve the performance of dynamic execution up to five times.

7.2 Overview of Scoot

SCOOT uses the C++ front-end of Chapter 3 to translate the SystemC source files
into a control flow graph. The nodes of the graph are annotated with assign-
ments and guards (implemented in the typechecking andCFG-conversion phases
in Figure 7.1). Subsequently, static analysis techniques are used to determine the
following information, which is specific to SystemC:

• The module hierarchy,

• the sensitivity list of the processes, and

• the port bindings.

The SystemC library makes heavy use of virtual functions and dynamic data
structures, which are not easily analyzed by static analysis techniques. SCOOT

69

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Flat C++ Model

Tool
Verification

Simplified version of

files.

#include <systemc.h>

SystemC Modules

systemc.h

User−provided C++ files

g++

Formal Model

Simulator
SystemC

Static Scheduling

Pointer Analysis

SystemC Analysis

Typechecker

Scoot

CFG

Code Re−synthesis

the SystemC header

Figure 7.1: Overview of SCOOT

abstracts implementation details of the library by using simplified header files
that declare only relevant aspects of the API and omit the actual implementation.
Systems described using SystemC shall provide a sc_main procedure for build-
ing the module hierarchy. The systemc-analysis phase sequentially processes the
body of this function, and reports any model-construction error.

7.3 Static Analysis of SystemC

Table 7.1 Principal SystemC types for RTL modeling.

sc_event Objects of class sc_event are used
for driving simulation. This class of-
fers notification methods to trigger
the execution of processes.

sc_module Basic building block of the system.
sc_signal<T> Communication channel intended to

model the behavior of a digital signal.
sc_clock Communication channel intended to

model the behavior of a clock signal
in hardware.

sc_fifo<T> Communication channel intended to
model the behavior of a FIFO.

sc_mutex Communication channel intended to
model the behavior of a mutex.

sc_in<T> Input port. Must be bound to a signal
before simulation starts.

sc_out<T> Output port. Must be bound to a sig-
nal before simulation starts.

sc_inout<T> Inout port. Must be bound to a signal
before simulation starts.

70

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

In this section, we present the static analysis technique that we use to extract
model hierarchy. This information is obtained via precise alias analysis. SystemC
models can be compiled and linked to the SystemC library using g++ provid-
ing thus a cost-efficient way of simulating designs. In general, better execution
performances can be achieved using commercial simulators. Simulators such as
Synopsys’s VCS and Cadence’s NCVerilog employ special compilers for VER-
ILOG that can perform high-level optimizations. SCOOT is a research compiler
for SystemC with similar aims. To facilitate the analysis of SystemC models,
SCOOT considers a subset of the language interface that is relevant to the user.
We define this subset by means of a special version of the header files of Sys-
temC. These header files declare SystemC types, such as the classes for signals,
modules, and ports. Table 7.1 lists the principal SystemC components currently
supported. Our header files cover the standard requirements for RTL develop-
ment and can be easily extended to include additional communication channels.
Finally, SCOOT has built-in support for bit-vector arithmetic and handles the bit-
vector types sc_uint and sc_int natively.

7.3.1 The Supported Subset

The purpose of SystemC is to provide system designer with a standard C++ li-
brary for modelling complex hardware and software systems. The SystemC stan-
dard provides complete description of that library so that designer can safely
refer to this standard, and companies can develop tools for the analysis of Sys-
temC models. As for VERILOG and SYSTEM VERILOG, vendors are expected to
provide support for SystemC for only a relevant subset of the language:

"It is anticipated that tool vendors will create implementations that
support only a subset of this standard or that impose further con-
straints on the use of this standard. Such implementations are not
fully compliant with this standard but may nevertheless claim partial
compliance with this standard and may use the name SystemC."

IEEE Standard SystemC Language Reference Manual

From a simulation perspective, specific implementation may constrain the us-
age of SystemC to improve simulation performances dramatically, and from ver-
ification perspective, a static analyser can abstract C++ details of the implemen-
tation to simplify reasoning. SCOOT’s support for SystemC targets a broad subset
of the language meaningful for RTL modeling and TLM channels such as fifos.

7.3.2 Implementation of Modules

A SystemC model is composed hierarchically in term of modules. As in VER-
ILOG, a module encapsulates the description of an execution unit. In SystemC, a

71

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

module is a C++ class that derives from class sc_module. Prog. 7.1 is SCOOT’s
declaration of the class sc_module.

Program 7.1 SCOOT’s implementation of class sc_module. The creation of a new
module is marked by a call to the special function scoot_module_decl.

c l a s s sc_module
{

public :

/ / C on s t ru c t o r s
sc_module ()
{ scoot_module_decl (this , nu l l) ; }

sc_module (char ∗ name)
{ scoot_module_decl (this , name) ; }

private :
sc_module (const sc_module&); / / D i s a b l e d
sc_module& operator =(const sc_module&); / / D i s a b l e d

} ;

SCOOT exploits the inheritance and initialization mechanisms of C++ to con-
struct the module hierarchy. Our implementation of class sc_module is pri-
mary used for typechecking SystemC models and performs very few computa-
tion. The public interface of the class declares two constructors: the first one is
the default constructor and takes no parameter, whereas the second one takes
as parameter an identifier for the module. When an object deriving from type
sc_module is created, the compiler calls one of the constructors of that class.
Upon invocation, the constructors of sc_module call scoot_module_decl to
mark the creation of a new module. This function has a special meaning for
SCOOT and is not implemented in C++. The function takes two parameters: a
pointer to the module that is being declared, and a pointer the name of the mod-
ule. SCOOT uses a flow-sensitive alias analysis to determine the value of those
pointers statically. The creation of other SystemC components such as processes,
signals, and ports follows a similar pattern.

The class FullAdder shown in Prog. 7.2 describes a full-adder module, and
inherits thus from sc_module. The interface of the module comprises the three
1-bit-wide input ports A, B, and Cin and the two 1-bit-wide output ports S and
Cout.

Upon instantiation of an object of type FullAdder, the constructor shown in
Prog 7.2 is called to initialize the state of the object. The C++ language guarantees
the following sequence of initialization:

1. The default constructor of class sc_module is called first,

72

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Program 7.2 1-Bit Full Adder

c l a s s FullAdder : sc_module {
sc_in <bool> A, B , Cin ;
sc_out <bool> S , Cout ;
void add () ;
HAS_PROCESS (FullAdder) ;
FullAdder ()
{
SC_METHOD(add) ;
s e n s i t i v e << A, B , Cin ;

}
} ;

2. the constructors of A, B, Cin, S, and Cout are called next, and finally,

3. the body of the constructor is executed.

Beside data members, a module declares processes for running computations.
Those processes are defined in the body of the constructor. SystemC provides
the C++ macros SC_METHOD(method) and SC_METHOD(method) to declare
method processes and threads. In the previous example, method add is a method
process that is made sensitive to the inputs ports A, B, and Cin.

7.3.3 Implementation of Signals

Signals are essential components for modelling circuits. The standard Sys-
temC library implements signals using complex mechanisms based on multiple-
inheritance and virtual functions, which makes the static analysis of SystemC
models difficult. We implement the concept of a signal in a way more adequate
for formal reasoning.

Prog 7.3 is SCOOT’s implementation of signals. In 7.3, the constructor of the
class sc_signal<T> calls the function scoot_channel_decl to mark the cre-
ation of a new signal. This function takes two parameters: a pointer to themodule
that is being declared and a pointer the name of the module. The method read
is the implementation of the read operation and retrieves the value of the field
current_value. The method write is the implementation of the write oper-
ation and sets the value of the field new_value. During the update phase, the
scheduler executes the method update to replace the value of current_value
with the value of new_value and to notify the processes.

7.3.4 Implementation of Ports

Ports are used to model interconnection between modules. In SystemC, ports de-
rive from the template type sc_port<IF> where IF stands for the interface of

73

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Program 7.3 SCOOT’s implementation of signals.

template < c l a s s T>
c l a s s s c_ s igna l

{
public :

s c _ s i gna l () :
current_value ((T) 0) , next_value ((T) 0)
{ s coot_channe l_dec l (th i s) ; }

s c _ s igna l (const char ∗ name) :
current_value ((T) 0) , next_value ((T) 0)
{ s coot_channe l_dec l (this , name) ; }

T read () const

{ return current_value ; }

void write (T t)
{ next_value = t ; }

private :
void update () {

i f (current_value != next_value)
value_changed_event . no t i f y () ;

current_value = next_value ;
}

T current_value , next_value ;
sc_event _value_changed_event ;

} ;

the underlying communication channel. Conceptually, a port is pointer to some
external object. In addition to sc_port<IF>, the SystemC language provides
the three types of specialized ports sc_inout<T>, sc_in<T>, and sc_out for
signals. Program 7.4 shows a simplified version of SCOOT’s implementation
of ports. The class closely matches the standard API. SCOOT use the functions
scoot_port_decl, scoot_port2port, and scoot_port2channel as marker functions to de-
tect the instantiation of a new port and to set connections. Those functions have
no implementation in C++.

7.3.5 Discovering Module Hierarchy

In contrast to VERILOG, the module hierarchy of SystemC model is discov-
ered at runtime before the simulation starts during the elaboration phase. SystemC
model shall declare a function sc_main for building the module hierarchy and for

74

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Program 7.4 SCOOT’s implementation of ports.

template < c l a s s IF>
c l a s s sc_por t
{
public :
/ / C on s t ru c t o r s
sc_por t () { } ;
exp l i c i t sc_por t (const char∗ name) :
{ s coot_por t_dec l (this , name) ; }

/ / Port−to−channe l b ind ing
void operator () (IF& _ i f)
{

const scoot_channel ∗ channel = & _ i f . get_channel () ;
scoot_port2channel (this , channel) ;

}

/ / Port−to−po r t b ind ing
void operator () (sc_port <IF>& port)
{ s coot_por t2por t (this , &port) ; }

/ / Return t h e channe l bound t o t h e p o r t
IF∗ operator −>()
{ return channel ; }

const IF ∗ operator −>() const

{ return channel ; }

private :
IF∗ channel ; / / The channe l bound t o t h e p o r t
} ;

starting the simulation. After parsing, typechecking, and converting SystemC
code to control-flow graph, SCOOT extracts the module hierarchy statically. In-
ternally, SCOOT proceeds in the following way:

1. First, SCOOT recursively inlines function sc_main including calls to construc-
tors.

2. Subsequently SCOOT unrolls loops, propagate constants, and

3. compute point-to-sets for each program location.

4. Finally, SCOOT analyses calls to the functions shown in Table 7.2 using the
points-to information from previous step to build the module hierarchy.

75

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Note that the module hierarchy may depend on information unavailable at
compile-time such as command-line arguments. Additionally, the computation
of the module hierarchy is an undecidable problem.

We focus on SystemC models with module hierarchies that can be extracted
statically.

Upon call to function sc_start, the SystemC kernel verify that ports are bound
correctly.

7.4 Static Scheduling

Technically, SystemC modules are plain C++ classes that can be compiled and
linked to a runtime scheduler, providing thus a way to simulate the behavior of
the system. The model hierarchy is discovered at run-time only and therefore,
the compiler is missing opportunities to take advantage of this knowledge. To
illustrate the utility of the model generated by SCOOT, we re-synthesize more
efficient C++ code from the model.

SystemC has a co-operative multitasking semantics, meaning that the execution
of processes is serialized by explicit calls to a wait() method and that threads
are not preempted. The scheduler tracks simulation time and delta cycles. The
simulation time corresponds to a positive integer value (the clock), while delta
cycles are used to stabilize the state of the system. A delta cycle consists of three
phases: evaluate, update, and notify, which were described in Section 5.3.

The standard SystemC scheduler contains several sources of inefficiency: first,
the scheduler stores data in containers that allocate memory at run-time, and sec-
ond, it triggers processes using function pointers. SCOOT generates a completely
static scheduler by fixing the evaluation order of the processes and resolving dy-
namic calls. Finally, the execution of threads is sequentialized to simplify context
switches. We describe this technique in Section 7.4.1.

7.4.1 Conversion of Threads

SystemCdistinguishes betweenmethod processes and threads. Technically, amethod
process is a C++method that is executed up to completion and is forbidden to call
synchronization routines. In contrast, a thread can suspend its execution using
wait statements. The scheduler must then preserve the local state and the cur-
rent program location of the running thread. Saving and restoring contexts cause
overhead at runtime. To avoid this issue, SCOOT convert threads to suppress
stacks and implements context switches with goto statements.

For each thread, our conversion technique proceeds as follow:

1. Static Memory Allocation: SCOOT substitutes the local variables of the thread
by fresh ones with static storage duration. During this process, SCOOT re-
cursively expands functions containing wait statements. These statements
are converted in the next phase.

76

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

2. Conversion of Wait/Return Statements: SCOOT implements context switches
with goto statements. It first creates a program counter to hold the location
that caused the context switch. Subsequently, each wait/return statement is
converted into an assignment followed by a goto statement. The assignment
saves the current program location, while the goto statement returns control
back to the scheduler.

3. Branching Code: Finally, SCOOT inserts branching instructions at the begin-
ning of the thread to control where the execution shall resume.

Program 7.5.1 and Program 7.5.2 show the code of a thread before and after
conversion, respectively. Program 7.5.1 declares a unique local variable i. After
conversion, the variable is declared with static storage duration. Additionally,
Program 7.5.2 introduces a program counter pc and sets its initial value to zero to
indicate that the process is triggered for the first time. On lines 4 to 6, the program
counter is used to decide where the execution shall resume. The wait statements
in Program 7.5.1 corresponds to the assignments followed by a goto statement in
Program 7.5.2 (lines 11 and 14).

Technically, this conversion approach is applicable only if wait statements are
not executed within a recursive function. In practice however, SystemC threads
rarely execute recursive calls that contain synchronization routines, and this tech-
nique allows SCOOT to handle threads as easily as method processes.

7.4.2 Code Re-synthesis

The intermediate representation used by SCOOT was originally designed formodel
checking, and uses bit-vector arithmetic expressions. After static scheduling,
SCOOT translates the intermediate representation back to a flat C++ program that
does not rely on the SystemC library anymore. The generated model is subse-
quently passed to g++, which results in a faster simulator.

We compare in Figure 7.1 the compilation time using SCOOT and the standard
compilation flow on a 3 GHz Intel pentium 4 processor with g++ 4.2.4. Our col-
lection of benchmarks contains designs of industrial significance such as an up-
dated version of the RISC-CPU that is shipped with the SystemC library and clas-
sic modules such as AES, DES, FFT, and FIR modules. The results indicate that
static extraction of the module hierarchy has no negative impact on the compila-
tion time. We compare in Figure 7.2 the runtime performance using the simulator
generated by SCOOT and the original approach. The performances demonstrate
that our technique can speedup the simulation up to five times on applications
relevant to industry.

77

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

7.5 Bibliographic Notes

Due to the complexity of the C++ language, the development of any tool for Sys-
temC is a difficult task. Hardware synthesis tools for SystemC only consider
a small subset of the C++ syntax [Berner and Talpin, 2005, Kostaras and Vergos,
2005]. SCOOT is the first public static analyser for SystemC that is based on a C++
frontend.

VERILATOR [Synder] is a tool for converting Verilog specifications to SystemC
or C++ programs. The goal is to achieve higher simulation performance.

Savoiu et al. [2005] propose to use Petri-net reductions for SystemC, and re-
port a speedup of 1.5 for anAES core. Pérez et al. [2004] describe a static-scheduling
technique restricted to method processes. Our sequentialization technique ex-
tends the benefits of static scheduling to general threads by eliminating the over-
head caused by context switches.

We provide a tool that extracts formal models from SystemC code. The tool
supports a broad subset of the language, as it is built on top of our C++-front-
end. The main applications are formal analysis, e.g., by model checking, and
synthesis. Exemplarily, we show that formal models have value even in dynamic
verification: we show a significant improvement in simulation performance by
using a statically scheduled model.

We are continuing to improve the SystemC support of our tool. It currently
handles the most commonly used features of the SystemC API. We are also inves-
tigating additional formal techniques to further enhance static scheduling. We
describe in the rest of this section existing public frontends for SystemC.

7.5.1 The SystemCXML Frontend

SYSTEMCXML [Berner and Talpin, 2005] is a parser for SystemC that can extract
information about SystemCmodules. The analysis is based on Doxygen, which is
a tool for code documentation, and is therefore limited to the detection of simple
syntactic constructs – semantic aspects are ignored.

7.5.2 The ParSyC Frontend

PARSYC [Kostaras and Vergos, 2005] is a frontend for SystemC from the Univer-
sity of Bremen. PARSYC only supports a small subset of SystemC, e.g, synthesize-
able constructs, whereas SCOOT is based on C++ frontend that accepts muchmore
constructs. In particular, SCOOT can be used for the analysis of SystemC/TLM
models, which requires support multiple inheritance and virtual functions.

7.5.3 The Quiny Frontend

QUINY [Schubert and Nebel, 2006] is a library replacement for SystemC from the
University of Oldenburg that can be used to translate SystemC code to VHDL.

78

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

This special library is used to output at runtime a VHDL file of themodule hierar-
chy and the process statements using an approach inspired form code-reflection
techniques. Therefore, QUINY requires user intervention to rewrite the program
in order to overcome the lack of code-reflection support in C++.

7.5.4 The Pinapa Frontend

Moy et al. [2005] describe PINAPA, which is a tool for the extraction of SystemC
models. PINAPA operates on the original SystemC library and analyses Sys-
temC models in a two-step style: first, PINAPA compiles and runs the model to
discover the module hierarchy using g++. Subsequently, PINAPA builds an ab-
stract syntax tree representation of the model using the same compiler and uses
information from the dynamic execution to build an internal representation of
the model. In contrast, SCOOT is a C++ compiler that has a built-in knowledge
of the API of SystemC. Our tool relies on data-flow analysis to detect the module
hierarchy statically.

79

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Table 7.2 SCOOT’s special marker functions to create the module hierarchy.

void scoot_module_decl(pmodule,pname);
Function to declare a module. The first argument is a pointer to the module to
declare. The second argument is the name of the module.

void scoot_channel_decl(pchannel,pname);
Function to declare a communication channel. The first argument is a pointer to
the channel to declare. The second argument is the name of the channel.

void scoot_port_decl(pport,pname);
Function to declare a port. The first argument is a pointer to the port to declare.
The second argument is the name of the port

void scoot_port2port(pport1,pport2);
Function to declare that the port that is referred by the first argument and that
is referred by the second argument are bound to a same channel. Both the ports
must have been declared before calling this function.

void scoot_port2channel(pport,pchannel);
Function to declare that the port pointed by the first argument is bound the chan-
nel pointed by the second argument. Both the port and the channel must have
been declared before calling this function.

void scoot_thread(pmodule,pcthread);
Function to declare a thread. The first argument represents the module that is
associated with the thread. The second argument is a function pointer to the
thread.

void scoot_cthread(pmodule,pcthread);
Function to declare a clocked thread. The first argument represents the module
that is associated with the thread. The second argument is a function pointer to
the clocked thread.

void scoot_method(pmodule,pmethod);
Function to declare a method process. The first argument represents the module
that is associated with the process. The second argument is a function pointer to
the process.

80

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Program 7.5 Example of conversion of a SystemC thread. Program 7.5.1 shows
the original code of the thread. Program 7.5.2 shows the code after conversion.

1 void run ()
{

3 in t i = 0 ;
while (true) {

5 i f (i < 10) {
wait () ;

7 i = i +1;
} else {

9 wait () ;
i = 0 ;

11 }
}

13 return ;
}

(1) Original thread

in t i ; in t pc = 0 ;
2 void run ()

{
4 i f (pc == 1) goto PC1 ;

i f (pc == 2) goto PC2 ;
6 i f (pc == 3) goto EXIT ;

8 i = 0 ;
while (true) {

10 i f (i < 10) {
pc = 1 ; goto EXIT ;

12 PC1 : i = i +1;
} else {

14 pc = 2 ; goto EXIT ;
PC2 : i = 0 ;

16 }
}

18 pc = 3 ;
EXIT : ;

20 }

(2) Thread after conversion

Figure 7.1 Compilation statistics using SCOOT and the standard approach.

Model #Lines
Comp. Time with SCOOT Std. Approach

Scoot [s] g++ [s] Total [s] g++ [s]

AES-128 1483 46.36 46.94 93.3 100.41
AES-192 1528 53.18 47.22 100.4 114.2
DES 3001 45.78 37.74 83.52 145.72
FFT-FXPT 566 5.32 9.97 15.29 27.19
FIR 349 4.17 5.39 9.56 23.98
FIR-RTL 382 5.37 6.13 11.5 41.83
RISC-CPU 2311 85.89 49.13 135.02 92.49

81

CHAPTER 7. STATIC ANALYSIS FOR SYSTEMC WITH SCOOT

Figure 7.2 Simulation performance

 0

 50

 100

 150

aes128

aes192

des
fft-fxpt

fir fir-rtl
risc-cpu

T
im

e
[s

]

Execution Time

Scoot
SystemC

 0

 1

 2

 3

 4

 5

 6

aes128

aes192

des
fft-fxpt

fir fir-rtl

risc-cpu

S
p
e
e
d
u
p

Simulation Speedup

82

8
Race-Analysis for SystemC

8.1 Introduction

Methods of SystemCmodulesmay be designated as threads or processes. Interleav-
ing between those threads is performed at pre-determined program locations,
e.g., at the end of a thread or when the wait()method is called. When multiple
threads are ready for execution, the ordering of the threads is nondeterministic.
Nevertheless, the SystemC standard allows simulators to adopt a deterministic
scheduling policy. Consequently, simulators can avoid problematic schedules,
which often prevents the discovery of concurrency-related design flaws. SystemC
offers a wide range of language features such as hierarchical design by means of
a hierarchy of modules, arbitrary-width bit-vector types, and concurrency with
related synchronization mechanisms. SystemC permits different levels of abstrac-
tion, from a very high-level specification with big-step transactions down to the
gate level. The execution model of SystemC is driven by events, which start or
resume processes. In addition to communication via shared variables, processes
can exchange information through predefined communication channels such as
signals and FIFOs.

When describing synchronous circuits at the register transfer level, system
designers can prevent races by restricting inter-process communication to de-
terministic communication channels such as sc_signals. However, the elimina-
tion of races from the high-level model is often not desirable: In practice, sys-
tem designers often use constructs that yield races in order to model nondeter-
ministic choices implicit in the design. In particular, models containing stan-
dard transaction-level modeling (TLM) interfaces are frequently subject to race
phenomena. TLM designs usually consist of agents sharing communication re-
sources and competing for access to them. An example is a FIFO with two clock
domains – the races model the different orderings of the clock events that can
arise.

Contribution Due to the combinatorial explosion of process interleavings, test-
ing methods for concurrent software alone are unlikely to detect bugs that de-
pend on subtle interleavings. Therefore, we propose to employ formal methods
to statically pre-compute thread-dependency relations and predicates that predict

83

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Program 8.1 Example of race condition

SC_MODULE(m) {
s c_c lo ck c lk ; in t pressure ;

void guard () {
i f (pressure == PMAX) pressure = PMAX−1;

}

void increment () { pressure ++; }

SC_CTOR(m) {
SC_METHOD(guard) ; s e n s i t i v e << c lk ;
SC_METHOD(increment) ; s e n s i t i v e << c lk ;

}
} ;

race conditions, and to use this information subsequently during the simulation
run to prune the exploration of concurrent behaviors. There are several possible
ways of exploiting the information:

1. From a verification perspective, those predicate provide valuable insight
into the behavior of a design. They can be used to assert independence of
processes. Section 8.4.3 illustrates such an application.

2. The statically computed race conditions improve the performance of partial
order reduction, which results in a greatly reduced number of interleavings.
The remaining interleavings can then be explored exhaustively, which is a
valuable validation aid.

We have implemented this technique in SCOOT [Blanc et al., 2008], a novel
research compiler for SystemC. The static computation of the race conditions re-
lies on the Model Checking engine of SATABS [Clarke et al., 2005], a SAT-based
model checker implementing predicate abstraction (the technique we propose is
independent of the specific formal engine, however). Our experimental results
indicate that strong race conditions can be computed statically at reasonable cost,
and result in a simulation speedup of a factor of ten or better.

8.2 Introductory example

Program 8.1 serves as running example and illustrates the need for a Model
Checking approach. The module m declares two processes guard and increment.
The process guard watches the value of shared variable pressure, which shall not
exceed the value PMAX and is incremented by process increment. Both processes

84

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

are sensitive to the clock signal clk. The semantics of the SystemC scheduler guar-
antees that a method process is executed without interruption up to the point
where it returns. Thus, the scheduler has to choose either the scheduling se-
quence (guard; increment) or (increment; guard) each time the clock is updated.
Consequently, the pressure can exceed the limit if its value reaches PMAX and
process increment is triggered before guard. It is clear that the number of traces
grows exponentially with the number of clock cycles. As a result, systematic
exploration of all interleavings rapidly becomes unmanageable, and the bad be-
havior might go unnoticed.

A conventional static analysis can discover that guard reads the pressure and
that increment modifies the pressure, concluding that the processes are indeed
dependent and that all interleavings must be explored. In a similar way, a con-
ventional dynamic analysis can observe at runtime that guard reads the pressure
and that incrementmodifies the pressure, concluding that the alternative schedule
needs to be explored. However, such analyses fail to detect that guard and incre-
ment are commutative in most cases. Our tool uses a Model Checker to compute
the weakest predicate over the pre-state variables that guarantees the absence of
races between the processes. In this example, it is easy to see that the execution
of increment and guard is commutative if and only if

pressure 6= PMAX− 1 ∧ pressure 6= PMAX

holds. SCOOT generates a simulator for the systematic exploration of the state
space that checks this condition at runtime to avoid exploring redundant sched-
ules.

8.3 Implementation

8.3.1 A Scheduler with Partial Order Reduction

Algorithm 8.1 is SCOOT’s implementation of the evaluation phase. In contrast to
the related work, evaluation_phase schedules runnable processes using informa-
tion statically collected to reduce the number of interleavings explored. We are
not aware of tools that compute equally strong conditions statically.

The evaluation phase terminates once the set of runnable processes is empty.
The algorithm performs partial order reduction using persistent sets and sleep
sets, and is a variation of techniques presented in [Godefroid, 1996]. On line 3, the
procedure calls the function runnable() to check if the set of runnable processes is
empty before proceeding to the next iteration.

At simulation time, the scheduler calls get_pers to compute the set persistents
of persistent processes. The subsequent part of the algorithm uses the set sleeps,
declared outside the main loop on line 2, to perform partial order reduction. On
line 5, the set awakes consists of the persistent processes not in sleeps. If the set

85

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Algorithm 8.1 Evaluation Phase: the commutativity condition checked by
commutative(pi, pj) is a predicate over states computed statically at compile-time.

void evaluat ion_phase ()
2 Set s l e eps := ∅ ;

while (runnable () 6= ∅) do

4 pe r s i s t e n t s := ge t_pers () ;
awakes := p e r s i s t e n t s \ s le eps ;

6 i f (awakes= ∅) then e x i t (0) ;
Map next_s leeps ; // Process −> Set

8 for a l l (Process pi ∈ awakes) do

for a l l (Process pj ∈ s leep) do

10 i f (commutative (pi, pj))
next_s leeps [pi] := next_s leeps [pi] ∪{pj} ;

12 end for

s leep := s leep∪{pi} ;
14 end for

Process p := nondet_se lec t (awakes) ;
16 run (p) ;

s l e eps := next_s leeps [p] ;
18 end while

of awaken processes is empty (line 6), then other traces are covering all subse-
quent behaviors, and therefore, the simulator stops the execution. Otherwise, the
scheduler computes the sleep sets for the next iteration using the map next_sleeps,
which maps processes to a set of processes (lines 7–14). One line 10, the call to
commutative returns true if the processes pi and pj are commutative in the current
state. The scheduler reduces the computation of conditional independence to the
computation of commutativity conditions by considering that all the processes
are always enabled – if ρ 6∈ Runnable(s), then this is interpreted as s

ρ
→ s. This

way, two processes are independent in the current state if and only if they are
commutative in this state. SCOOT relies on Model Checking to compute a con-
servative condition that guarantees commutativity of the processes in the current
state; the details of this pre-computation are presented in the following subsec-
tion. In contrast, traditional approaches need to rely on either executing the pro-
cesses to determine which transitions are independent in the current state, which
adds overhead, or on an imprecise data-flow analysis.

Finally, in lines 15–17, the scheduling algorithm nondeterministically runs a
process from awakes and computes the sleep set of the next iteration.

Algorithm 8.2 computes the set of persistent processes and is the implementa-
tion of the function get_pers(). On line 2, the set persistents of persistent processes
is initialized with the runnable processes. Subsequently, the algorithm removes
all independent processes from persistents to defer their execution, reducing thus
the nondeterminism of the system. On line 7, a call to the function independent()

86

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Algorithm 8.2 Computation of persistent sets. The call to independent(pi, pj) re-
turns true if the commutativity condition of pi and pj is equivalent to true. This
information is computed at compile time using Model Checking.

Set get_pers ()
2 Set pe r s i s t e n t s := Runnable () ;

for a l l (Process pi ∈ Runnable ()) do

4 Bool pers := f a l s e ;
for a l l (Process pj) do

6 i f (pj ≥ pi) then cont inue ;
i f (independent (pi, pj) = f a l s e) then

8 pers := true ; break ;
i f (pers = f a l s e)

10 pe r s i s t e n t s := p e r s i s t e n t s\{pi} ;
i f (p e r s i s t e n t s = ∅) then

12 return s e l e c t _ f i r s t (runnable ()) ;
return persistents;

returns true if the processes pi and pj are independent, i.e., the commutativity
condition for pi and pj is equivalent to true. If persistents is empty at the end
of the computation, the algorithm deterministically returns a runnable process
using the function select_first(). Otherwise, persistents is returned.

8.3.2 Computing the Process Commutativity Conditions

Program 8.2 Harness for the analysis of race conditions for a given pair of pro-
cesses p1 and p2. The pre-condition φ is true initially, and is iteratively strength-
ened by the algorithm in Fig. 8.2.

assume (φ) ;
2 s0 := cu r r en t _ s t a t e ;

p1 () ; p2 () ;
4 s1,2 := cu r r en t _ s t a t e ;

cu r r en t _ s t a t e := s0 ;
6 p2 () ; p1 () ;

s2,1 := cu r r en t _ s t a t e ;
8 a s s e r t (s1,2 6= s2,1) ;

We present an iterative technique to compute the commutativity condition
for a given pair of processes p1 and p2 based on formal analysis. The condition is
checked during simulation by Alg. 8.1. In general, SystemC processes need not
terminate, and thus computing the strongest possible commutativity condition
for a given pair of processes p1 and p2 is undecidable. We compute a conservative
approximation by applying aModel Checker to the harness given as Program 8.2.

87

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

The basic idea of the harness is to run p1(); p2(), and compare the result with
the result of running p2(); p1() on the same initial state. The harness operates as
follows: Initially, φ is set to true. The assume statement in the first line restricts the
search to states that satisfy φ. Then the values of the visible variables are stored
in s0, the pair of processes p1(); p2() is run, and the state is stored in s1,2. The state
is restored to s0, and p2(); p1() is run. The state is stored in s2,1.

SCOOT passes the harness to a Model Checker to check the reachability of the
last line, which is modeled bymeans of an assertion. If theModel Checker returns
a counterexample, we have a trace π with an initial state satisfying the initial
condition φ, passing through both processes, and ending in a state that violates
the assertion. The path therefore begins in a state in which the two processes
are commutative. SCOOT then computes the weakest precondition of s1,2 = s2,1

alongside that path. Let Pπ denote this condition. The executions of p1(); p2() and
p2(); p1() from a state s that satisfies Pπ:

1. terminate and

2. yield an equal state.

Consequently, Pπ is an under-approximation of the commutativity condition for
p1 and p2. At this point, SCOOT strengthens φ using ¬Pπ , yielding φ′. This re-
moves the trace π and any trace similar to π that goes through the same control
locations. SCOOT iterates this process until the Model Checker stops reporting
counterexamples. At this point, the predicate P =

∨

π Pπ represents the weakest
condition such that the executions of p1(); p2() and p2(); p1() terminate and that p1

and p2 are commutative.

8.3.3 The Running Example

We illustrate the execution of the strengthening loop presented in Figure 8.2 on
Program 8.1. In the first iteration, the verification engine verifies Program 8.3.1,
and reports a counterexample π following the lines {1, 2, 3, 5, 6, 7, 8, 9, 11}.

Subsequently, we use classic Floyd-Hoare logic [Hoare, 1969, Floyd, 1967] to
compute the weakest pre-condition of s1,2 = s2,1 alongside π. We use the follow-
ing axiom schmata for assignments and assume statements, in backward reason-
ing style:

{P [x/E]} x := E; {P}
R0

{P ∧ C} assume(C); {P}
R1

We provide in Figure 8.1 the computation of the pre-condition Pπ alongside π.
The proof starts from Line 11 with the condition s1,2 = s2,1.

Subsequently, we strengthen the set of initial sates in Program 8.3.2 with ¬Pπ

to block any counterexample alongside the same path. In this example, the strength-

ening loop terminates after one iteration, yielding the predicate P
∆
= pressure +

88

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Program 8.3 Harnesses verified during the first and second strengthening itera-
tion in Figure 8.2. Initially, the pre-condition φ over pressure is true. In the sec-
ond iteration, the pre-condition is set to pressure+1 = PMAX∨pressure = PMAX .

1 assume(true);
2 s0 := pressure;
3 if(pressure = PMAX)
4 pressure := PMAX-1;
5 pressure := pressure + 1;
6 s1,2 := pressure;
7 pressure := s0;
8 pressure := pressure + 1;
9 if(pressure = PMAX)

10 pressure := PMAX-1;
11 s2,1 := pressure;
12 assert(s1,2 6= s2,1);

(1) Initial harness.

1 assume(pressure + 1 = PMAX ∨
pressure = PMAX);

2 s0 := pressure;
3 if(pressure = PMAX)
4 pressure := PMAX-1;
5 pressure := pressure + 1;
6 s1,2 := pressure;
7 pressure := s0;
8 pressure := pressure + 1;
9 if(pressure = PMAX)
10 pressure := PMAX-1;
11 s2,1 := pressure;
12 assert(s1,2 6= s2,1);

(2) Harness in the second strenghtening it-
eration.

1 6= PMAX ∧ pressure 6= PMAX . Observe that our technique enumerates only
a subset of feasible paths. Given a state s, this predicate evaluates to true if the
processes guard and increment are independent in s.

8.3.4 Implementation of the Strengthening Loop

In the following, we elaborate on our integration of the strengthening loop into
two Model Checking engines, SATABS and CBMC. Note that our approach is
independent of the particular Model Checking engine. The general idea can be
extended in different directions: In Figure 8.2, we use the Model Checker to enu-
merate terminating paths and to ensure progress. In a similar spirit, we can adapt
the strengthening loop to operate on infinite traces using a Model Checker for
liveness properties such as Terminator [Cook et al., 2006], or we can replace the
Model Checker with a testing engine to discover terminating traces – in which
case the initial assume statement in Program 8.2 would be ignored.

Strengthening using Predicate Abstraction

Predicate Abstraction is a technique that abstracts a transition system by mapping
sets of concrete states to a new, smaller abstract state space in away that conserves
the relevant behaviors of the system [Graf and Saïdi, 1997, Ball and Rajamani,
2000a]. Each predicate in the abstract model is represented by a Boolean vari-
able, while the original variables are removed. The abstract program is created

89

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.1 Computation of the pre-condition Pπ
∆
= pressure + 1 6= PMAX ∧

pressure 6= PMAX . The proof starts from Line 11 with the post-condition s1,2 =
s2,1.

1 assume(true);
{pressure + 1 6= PMAX ∧ pressure 6= PMAX}

2 s0 := pressure; R0

{pressure + 1 = s0 + 1 ∧ s0 + 1 6= PMAX ∧ pressure 6= PMAX}
3 assume(pressure 6= PMAX); R1

{pressure + 1 = s0 + 1 ∧ s0 + 1 6= PMAX}
5 pressure := pressure + 1; R0

{pressure = s0 + 1 ∧ s0 + 1 6= PMAX}
6 s1,2 := pressure; R0

{s1,2 = s0 + 1 ∧ s0 + 1 6= PMAX}
7 pressure := s0; R0

{s1,2 = pressure + 1 ∧ pressure + 1 6= PMAX}
8 pressure := pressure + 1; R0

{s1,2 = pressure ∧ pressure 6= PMAX}
9 assume(pressure 6= PMAX); R1

{s1,2 = pressure}
11 s2,1 := pressure; R0

{s1,2 = s2,1}

using existential abstraction, which is a conservative abstraction for reachabil-
ity properties. If the property holds on the abstract model, it also holds on the
original program. In case a trace in the abstract model violates the property, the
feasibility of the counterexample must be tested in the concrete model. If the
counterexample can be simulated on the original program, it is reported to the
user. The counterexample is called spurious if it does not correspond to a con-
crete trace. In that case, a refinement procedure adds new predicates in a way
that removes the spurious trace. This is automated by Counterexample Guided Ab-
straction Refinement (CEGAR) [Clarke et al., 2000] and promoted by the Model
Checker SLAM [Ball and Rajamani, 2002]. Predicate abstraction has been applied
to SpecC [Clarke et al., 2007] and SystemC [Kroening and Sharygina, 2005]. Fig-
ure 8.3 shows the integration of our technique into SATABS. After strengthening,
SATABS retains the abstract model obtained during previous iterations.

Strengthening using BMC

In Bounded Model Checking (BMC), a program and a specification are jointly un-
wound up to a given bound k to form a formula that is satisfiable if and only if
the program paths with length k can violate the specification [Biere et al., 2003].
This formula is then passed to a SAT solver. In case the formula is satisfiable, the
Model Checker constructs a counterexample for the original program from the

90

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.2 Iterative computation of the process commutativity condition using a
Model Checker. Condition φ represents the set of initial states. The loop strength-
ens φ until the Model Checker stops reporting counterexamples.

�
�
�
�

�
�
�
�

����������

Program

Counterexample

φ′

No trace
End

π

Strengthening φ

Model Checking

satisfying assignment. The method is complete only if k exceeds the complete-
ness threshold [Kroening and Strichman, 2003].

We use CBMC as Bounded Model Checker [Kroening et al., 2004]. In some
cases, the symbolic simulator within CBMC is able to determine a sufficient depth
automatically; otherwise, it inserts assertions to verify that k is sufficiently large.
CBMC combines Bounded Model Checking with slicing techniques to remove
statements unrelated to the property that is checked.

Figure 8.4 illustrates the integration of our technique into CBMC. First, CBMC

unrolls Program 8.2 and builds a CNF formula for checking the reachability of the
assertion on the last line. Upon discovery of a counterexample π, we compute
the weakest precondition Pπ alongside π and strengthen the set of initial sates
by adding blocking clauses to the Boolean formula. Note that the SAT solver
is operated in an incremental fashion, which allows it to retain all the clauses
learned in previous iterations.

8.3.5 Model Checking SystemC Threads

The construction of the harness presented in Program 8.2 is straightforward for
method processes, as no context switch is taking place. In contrast, a thread can
suspend its execution using wait statements. In order to facilitate the analysis of
threads, we use the conversion technique presented in Section 7.4.1 to simplify
context switches. Using this technique, SCOOT suppress the stacks of threads
and implements context switches with goto statements. This approach enables
SCOOT to handle threads in the same way as method processes (see Prog. 7.5).

91

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.3 Iterative computation of the process commutativity condition using
predicate abstraction.

����

�
�
�
�

����������

φ′

Spurious
trace

Concrete

Abstract trace
End

No traceConcrete
program

Abstract
prog.

New predicates

πtrace

Simulation

Model Checking

Refinement Strengthening φ

Abstraction

8.4 Experimental Evaluation

In this section, we evaluate the benefits of integrating our partial-order reduction
into a simulator that examines all schedules exhaustively using a backtracking
search. We also quantify the cost of the computation of the commutativity condi-
tion using Model Checking.

The experiments that we present are difficult instances. Commutativity of
processes depends on control flow and data, and the computation of the con-
dition is susceptible to the state-space explosion problem. As a first step, our
tool performs a light-weight data-flow analysis to detect independent processes.
This reduces the burden on the heavy-weight verification engines. As a result,
SCOOT needs to run a Model Checker only on very few pairs of processes per
design. All our results are obtained using a 3GHz Linux machine. We make the
benchmarks and the tool available for experimentation by other researchers at
www.cprover.org/scoot/.

8.4.1 The Running Example

We continue our running example (Program 8.1). Figure 8.5 depicts the number
of explored traces as a function of the number of simulation steps using iterative
strengthening (Full Precision). We set PMAX to 10. The number of explored traces
corresponds to the number of backtracks. Our simulator performs a state-less
search, that is, the simulator replays transitions to backtrack.

Using our technique, the number of traces explored during simulation grows
only quadratically with the number of steps, instead of exponentially. Note that
at runtime there is always a data dependency between the processes guard and

92

www.cprover.org/scoot/

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.4 Iterative computation of the process commutativity condition using
Bounded Model Checking.

��
��
��
��

�
�
�
�

SAT Formula

Counterexample

New Blocking Clauses

End
No Trace

Program

Unrolling

Strengthening φ SAT Solver

φ′

π

increment : Process guard always reads pressure and process increment always
writes to pressure. Consequently, traditional dynamic partial order reduction
techniques achieve no reduction in this example.

8.4.2 State Machines

State machines are a typical ingredient of SystemC models. We use two dif-
ferent benchmarks of this kind.

The first benchmark (B1) consists of a synchronous model with three depen-
dent processes. One process plays the role of a server waiting for requests, while
the other two compete for access to the service. Program 8.4 contains the skeleton
of the benchmark. When triggered, the clients and the server execute functions
process_client and process_server, respectively. The clients communicate with
the server via two shared variables op and locked. If locked is set, then the server
is busy processing the request op. Otherwise, the clients compete for access to the
service. The processes are sensitive to a clock.

Figure 8.6 compares the number of explored traces (simulator backtracks), and
the total exploration time as a function of the number of simulation steps. We
compare the precision of the commutativity conditions obtained by the Model
Checking engines (“Full Precision”) and the light-weight static analysis (“Preci-
sion 0”). The exploration time is limited to thirty minutes (1800 seconds).

We observe that our precise analysis results in a reduction of both the number
of explored traces and the exploration time by about two to three orders of mag-
nitude. Using our technique, the simulator can exhaustively cover all the relevant
behaviors up to fifteen simulation steps in less than thirty minutes, whereas the
simulation using the light-weight analysis already times out after seven simula-

93

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.5 Total time and number of traces explored at runtime as a function of
the number of simulation steps, for the running example.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

#T
ra

ce
s

Simulation Steps

Full Precision

 0

 5

 10

 15

 20

 25

 30

 35

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

T
im

e
[s

]
Simulation Steps

Full Precision

Program 8.4 Skeleton of Benchmark B1

bool locked ; in t op ;
2 void pro ce s s _ c l i en t () {

i f (! locked) { op=get_pid () ; locked= true ; }
4 }

void process_server () {
6 switch (s t a t e) {

. . .
8 case Id le : { switch (op) { . . . } break ; }

case End : { s t a t e = Id le ; locked = f a l s e ; }
10 }

}

tion steps.
Our second state-machine benchmark (B2) consists of two synchronous state

machines communicating via shared variables. The model has three interdepen-
dent processes, which are sensitive to the clock. The state machines are imple-
mented using case switches. Figure 8.7 is a comparison of the simulation times
and the number of explored traces. The reduction is in the order of one magni-
tude.

We quantify the additional cost of obtaining the full precision dependency
conditions prior to simulation. For each pair of processes, Table 8.1 shows the
number of strengthening iterations and the time required for the static analysis
running SATABS and CBMC. The difference in the number of strengthening iter-
ations required by SATABS and CBMC is due to code transformations inherent to
BMC.

The additional cost for B1 is negligible using either SATABS or CBMC. The re-

94

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.6 Performance effect of static partial-order reduction on B1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10
 12

 14
 16

#T
ra

ce
s

Simulation Steps

Full Precision
Precision 0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10
 12

 14
 16

T
im

e
[s

]

Simulation Steps

Full Precision
Precision 0

Figure 8.7 Performance effect of static partial-order reduction on B2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9

#T
ra

ce
s

Simulation Steps

Full-Precision
Precision 0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

T
im

e
[s

]

Simulation Steps

Full-Precision
Precision 0

95

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.8 Details of the strengthening process for the analysis of the memory
model (Program 8.5). Each figure corresponds to a distinct verification task and
gives the time for the individual strengthening iterations using SATABS. The last
iteration proves the absence of any further counterexamples.

 0.1

 1

 10

 100

0 1 2 3 4 5

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job0

SatAbs

 1

 10

 100

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job1

SatAbs

 1

 10

 100

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job2

SatAbs

 0.1

 1

 10

 100

0 1 2 3 4 5

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job3

SatAbs

 1

 10

 100

 1000

0 1 2 3 4 5 6 7 8 9

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job4

SatAbs

96

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.9 Details of the strengthening process for the analysis of the memory
model presented in Program 8.5. Each figure corresponds to a distinct verification
task and gives the time for the individual strengthening iterations using CBMC.
The last iteration proves the absence of any further counterexamples.

 0.01

 0.1

 1

 10

 100

0 1 2 3 4 5

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job0

CBMC

 0.1

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job1

CBMC

 0.1

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job2

CBMC

 0.01

 0.1

 1

 10

 100

0 1 2 3 4 5

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job3

CBMC

 0.1

 1

 10

 100

 1000

0 1 2 3 4 5 6 7 8 9

T
im

e
[s

]

Strenghtening Iteration

Strengthening time for job4

CBMC

97

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Figure 8.10 Runtime for the RISC-CPU model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 9000
 10000

T
im

e
[s

]

Simulation Steps

Full Precision

Figure 8.11 Impact of the precision of the static analysis on the performance of
the simulation on the RISC-CPUmodel. The precision of the analysis is measured
in terms of the bound on the number of strengthening iterations. “Precision 0”
stands for the light-weight static analysis. The highest precision on this model is
six. A precision of two is already sufficient to obtain an optimal simulation.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 3 5 7

#T
ra

ce
s

Simulation Steps

Explored Traces

Precision 0
Precision 1
Precision 2

98

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Table 8.1 Time to compute the race conditions for the state-machine benchmarks
for each of the process-pairs (jobs) using SATABS and CBMC. The timeout is set
to sixty minutes.

Benchmark Jobs
SATABS CBMC

#Strength. Time[s] #Strength. Time[s]
B1 Job0 2 2.51 2 < 1
B1 Job1 10 12.40 9 1.86
B1 Job2 10 11.61 9 1.88
B2 Job0 44 437.75 - TO
B2 Job1 19 84.67 4 13.37
B2 Job2 12 71.03 4 2246.48

sults for B2 indicate that the choice of the verification engine is important: CBMC

is faster than SATABS on the second pair of processes but times out on the first,
whereas SATABS provides a result within two minutes. Note that the computa-
tion of these conditions can be distributed onto multiple machines, as the com-
putation for each pair of processes is independent. Furthermore, the precision
of the analysis can be controlled by bounding the number of strengthening iter-
ations, which yields a conservative approximation. Finally, as demonstrated by
the simulation runs, the time required for a full exploration grows exponentially
with the number of simulation steps, and therefore, the time spent for a precise
static analysis eventually pays off.

8.4.3 An Asynchronous Dual-Port Memory

We present an instance that is difficult for any dependency analysis. Memory
modules are frequently modelled using nondeterminism, as the priorities of read
and write operations are often left unspecified. Memories are widely employed
in system designs to implement communication buffers, caches, and register files.
We evaluate our technique using a model of an asynchronous dual port memory.
The model has four method processes. Program 8.5 illustrates the structure of the
memory module. The memory model is implemented as an array of unsigned
integers (line 5). This array is shared among the four processes rd0, wr0, rd1,
and wr1 (lines 6 to 9). These processes are sensitive to control signals that trigger
the different operations. We provide the body of the functions rd0 and wr1 on
lines 13 and 18, respectively. The functions rd1 and wr1 are implemented in a
similar way.

For each pair of processes, Table 8.2 shows the time required for the static
analysis using SATABS and CBMC. Additionally, the second column indicates
whether the outcome of the analysis yields a predicate equivalent to true; that is,
this column indicates whether the processes are completely independent. This
information provides valuable insight into the behavior of the memory. For in-

99

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Program 8.5 AModel for Asynchronous Dual-Port Memory

1 SC_MODULE(ram) {
. . .

3 sc_in <bool> cs0 , cs1 , oe0 , oe1 , we0 , we1 ;
sc_inout <unsigned> data0 , data1 ;

5 sc_uint <DATA_WIDTH> mem [RAM_DEPTH] ;
void rd0 () ;

7 void wr0 () ;
void rd1 () ;

9 void wr1 () ;
} ;

11

void ram : : rd0 () {
13 i f (cs0 . read () && oe0 . read () && !we0 . read ())

data0 = mem[address0 . read ()] ;
15 }

17 void ram : : wr0 () {
i f (cs0 . read () && we0 . read ())

19 mem[address0 . read ()] = data0 . read () ;
}

21 . . .

stance, our static analysis is able to show that the processes rd0 and wr0 are in-
dependent; the same holds for the processes rd1 and wr1. In both cases, write
accesses have priority over read accesses. However, the processes rd0 and wr1
are not independent, and neither are rd1 and wr0. Therefore, the effects of two
concurrent read and write operations using different ports may depend on the
scheduling order of the processes. Typically, this situation arises if both accesses
address the same memory location, in which case the read operation can either
retrieve the old value or the new one.

Figures 8.8 and 8.9 depicts the time for each strengthening iteration using SAT-
ABS and CBMC, respectively. The last strengthening iteration is used for proving
the absence of additional counterexamples. Job1 and Job2 using SATABS spend
most of the time in the very last strengthening iteration to prove that the asser-
tion of the harness holds (finding a bug is usually easier than proving correct-
ness). Note that we have designed our algorithm to compute a sequence of safe
under-approximations of the commutativity condition. Consequently, the user
can stop any excessively long computation and proceed in a sound way with
partial results. This enables a trade-off between time and precision. Furthermore,
skipping the last strengthening iteration results in no loss of precision.

A proof of independence of processes requires a formal analysis. For instance,
to discover that the processes rd0 and wr0 are two mutually exclusive operations,

100

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

a static analyser must prove that on lines 13 and 18, the guards of the if-statements
cannot be satisfied simultaneously; this is a fact that a verification engine based
on predicate abstraction can easily establish by tracking the value of signal we0.

Table 8.2 Runtime and number of iterations required to compute the race condi-
tions for each of the process-pairs. The column P ⇔ true indicates whether the
processes are proven independent; that is, whether condition P is equivalent to
true.

Jobs Proc.
SATABS CBMC

P ⇔ true #Strth. Time [s] P ⇔ true #Strth. Time [s]
Job0 wr0, rd0 yes 6 34.39 yes 6 204.08
Job1 wr0, rd1 no 13 344.14 no 13 203.53
Job2 wr1, rd0 no 13 339.26 no 13 219.24
Job3 wr1, rd1 yes 6 28.98 yes 6 203.97
Job4 wr1, wr0 no 10 221.24 no 10 501.96

8.4.4 A RISC Processor

Table 8.3 Runtime and number of iterations required to compute the race con-
ditions for the RISC-CPU model. The column P ⇔ true indicates whether the
condition P is equivalent to true.

Jobs
SATABS CBMC

P ⇔ true #Strength. Time [s] P ⇔ true #Strength. Time [s]
Job0 no 7 42.02 no 7 3.41
Job1 no 7 42.02 no 7 3.42
Job2 yes 5 42.36 yes 5 4310.85
Job3 yes 5 42.34 yes 5 4253.48
Job4 yes 5 32.244 yes 5 3986.19

We demonstrate the scalability of our race-analysis using an updated version
of the RISC-CPU model that is shipped with the SystemC library. The processor
has nine modules, which include an MMX and a floating-point unit. In total, the
model declares fourteen processes and contains 2153 lines of C++ code.

Table 8.3 quantifies the computational cost of the verification tasks that SCOOT

generates. Out of 91 pairs of processes, light-weight static analysis can already re-
fute 86 dependencies, leaving only five pairs for the heavy-weight engine. SCOOT

can prove that three out of these five remaining pairs are completely independent
and identifies the register file as a potential source of nondeterminism.

Comparing the performance of SATABS and CBMC, we observe that the latter
is faster on the two first tasks, whereas SATABS clearly outperforms CBMC on

101

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

the remaining ones. The bad performance of CBMC on these tasks is caused by
a specific loop in one of the processes.1 To solve this issue, CBMC can replace
a loop with an assume-false statement, which blocks any trace that reaches this
location. CBMC then returns a (conservative) condition that is almost as precise
as the original one within only 3 s and four strengthening iterations. The loss of
precision has no negative impact on the simulation performance in this example.

Figure 8.10 depicts the simulation performance. Using our precise conditions,
the simulator explores only a single trace, and thus, the time for exhaustive sim-
ulation is linear and optimal. The simulator is able to exhaustively search ten
thousand simulation steps in less than two seconds. In contrast, when relying
exclusively on light-weight static analysis, the number of traces grows exponen-
tially (Figure 8.11). This means that only shallow exploration is possible.

We also quantify the precision obtained by limiting the number of strength-
ening iterations. “Precision 0” indicates that no iterations are performed, i.e., the
result of the light-weight analysis is used. “Precision 1” means that one strength-
ening iteration is performed, and so on. The number of traces grows exponen-
tially when the precision is set to zero or one. The experiments indicate that a
precision of two is already sufficient to achieve the maximal runtime reduction
for this model. The strengthening loop terminates after seven iterations.

8.5 Bibliographic Notes

Concurrent threads with nondeterministic interleaving semantics may give rise
to races. A data race is a special kind of race that occurs in a multi-threaded appli-
cationwhen several processes enter a critical section simultaneously [Netzer and Miller,
1992].

Flanagan and Freund use a formal type system to detect race-condition pat-
terns in Java. Eraser is a dynamic data-race detector for concurrent applica-
tions [Savage et al., 1997]. It uses binary rewriting techniques to monitor shared
variables and to find failures of the locking discipline at runtime. Other tools,
such as RacerX [Engler and Ashcraft, 2003] and Chord [Naik et al., 2006], rely on
classic pointer-analysis techniques to statically detect data races.

Model Checkers are frequently applied to the verification of concurrent ap-
plications, and SystemC programs are an instance; see [D’Silva et al., 2008] for a
survey on software Model Checking. Vardi identifies formal verification of Sys-
temC models as a research challenge. Prior applications of formal analysis to
SystemC or similar languages are indeed limited. We therefore briefly survey
recent advances in the application of such tools to system-level software. DDVer-
ify is a tool for the verification of Linux device drivers [Witkowski et al., 2007].
It places the modules into a concurrent environment and relies on SATABS for
the verification. KISS is a tool for the static analysis of multi-threaded programs
written in C [Qadeer and Wu, 2004]. It reduces the verification of a concurrent

1The loop sequentially resets all the entries of the register file.

102

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

application to the verification of a sequential program with only one stack by
bounding the number of context switches. The reduction never produces false
alarms, but is only complete up to a specific number of context switches. KISS
uses SLAM [Ball and Rajamani, 2002], a Model Checker based on Predicate Ab-
straction [Graf and Saïdi, 1997, Ball and Rajamani, 2000a], to verify the sequential
model.

Verisoft is a popular tool for the systematic exploration of the state space of
concurrent applications [Godefroid, 2005] and could, in principle, be adapted to
SystemC. The execution of processes is synchronized at visible operations, which
are system calls monitored by the environment. Verisoft systematically explores
the schedules of the processes without storing information about the visited states.
Such a method is, therefore, referred to as a state-less search. Verisoft ’s support for
partial-order reduction relies exclusively on dynamic information to achieve the
reduction. In a recent paper, Sen et al. propose a modified SystemC-Scheduler
that aims to detect design flaws that depend on specific schedules. The sched-
uler relies on dynamic information only, i.e., the information has to be computed
during simulation, which incurs an additional run-time overhead. In contrast,
SCOOT statically computes the conditions that guarantee independence of the
transitions. We can control the degree of precision of our analysis to compute
very accurate predicates. The simulator can then test these conditions at runtime
to detect reduction opportunities with little overhead.

Flanagan and Godefroid describe a state-less search technique with support
for partial-order reduction. Their method runs a program up to completion,
recording information about inter-process communication. Subsequently, the trace
is analyzed to detect alternative transitions that might lead to different behav-
iors. Alternative schedules are built using happens-before information, which de-
fines a partial-order relation on all events of all processes in the system [Lamport,
1978]. The procedure explores alternative schedules until all relevant traces are
discovered. Helmstetter et al. present a partial-order reduction technique for Sys-
temC. Their approach relies on dynamic information and is similar to Flanagan
and Godefroid’s technique 2005. Their simulator starts with a random execution,
and observes visible operations to detect dependencies among the processes and
to fork the execution. In contrast, our technique performs an extremely precise
static analysis that is able to discover partial-order reduction opportunities not
detectable using dynamic information alone. In addition, static analysis can re-
veal races that are not exercised during simulation and is able to formally refute
process dependencies.

Kundu et al. propose to compute read/write dependencies between SystemC
processes using a path-sensitive static analysis. At runtime, their simulator starts
with a random execution in a way similar to Flanagan and Godefroid and de-
tects dependent transitions using the static information computed previously.
The novelty of our approach is to enhance this conventional, light-weight static
analysis with Model Checking to compute sufficient conditions over the global
variables of the SystemC model that guarantee commutativity of the processes.

103

CHAPTER 8. RACE-ANALYSIS FOR SYSTEMC

Wang et al. introduce the notion of guarded independence for pairs of transi-
tions. Their idea is to compute a condition (or guard) that holds in the states
where two specific transitions are independent. Our contribution in this context
is to compute these conditions for SystemC using a Model Checker.

8.6 Summary

We presented SCOOT, a novel compiler for SystemC that integrates static analysis
and formal verification techniques in order to improve simulation performance.
The structure of the SystemC model (the hierarchy and the port bindings) is com-
puted at compile time by means of a data-flow analysis. We use a second data-
flow analysis to perform a light-weight detection of independent processes. The
next step is to invoke amodified software Model Checker on each pair of possibly
dependent transitions in order to compute a sufficient condition for commutativ-
ity of the transitions. Our technique benefits from the fact that SystemC processes
are not preempted, and thus, only few such pairs have to be checked. Note that
the Model Checker is never applied to the entire model, but only to pairs of tran-
sitions – the static part of the analysis is therefore typically polynomial in the size
and number of processes.

SCOOT uses the commutativity condition during simulation in order to elim-
inate unnecessary interleavings. Our analysis is fully automatic and requires no
annotation of the source code by the user. Using Model Checking, our analysis
is able to prove or refute process dependencies statically and to detect reduction
opportunities not covered by other dynamic approaches at runtime.

The experimental results indicate that our formal race analysis produces valu-
able information for pruning the state space at runtime. To the best of our knowl-
edge, this work uses the strongest conditions for commutativity of processes re-
ported in the literature. Furthermore, the trade-off between precision and compu-
tational cost can be controlled, and the entire flow can be distributed on multiple
machines.

104

9
Conclusion

SCOOT is the first research compiler for SystemC that combines static clas-
sic analysis and precise Model-Checking techniques. Given the extraordi-
nary complexity of modern designs, verification is clearly the most time-

consuming task of any design flow. Formal Methods have made enormous ca-
pacity progress since the eighties. Still, the size and the complexity of modern
computer architectures is growing much faster.

In this thesis, we showed that it is possible to identify key problems that involve only
fragments of large systems and to compute very precise conditions whose utilities go
beyond verification, namely for simulation and testing. Race-analysis for SystemC
is an excellent example of such a case: even so SystemC designs may contain
thousands lines of code, processes taken pairwise are much more shorter, and
their commutativity conditions can be computed in parallel.

Additionally given the complexity of the models and the surrounding envi-
ronment, we have shown that it is useful to reduce the size of the models as much
as possible for verification. We have demonstrated with SCOOT that domain-specific
compilers can be used to abstract away complex code-machinery that is extremely tedious
to analyse statically and to exploit this information to significantly improve simulation
performance. The integration of verification procedures directly into the compila-
tion flow has several advantages:

1. First, risks of mismatches between verification and simulation models are
reduced;

2. second, the compiler can employ Formal Methods to optimize code; and
third,

3. better integrated tools help designers to focus on their task rather on the
details of different environments.

Finally, we employ Formal Methods only in last resort to make up for the
imprecisions of light-weight static analysis techniques. We showed that formal
techniques have applications outside their traditional scope, which is namely ver-
ification, for optimization purposes.

105

A
Verification of Concurrent Device

Drivers

A.1 introduction

IN an operating system, a device driver is software program that is responsible
for controlling a peripheral. Verification of device-driver contains thus both
software and hardware aspects. Device drivers interact with the low parts of

the system API and run in kernel mode. Correct usage of the kernel API is, there-
fore, critical for the stability of the system. In this Chapter, we describe Model
Checking using Predicate Abstraction in the context of device-driver verification,
and introduces the challenges faced when verifying highly concurrent software.

We have built a tool called DDVerify [Witkowski et al., 2007] for the verifi-
cation of Linux device drivers that employ formal engines based on predicate
abstraction in a similar spirit as Microsoft’s SLAM [Ball et al., 2004] project for the
verification on Windows device drivers. In contrast to the execution model of
SystemC, which provides strong atomicity guarantees, the execution model of
operating systems such as Linux or Windows is inherently concurrent: Context
switches can happen at any time and several processes can run simultaneously.
Device-drivers run therefore in highly concurrent environment, and their ver-
ification is subject to the state-space-explosion problem induced by data races.
Predicate abstraction succeeds in checking such properties by separating the con-
trol and the data of the program. This technique enables the detection of control-
flow related bugs. Even though SLAM is able to verify properties related to lock-
ing, its scope is restricted to sequential programs. The most vicious bugs emerge
in systems with threads that communicate via shared memory. These bugs are
hard to comprehend, and it is almost impossible to reproduce them by means of
testing. Fortunately, predicate abstraction can also be used to generate abstract
models for multi-threaded programs: Attempts to integrate a model checker for
concurrent abstract models into SLAM have been made, but not reported due to
scalability issues and the lack of convincing benchmarks. Our contribution is
that we integrate the model checkers Cadence SMV [K.L. McMillan, 1992] and
BOPPO [Cook et al., 2005] into the predicate abstraction-based verification tool

107

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

SATABS [Clarke et al., 2005], thus enabling the verification of concurrent pro-
grams that communicate using shared memory. In order to detach the code of
the device driver under test from the operating system, the service routines are
replaced with a model that over-approximates their behavior. The device driver
is then exposed to a hostile environment, simulated by a driver harness, trying
to reveal “misuses” of the kernel API. These misuses are specified by means of
assertions added to the operating system model.

The operating system as well as the driver harness is modeled using non-
determinism. An inaccurate model may result in falsely reported bugs that do not
exist in the actual system. In particular, in the presence of threads it is essential to
truthfully model the synchronization primitives of the operating system.

We provide a concurrent model of the relevant parts of the Linux kernel API.
More information on our formalization of the Linux kernel is presented in [Witkowski,
2007]. We provide the fully automated verification tool DDVerify , which, given
the source code of a Linux device driver, generates an appropriate driver harness
and uses SATABS to check whether the driver violates the pre- or post-conditions
of our kernel model. The following activity diagram shows the corresponding
verification process:

Verification process

Linux

driver
DDVerify

Driver

harness

OS

model

SatAbs
Verification

report

We present benchmarks generated by applying DDVerify to concurrent pro-
grams and report two previously unknown bugs that were detected in Linux
device drivers.

A.2 PredicateAbstraction in Presence of Concurrency

In the rest of this section,we write T̂ to denote a finite state abstraction the original
program T and Tℓ to denote the transition relation at program location ℓ.

DDVerify attaches the driver to concurrent harness and verifies the whole
model using SATABS. The concurrent harness uses a statically bounded num-
ber of threads. The abstraction algorithm can be applied without major modifi-
cations. The state space of the resulting concurrent abstract model is still finite
and can therefore be checked using SMV. Unlike SMV, BOPPO is able to handle
infinite dynamic thread creation by over-approximating the abstract transition
relation [Cook et al., 2005]. Currently, DDVerify does not use this feature.

108

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

Linux provides different mechanisms to support thread creation and synchro-
nization of threads. We support these functions by modeling them using only
thread creation and atomic blocks. These primitives are also supported by Ca-
dence SMV and BOPPO Therefore, the concurrency related transitions in T can be
directly mapped to the corresponding primitives in T̂ .

The counterexample trace obtained by checking amulti-threaded abstract model
may contain context switches. The model checker passes this information on to
the feasibility checker by attaching a thread identifier to each transition in the
counterexample. We modified the implementation of the feasibility checker such
that a new stack is created whenever a new thread identifier is encountered in the
counterexample. Naturally, a context switch involves saving the stack and pro-
gram counter of the current stack and restoring the stack and program counter of
the target thread. While adding threads to Boolean programs increases the com-
plexity of the model checking phase significantly, adding threads to the counter-
example trace does not make feasibility checking a harder problem. The refine-
ment step is followed by another iteration of the abstraction refinement cycle.

A.2.1 Concurrency

In this section, we describe the modifications necessary to verify concurrent pro-
grams with predicate abstraction and CEGAR.

In the abstraction phase, each abstract transition relation T̂ℓ is computed in-
dependently for each location ℓ of the program. The context in which Tℓ (and
T̂ℓ, respectively) is executed has no impact on the abstraction. Therefore, there
is no necessity to modify the abstraction algorithm. The abstraction mechanism
imposes the following restriction with respect to scheduling: Each transition in
Tℓ is considered to be executed atomically. A higher granularity can be achieved
by a pre-processing step.

Linux provides different mechanisms to support thread creation and synchro-
nisation of threads. We support these functions by modelling them using only
thread creation and atomic blocks (see Section A.3). These primitives are also
supported by Cadence SMV and BOPPO (even though the former does not sup-
port dynamic thread creation). Therefore, the concurrency related transitions in T

can be directly mapped to the corresponding primitives in T̂ .
The decidability result for sequential abstract modelsmentioned in Section A.2

does not hold in the presence of multiple threads [Ramalingam, 2000]. In partic-
ular, the summarization approach used by SLAM’s model checker BEBOP does not
work in a concurrent setting. The explicit statemodel checker ZING [Andrews et al.,
2004], which we integrated into SLAM, can handle unbounded thread creation,
but may not terminate. Unfortunately, explicit state enumeration turns out to be
an unsuitable technique for verifying the abstract models generated by predicate
abstraction. The large number of non-deterministic transitions in these models
leads to an immediate explosion of the state space [Cook et al., 2005]. Symbolic

109

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

model checking tries to overcome this problem by representing sets of states in
terms of propositional formulæ. This approach was introduced by McMillan et
al. [Burch et al., 1990] in 1990. His model checker Cadence SMV1 is still competi-
tive, but does not support unbounded thread creation or function calls. SATABS

is able to use Cadence SMV as well as BOPPO as model checker for concurrent
abstract models. BOPPO combines symbolic model checking with partial order re-
duction, a technique to reduce the number of interleavings that are considered.
Partial order reduction is a common technique in explicit state model checkers
(and is also used by ZING).

A.3 Modelling the Linux Kernel

In Linux, applications access the functions of a device driver via the file system.
Each device has a corresponding entry in the /dev directory, and each driver may
be in charge of several of these entries. The implementation of a device driver has
to provide an initialisation function that is calledwhen the device driver is loaded
into memory. One of its duties is to provide information about the operations that
are provided to user-space applications. These may depend on the type of the
driver. Linux distinguishes between character devices, block devices, and network
devices. Once the driver is initialized, it obtains a set of device numbers and regis-
ters the devices it manages. For each device, the driver provides a data structure
that contains a collection of function pointers that point to the functions provided
by the driver. The kernel translates accesses to the files in the /dev directory to
calls of these functions. File operations such as open, close, read, and write
trigger the execution of the corresponding function of the device driver. Finally,
the driver has to provide cleanup functions that allow to unregister devices and
exit the driver.

In order to exhaustively verify a device driver, it is necessary to consider all
possible combinations of calls to the driver functions. For this purpose,DDVerify
determines the type of the driver, the used interface (PCI), and the initialisation
and cleanup function. Using this information, DDVerify automatically generates
a test harness that initializes the driver, executes a loop in which it calls the driver
functions non-deterministically, and finally calls the exit function of the driver.
DDVerify is able to generate a sequential as well as a concurrent test harness. In
the latter case, DDVerify generates a test harness that concurrently executes de-
vice driver functions and deferred calls to driver functions. Currently, DDVerify
generates a harness that uses two threads for reasons of scalability. However,
DDVerify is designed to be easily adaptable, and therefore, this restriction can be
easily lifted (at the cost of a significant increase of the runtime of SATABS).

Linux device drivers make extensive use of the Linux kernel API. Due to the
complexity and the size of the kernel it is not possible (and not our intention) to
verify the device driver and the kernel as a compound program. Therefore, we

1Available from http://www.kenmcmil.com

110

http://www.kenmcmil.com

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

provide a conservative operational model for all relevant kernel service routines,
which is used to detach the driver from the kernel. The pre-conditions of these
routines are enforced by means of assertions, i.e., the correctness properties that
are verified byDDVerify are an integral part of of the operating systemmodel. An
inaccurate model may result in spurious counterexamples. Since the Linux kernel
lacks a formal specification, we define the semantics of the service routines we
support using Milner’s π-calculus [Milner, 1982]. A detailed description of this
work can be found in [Witkowski, 2007]. In this section, we present the model of
several kernel services exemplarily.

Mutual Exclusion Device driver code runs in parallel with other routines. Sev-
eral sources of concurrency exists: tasklets, work-queues, handlers for timers,
and interrupts are concurrently executed with the main code of the module, and
device drivers have to support simultaneous access to their functions (i.e., the
driver code must be reentrant). The API of the Linux kernel provides several
mechanisms to protect critical sections of the driver code: semaphores, spinlocks,
and mutexes. For the sake of simplicity, semaphores can be represented as vari-
ables with only the two values locked and unlocked. If a process wants to enter
a critical section, a corresponding semaphore must be acquired for this purpose.
Mutexes were introduced in the Linux kernel 2.6.17, and are semaphores imple-
mented in a more efficient way. Spinlocks are busy-waiting semaphores meaning
that the waiting processes are not put to sleep by the scheduler. DDVerify sup-
ports semaphores, spinlocks and mutexes, as well as interruptible and uninter-
ruptible sleep.

As example, ProgramA.1 shows the body of the function down_interruptible
that locks a semaphore. As the operation of locking a semaphore causes the pro-
cess to sleep if the the semaphore is held, the call has to be issued within the
context of a process (since the kernel itself is executed non-preemptively). This
is asserted in line 3. Another pre-condition of the function is that the semaphore
shall be initialized (line 8).

The internal data of the semaphore are shared resources. Hence, the critical
sections are protected using atomicity. The special functions atomic_begin,
and atomic_endmark the beginning and the end of an atomic section, and are
interpreted accordingly by SATABS.

If the semaphore is not locked by another process, the current process locks it
in line 16 and down_interruptible returns successfully. Otherwise, the pro-
cess has to wait for the semaphore. In that case, a potential interrupt is simulated
by using the non-deterministic function nondet_int in line 22. This function
non-deterministically returns an integer value. If this value is non-zero, the value
−1 is returned to indicate that the call to down_interruptible has been inter-
rupted. The code loops until the lock is acquired or the operation is interrupted.
Note that this implementation for locking a semaphore is based on busy-waiting,
and thus, is meant for verification purpose only.

Checking deadlocks requires to argue about the ownership of a semaphore.

111

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

Program A.1 Example of the function down_interruptible

1 int down_interruptible(struct semaphore * sem)
2 {
3 assert_context_process();
4
5 atomic_begin();
6
7 assert(sem->init,
8 "Semaphore is not initialized");
9
10 atomic_end();
11
12 do {
13
14 atomic_begin();
15 if(sem->locked == 0) {
16 sem->locked = 1;
17 atomic_end();
18 return 0;
19 }
20 atomic_end();
21
22 if (nondet_int()) {
23 return -1;
24 }
25 }
26 while(TRUE)
27 }

Currently, SATABS and the underlying model checker for abstract models have
no feature to retrieve the identifier of the currently running process. As in SLAM,
we support a simple form of deadlock detection by checking in a sequential
model whether the process is trying to lock a semaphore twice.

Deferring Tasks In certain situations it is necessary to defer work to a later
point in time. For instance, critical kernel routines such as interrupt handlers dis-
able new interrupts, and thus, should only run for the minimal amount of time
possible. Vital responses are performed immediately, while the longer manage-
ment tasks are delayed. The API of the Linux kernel provides several mecha-
nisms to defer tasks: softirqs, kernel timers, tasklets and work queues. DDVerify cur-
rently supports the three latter ones, which are frequently found in driver codes.

Kernel timers allow to delay a task for at least a certain amount of time.
Tasklets are similar to kernel timers, except that the execution of the delayed task

112

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

Program A.2 Implementation of work queues

1 int schedule_work(struct work_struct *work)
2 {
3 atomic_begin();
4 assert(work->init,
5 "Work queue is initalized");
6 int i, slot = MAX_WORKQUEUES;
7 for (i = 0; i < MAX_WORKQUEUES; i++) {
8
9 if (shared_workqueue[i] == work) {
10 atomic_end();
11 return -1;
12 }
13
14 if (shared_workqueue[i] == NULL) {
15 slot = i;
16 break;
17 }
18 }
19 assert(slot == MAX_WORKQUEUES,
20 "Work queue is full");
21
22 shared_workqueue[slot] = work;
23 atomic_end();
24 return 0;
25 }

is guaranteed to happen before the next timer tick. A tasklet can be executed in
parallel with other tasklets, but is strictly serializedwith respect to itself. Schedul-
ing the same tasklet multiple times only triggers its execution once. Priorities
may be assigned to tasklets but this this feature is currently unsupported. Finally,
DDVerify also offers the possibility to disable or enable scheduled tasklets.

Work queues are very similar to tasklets. Tasklets run in interrupt mode and
have to adhere to certain restrictions, most notably, scheduling, sleeping, and
accesses to user space memory are strictly forbidden. Work-queue functions run
in the context of a special kernel process, and the restrictions of tasklets do not
apply.

As an example, we present the our model of the function schedule_work,
in Figure A.2, which schedules a task using the default work queue of the kernel.
The parameter work is a pointer to a structure representing the task to execute. In
line 3, the implementation checks whether the object referenced by work is initial-

113

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

ized. Currently, we model the queue as an array a capacity of MAX_WORQUEUES
tasks. The task is stored in the first empty slot of this queue (line 22). If the task
is already present then the function returns the value -1 (line 11). The driver har-
ness non-deterministically selects tasks from shared_workqueue and executes
them in parallel to the driver functions.

Wait Queues Putting a process to sleep is an important technique in device
driver programming. A wait queue is a simple list of processes waiting for an
event to occur. In particular, DDVerify supports the macros wait_event and
wait_event_interruptible.

Both macros take two parameters: The first parameter corresponds to a queue
data structure, and the second is an arbitrary Boolean condition. The process is
put to sleep until the condition holds. The interruptible version allows signals to
wake up the process. In that case, the macro returns a non-zero value. Sleeping
processes waiting for an event can be awaken using the function wake_up.

Note that several processes may be waiting for the same event. Hence, no
guarantee can be provided about the status of the condition when a particular
process gains back the processor since other previously scheduled processes may
have already changed the value.

Interrupts The interrupt mechanism is fundamental to communicate with the
devices. Bymeans of an interrupt a device can notify the processor of some event.
Interrupts transfer the control from the current process to an interrupt handler,
and therefore may introduce concurrent accesses to resources. DDVerify supports
registering and unregistering handlers for interrupts.

Interrupt handlers run outside of a process context, and thus, restrictions ex-
ists in the kind of operations that can be performed. First, interrupt handlers
cannot go sleeping, or perform any action that would result in a rescheduling.
Second, they cannot access user-space memory. Therefore, they are usually re-
stricted to small important tasks such as saving new data. The more complex
tasks are performed by deferred functions. This way of splitting the work is
known as the top- and bottom- half interrupt handlers. The top-half handler is
the code that actually responds to the interrupt and schedules the bottom-half
function, which is responsible for completing the request.

Verification Conditions DDVerify introduces verification conditions for the de-
vice driver by means of assertions in the operational model. For instance, we
check whether the mutual exclusion mechanisms of the kernel are used correctly,
whether kernel objects are initialized before they are used, and whether kernel
service functions are called in the correct context. In addition to the verification
conditions resulting from assertions, SATABS is able to generate claims for more
general properties like buffer overflows, division by zero, and invalid pointers.

114

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

Figure A.1 Sequential model: total time to prove the claims using BOPPO, SMV
and BOOM.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

S
ec

on
ds

Claims

Machzwd: Total Time

boppo
smv

bp

A.4 Experiments

DDVerify introduces verification conditions for device drivers by means of as-
sertions in the operational model of the operating system. Due to inlining, each
assertion occurring in the code results in at least one claim that has to be dis-
charged in order to show the correctness of the program.

Our framework contains a collection of drivers that come with the Linux ker-
nel distribution. Using DDVerify , we found two previously unknown bugs in
two device drivers. Both were discovered using a sequential driver harness.

As an illustrating example, we present the verification results for a watchdog
driver. The experiments were conducted on an Intel Xeon processor running at
3GHz with 4 GB of RAM.

The machwzd benchmark code contains 494 lines of code and uses spinlocks,
IO ports and timer functions. We checked the driver for the correct usage of IO
ports, which are resources that need to be requested by the driver in order to
prevent access conflicts. Drivers can call the request_region function to acquire a
range of consecutive port numbers. Using the following assertion, we verify that
any access to the port port is valid:

assert(
port >= ioport_request_start &&
port < ioport_request_len + ioport_request_start)
In total, SATABS generates 116 claims for our sequential model. SATABS re-

ports one previously unnoticed bug. This bug has gone undetected so far despite
the fact that the faulty code is executed each time the module is loaded. First,
the driver attempts to detect the presence of its related hardware logic, and only
subsequently requests IO resources. This initialization step is faulty since the de-

115

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

Figure A.2 Concurrent model: total time to prove the claims using SMV.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120

S
ec

on
ds

Claims

Machzwd: Total Time

smv

tection is performed by reading a port not yet requested. As a result, the IO access
has unpredictable consequences.

SATABS produces a counterexample using two predicates derived from the
condition of the assertion. Fig. A.1 reports the total runtime of SATABS for each
of the 116 claims generated for machzwd. Some of the claims are proved correct
using constant propagation only. In that case, the CEGAR loop is skipped.

As most of the verification time is spent verifying the abstract program, the
choice of the model checker has a significant impact on the runtime. We demon-
strate this by using three different model checkers: Cadence SMV [K.L. McMillan,
1992], BOPPO [Cook et al., 2005], and BOOM [Basler et al., 2007]. The latter is
based on efficient satisfiability checking techniques and has been presented only
recently. It performs significantly better than Cadence SMV and BOPPO, but lacks
support for concurrency. The number of abstraction refinement iterations, and
the number predicates generated to prove the claims shown in Fig. A.1 are pre-
sented in Fig. A.3. The number of predicates generated in the refinement step
depends on the counterexample returned by the model checker. Therefore, dif-
ferent numbers of predicates and iterations may be observed depending on the
model checkers. However, this effect do not occur in this benchmark, and thus,
Fig. A.3 is valid for all three model checkers.

Claim 0 corresponds to the invalid IO port access described above and turns
out to be wrong. Since the broken assertion occurs at the very beginning of each
execution trace of the driver, other assertions are unreachable. As a result, the ver-
ification process terminates as soon as SATABS is able to show that the assertion
that corresponds to claim 0 cannot be bypassed. To verify certain claims, SATABS

performs up to 15 refinement iterations, discovering 20 predicates. We observed
no difference in the number of discovered predicates and iterations when switch-
ing between SMV, BOPPO, and BOOM.

We are able to verify the same properties using a concurrent model with two

116

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

threads. The first thread calls the driver functions, while the second one simulates
the arrival of interrupts and the execution of deferred tasks. The results we obtain
by using SMV are presented in Fig. A.2 (BOPPO actually timed out on almost all
claims). Note that the order for proving the claims depends on the model, and
thus, differs from Fig. A.1. However, Fig. A.1 and Fig. A.2 share some similarities,
such as a unique peak. As the number of iterations and predicates increases only
slightly, we omit their presentation. SATABS needs at most 2.5 minutes to verify
a claim using the sequential harness, while this number increases to 30 minutes
when switching to the concurrent one. These results illustrate the state-space
explosion induced by the additional thread. When the property being checked
requires more predicates, the verification time increases rapidly. In particular,
fixing the bug mentioned above results in a significant increase in the number
of predicates required to verify a claim using the sequential model: The number
of predicates increases by a factor of 10. In that case, running SATABS using the
concurrent model yields time-outs for most of the claims.

Figure A.3 Sequential model: Iterations and predicates per claim.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

Claims

Iterations
Predicates

nbd As a second benchmark, we discuss the results obtained by verifying the
device driver nbd, which enables the use of block devices over the network. For a
total of 805 lines of code, SATABS generates 62 claims related to spinlocks. We do
not list trivial claims that are verified in one iteration. All claims are shown to be
correct. Table A.5 reports the verification results using SMV and Bp. The topmost
table shows the average time spent for abstraction (Abst.), model-checking (Mc.),
feasibility checking (Sim.), and refinement (Ref.). It also reports the average of
iterations and predicates per claim. The table in the middle presents the standard

117

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

Figure A.4 Concurrent model: total time to prove the claims using SMV.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120

M
in

ut
es

Claims

Machzwd: Total Time

SMV

deviation. Finally, the last table reports the maximum value observed in each
column.

As previously observed, Bp performs better than Cadence SMV. In average,
SATABS using SMV runs for 43 minutes to verify a claim, as opposed to 8 minutes
only for Bp. Furthermore, note that the standard deviation is low, meaning that
the data are distributed close to the mean.

A.5 Bibliographic Notes

Predicate abstraction [Graf and Saïdi, 1997] is an abstraction mechanism that gen-
erates finite-state models for programs with unbounded state space. The states
of the abstract model are determined by evaluating the concrete states under a
finite set of first order logic predicates, which reflect properties of the original
program. An insufficient set of predicates leads to falsely reported counterexam-
ples. Such inaccurate abstractions can be refined by means of adding predicates
that are extracted from these false counterexamples. This technique is known as
counterexample-guided abstraction refinement [Clarke et al., 2000].

Several predicate-abstraction based CEGAR verification tools are available.
BLAST [Henzinger et al., 2002] improves the approach implemented in SLAM by
using a “lightweight” refinement abstraction loop that refines only relevant parts
of the abstract model [Henzinger et al., 2002]. Henzinger et al. present a BLAST-
based automatic race checker for multithreaded C programs [Henzinger et al.,
2003b], which examines each thread separately using assume-guarantee reason-
ing. MAGIC is able to handle concurrent programs that communicate via mes-

118

APPENDIX A. VERIFICATION OF CONCURRENT DEVICE DRIVERS

Figure A.5 Summary of the results obtained for Benchmark nbd.

Avg. Time (m)
Tot. Abst. Mc. Sim. Refi. Avg. Iter. Avg. Pred.

Bp 22.73 6.16 6.97 6.53 3.07 28.08 102.36
SMV 63.36 8.04 43.19 8.28 3.84 34 102.36

Stdev. Time (m)
Tot. Abst. Mc. Sim. Refi. Stdev. Iter. Stdev. Pred.

Bp 1.99 0.57 1.66 0.47 0.26 1.58 0.78
SMV 1.88 0.08 1.79 0.1 0.01 0 0.78

Max. Time (m)
Tot. Abst. Mc. Sim. Refi. Max. Iter. Max. Pred.

Bp 26.42 7.2 10.1 7.5 3.69 31 104
SMV 67.49 8.24 47.06 8.91 3.89 34 104

sage passing, but do not use shared memory [Chaki et al., 2004]. Therefore, this
approach is inappropriate for verifying concurrent Linux device drivers. SATABS

uses efficient satisfiability checking algorithms to generate the abstract model and
to simulate the counterexamples. Unlike the other CEGAR tools mentioned in
this section, SATABS [Clarke et al., 2005] uses a bit-level accurate decision pro-
cedure, and therefore, can detect errors related to bit-level operators (e.g., over-
flows). Using the model checker BOPPO [Cook et al., 2005], SATABS is able to
check concurrent programs that communicate via shared memory. YASM uses
a modified abstraction mechanism that enables verification of liveness proper-
ties [Gurfinkel et al., 2006], while all other tools mentioned here support only
safety properties. Qadeer’s KISS tool uses SLAM to check concurrent programs
by generating a sequential model that reflects a subset of the execution traces of
the original program [Qadeer and Wu, 2004].

Besides predicate abstraction, several other model checking techniques to ver-
ify ANSI-C programs have been proposed. (We do not discuss verification tools
for other languages.) The tools described below operate on the original program,
i.e., no abstraction is applied. CBMC [Kroening et al., 2004] is based on bounded
model checking (BMC), and symbolically executes all traces of a program up to a
user-specified length. Due to its bounded nature, the approach is appropriate for
detecting shallow bugs only. SATURN [Xie and Aiken, 2005] performs BMC for
each function of the C program separately. Loops are modeled by unrolling them
a predetermined number of times. Function calls are handled by maintaining
concise summaries of functions.

Post and Küchlin [Post and Küchlin, 2006] present a heuristic for automatic
generation of test harnesses for the BMC-based verification of Linux device drivers.
Their method automatically infers parameters for the dispatch function calls, in-

119

APPENDIX A. VERIFICATIONOF CONCURRENT DEVICE DRIVERS

cluding pointers and data structures that typically occur in device drivers.
Other verification tools such as Daikon [Ernst et al., 1999], Eraser [Savage et al.,

1997], and Verisoft [Godefroid, 2005] are based on explicit execution rather than
static analysis. [Musuvathi et al., 2002] verify file system implementations using
CMC, which is a tool that explicitly executes the unmodified kernel code within a
model checker. CMC prevents the repeated examination of the same part of the
state space by storing states that have already been visited. However, explicit
state enumeration is more even more susceptible to the state-explosion problem
than model checkers based on symbolic techniques. The Verisoft tool follows a
similar approach to verify concurrent C programs. Verisoft performs dynamic
execution of C code, but does not keep track of visited states (this technique is
called state-less search) [Godefroid, 2005]. In order to prevent the search algo-
rithm from getting caught in infinite cycles, the depth of the execution traces is
limited. Therefore, Verisoft is incomplete and unable to establish correctness re-
sults.

A.6 Summary

Wepresent theDDVerify framework, which enables the automated verification of
Linux device drivers based on the SATABS model checker. Given a device driver,
DDVerify is able to automatically generate a test harness for this driver. DDVerify
provides a sequential as well as a concurrent model of the driver service routines
of the Linux kernel. Thesemodels are significantly more accurate than the operat-
ing systemmodels provided by SLAM or BLAST. For instance,DDVerify supports
synchronization constructs, interrupts, and deferred tasks. Furthermore, we in-
tegrate a concurrent model checker for abstract models generated by predicate
abstraction into a CEGAR framework.

We present benchmarks that confirm that predicate abstraction is an adequate
method for verifying sequential device drivers. In principle, it is possible to de-
tect more bugs using a concurrent harness. However, in order to apply this ver-
ification technique to concurrent device drivers, the performance of the model
checker tools for concurrent abstract programs has to be improved significantly.
Currently, no CEGAR tool we are aware of is able to handle device drivers of a
realistic size in the presence of threads.

DDVerify and a collection of test cases are available from
http://www.cprover.org/ddverify. It comeswith a collection of test cases,
also including the one presented in this document. With the framework and the
operating system models being in place, we believe that DDVerify is a first step
to make the automated verification of Linux device drivers practical.

120

http://www.cprover.org/ddverify

B
Synthesis of C/C++ test-benches for

Formal Verification

THE development of a newproduct generally starts with a high-level software
representation of the system often written in C or C++. The details of the
model are then gradually refined to obtain a concrete description suitable

for hardware synthesis. During the refinement iterations, engineers invest time
to create simulation scenarios to validate the behaviors of their model. Simula-
tion and validation account for most of the time of the development cycle. The
ability to re-use modules and test benches from higher levels of description accel-
erates the development and allows to verify functional consistency between the
implementation and the original high-level specification.

Hardware-manufacturing companies employ model checkers for validation
of RTL designs. To use these tools, engineers must specify the correct behaviors
of their model in term of system invariants, which is a task that requires expertise
in formal methods. The development of techniques to automate the extraction of
formal properties from test benches is therefore important to shorten time spent
for validation and to facilitate adoption of formal methods.

We present a technique to encode test benches written in C/C++ into a set
of System Verilog properties suitable for formal verification. Our approach fits
well into existing verification flows as the properties that we generate are verified
using existing model-checking tools.

Technically, the design and its test bench are synchronized at timeframes. A
timeframe is a snapshot of the state of system at a specific point in time. The test
bench drives the execution of the design by adding constraints to the snapshots.
We encode the program into a propositional formula using a Bounded Model
Checking technique. We rewrite then the formula as System Verilog properties
that constrain the execution of circuit. The complete system can be subsequently
verified using verification tools with support for the System Verilog Assertion lan-
guage.

121

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

B.1 The Running Example

We support the discussion using a concrete verification example for an arbiter.
Arbiters provide mechanisms to order conflicting accesses to shared resources in
concurrent environments. They are crucial components of communication sys-
tems. In a single chip, arbiters control which devices can write to the buses.
In computer networks, switches rely on fast arbitration schemes when multiple
packets form different input ports are transmitted to the same output port. De-
signing high-performance arbiters with fairness guarantees is error prone. Typ-
ically, the complete verification of an arbiter using testing approaches is tedious
due to the existence of numerous corner cases. In contrast, formal-analysis tools
perform well on control-intensive tasks with little data computation such as ar-
biters.

As a general rule in our approach, the VERILOG design must be synthesize-
able and contain a fastest clock. Schema B.1 shows the interface of an arbiter
with 4 input lines for the requests (signal req) and one output port for the grant
signal, which indicates the number of the selected device. We keep the example
simple to facilitate the discussion. The arbiter can manage up to four parallel re-
quests. In this example, we assume that the arbiter implements a fair round-robin
scheduling policy and therefore, that any request is granted within 4 cycles.

req[3:0]

clk

grant[2:0]Arbiter

Figure B.1: arbiter

Program B.1 shows a C++ test bench to verify the fairness of the arbiter. The
test bench can access the state of the circuit through variable arbiter declared on
line 4. The declaration qualifies arbiter with the volatile and const modifiers to
indicate to the compiler that only the environment can modify the variable. In
this case, variable arbiter is implicitly updated each time that the circuit makes a
transition.

The execution of the test bench and the circuit are synchronized at timeframes,
which correspond the clock of the system. On line 6, the test bench declares
variable simtime to keep track of the simulation time.

The circuit switches to the next timeframe each time that the test bench in-
crements the simulation time. Our programming model excludes decrementing
timeframes.

By default the inputs of the circuit are free. The test bench directs the execu-
tion using assume statements. Similarly, it verifies properties using C++ assert
statements. The programmer can specify arbitrary C++ boolean expressions.

122

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

Program B.1 C++ test bench for verifying the fairness of the arbiter presented in
Schema B.1.

1

2const v o l a t i l e

3s t r u c t { sc_uint <4> req ;
4sc_uint <2> grant ; } a r b i t e r ;
5

6unsigned simtime ;
7

8in t main () {
9bool f a i r = f a l s e ;
10sc_uint <2> dev_no = random () ;
11

12assume (a r b i t e r . req [dev_no] == 1) ;
13

14for (in t i = 0 ; i < 4 ; i ++) {
15simtime += 1 ;
16

17assume (a r b i t e r . req [dev_no] == 1) ;
18

19i f (a r b i t e r . grant == dev_no) {
20f a i r = true ;
21break ;
22}
23}
24a s s e r t (f a i r == true) ;
25}

In this example, the test bench randomly selects an input line (variable dev_no)
and generates a request using the assume statement on line 12. According to the
round-robin arbitration schema, a correct arbiter shall fulfill the request within 4
cycles. The assertion on line 24 enforces this property. Note that in this model,
the inputs are set implicitly and randomly in each timeframe. Therefore, the exe-
cution can interleave requests arbitrarily.

B.2 Extraction of Symbolic Constraints

Bounded Model Checking [Biere et al., 2003, Kroening et al., 2004] denotes a
symbolic verification technique that encodes a finite computation and a prop-
erty into a propositional formula that is satisfiable if and only if there exists an
trace that violates the property. In that case, every satisfiable assignment provides
an example of incorrect execution. In general, modelcheckers convert transi-
tion systems into CNF formulae thanks to the growing scalability of SAT-solvers.

123

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

Figure B.1 Cotrol-Flow Graph of Program B.1

arbiter2.grant[dev_no0] 6= 1

arbiter3.grant[dev_no0] 6= 1

arbiter1.grant[dev_no0] 6= 1

arbiter4.grant[dev_no0] 6= 1

simtime2 = 2

assume(arbiter2.req[dev_no0] == 1)

fair3 = true
simtime4 = 2

assume(arbiter4.req[dev_no0] == 1)

fair0 = false

dev_no0 = random()

assume(arbiter0.req[dev_no0] == 1)

assume(arbiter1.req[dev_no0] == 1)

simtime1 = 1

simtime3 = 2

assume(arbiter3.req[dev_no0] == 1)

simtime5 = φ(simtime1, simtime2, simtime3, simtime4)

fair5 = φ(fair1, fair2, fair3, fair4)

assert(fair5 == true)

fair2 = true

fair1 = true
fair4 = true

Bounded Model Checking has been applied to both hardware and software sys-
tems in [Kroening et al., 2003]. In contrast to this work, our technique allows
unbounded verification of the hardware.

The first step to extract the formula consists of building a control-flow graph
representation of the program and to unroll it. Subsequently, we translate the
code into a Single Static Assignment form (SSA) [Cytron et al., 1991] meaning that
every variable is assigned exactly in one location. This location is called a vari-
able definition. We obtain this form by adding a version number to the variables
so that each variable definition is uniquely identified. Consequently, several ver-
sions of a same variable may exists along different paths. At the locations where
the control flow merges we introduce φ nodes to select the correct values of the
variables.

Figure B.1 shows the control-flow graph of Program B.1 after unrolling and
conversion to SSA form. As variable arbiter must reflect the state of the circuit
in each time frame, we increments its version number implicitly each time that
variable simtime is redefined.

Finally, we extract the symbolic constraints directly from the SSA representa-
tion. Figure B.2 shows these constraints. The statements are mapped directly the
clauses of the formula. We implement φ nodes with a case split over the possible
incoming edges (see constraints for simtime5 and fair5).

124

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

Figure B.2 Equation of Program B.1

fair0 = 0 ∧ arbiter0.req[dev_no0] = 1
simtime1 = 1 ∧ arbiter1.req[dev_no0] = 1

G1 ⇒ fair1 = 1
G2 ⇒ simtime2 = 2 ∧ arbiter2.req[dev_no0] = 1
G3 ⇒ fair2 = 1 ∧
G4 ⇒ simtime3 = 3 ∧ arbiter3.req[dev_no0] = 1
G5 ⇒ fair3 = 1
G6 ⇒ simtime4 = 4 ∧ arbiter4.req[dev_no0] = 1
G7 ⇒ fair4 = 1

G1 ⇒ simtime5 = simtime1 ∧ fair5 = fair1

G3 ⇒ simtime5 = simtime2 ∧ fair5 = fair2

G5 ⇒ simtime5 = simtime3 ∧ fair5 = fair3

G7 ⇒ simtime5 = simtime4 ∧ fair5 = fair4

G8 ⇒ simtime5 = simtime4 ∧ fair5 = fair0

G1 ⇔ arbiter1.grant[dev_no0] = 1
G2 ⇔ arbiter1.grant[dev_no0] = 0
G3 ⇔ G2 ∧ arbiter2.grant[dev_no0] = 1
G4 ⇔ G2 ∧ arbiter2.grant[dev_no0] = 0
G5 ⇔ G4 ∧ arbiter3.grant[dev_no0] = 1
G6 ⇔ G4 ∧ arbiter3.grant[dev_no0] = 0
G7 ⇔ G6 ∧ arbiter4.grant[dev_no0] = 1
G8 ⇔ G6 ∧ arbiter4.grant[dev_no0] = 0

B.3 System Verilog Harness

SYSTEM VERILOG is a system-level modeling language implemented as an exten-
sion of VERILOG. It permits describing a system at several levels of abstraction,
starting at a high-level functional description, down to synthesizable gate-level.
Alongwith support for object-oriented software programming, SYSTEM VERILOG

introduces a powerful assertion language that can express complex temporal be-
haviors. In addition to assertions, SYSTEM VERILOG also provides assume state-
ments to restrict the execution to traces that satisfy certain properties.

Technically, SYSTEM VERILOG distinguishes two kind of assertions. Immediate
assertions are statements inside processes that are evaluated when the execution
reaches their location. In contrast, concurrent assertions are evaluated on a clock
basis when the state of the circuit is stabilized. The same distinction applies for
assume statements.

Internally, formal verification tools build a netlist representation of the tran-

125

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

sition system. The design and its properties must thus be synthesizeable. In
general, synthesis tools are unable to handle test-bench constructs such as clock
delays and immediate assertions. Consequently, test benches cannot be passed as
is to formal verification engines.

Except for C++ assertions, which are converted into SYSTEM VERILOG con-
current assertions, we translate C++ programs in SYSTEM VERILOG concurrent
assume statements that constrain the execution of the circuit. In this way, we
circumvent the synthesis restrictions imposed on VERILOG modules.

Figure B.3 shows the schema of the SYSTEM VERILOG harness. We encode
the variables of the test bench as flip flops that hold their initial value forever.
The registers are set once at the beginning of the execution and keep their value
constant. A model checker enforces the semantics of the test bench by solving
SYSTEM VERILOG equations that constrain the values of the variables of the test
bench.

As example, the following SYSTEM VERILOG code shows the declaration of
variable arbiter0 and dev_no0 and their related constraints:

reg struct {...} arbiter0;
reg [31,0] dev_no0;

always @(posedge clk) arbiter0 <= arbiter0;
always @(posedge clk) dev_no0 <= dev_no0;

assume property (@posedge clk)
arbiter0.req[dev_no0] ==1 ;

At this point, the execution of the test bench and the circuit are independent.
We introduce additional synchronization constraints between the variables of the
test bench and the registers of the design. The following code snippet shows the
synchronization constraint for timeframe 4:

assume property (@posedge clk)
(current_timeframe == sim_time4 && G6) |->

DUT.req == arbiter4.req &&
DUT.grant == arbiter4.grant;

As synchronization happens at timeframes, we introduces a timeframe counter
current_timeframe to keep track of the current time for the circuit. Unlike the
registers of the test bench, which hold constant values, current_timeframe is in-
cremented with the clock. Therefore, the previous property states that the state of
the DUT must match the state of arbiter4 in timeframe 4 if condition G6, shown
in Figure B.2, holds.

Similarly, the evaluation of assertions must be synchronized with the execu-
tion of the circuit. Thus, we translate the C++ assertion in Figure B.1 into the
following SYSTEM VERILOG property:

126

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

Figure B.3 Schema of the SYSTEM VERILOG harness

current_timeframe

Constraints + Assertions
SVA

(The SSA equations of the TB.)

rstclk

DUT

Outputs
DUT

Free Inputs

Timeframe
counter

Variables
SSA

(SSA variables hold their initial value forever)

+

assert property (@posedge clk)
current_timeframe == sim_time5 |->

fair5 == 1;

Any counterexample that violates this property provides a trace in both the
original C++ test bench and the verilog circuit.

B.4 Bibliographic Notes

Hardware/Software co-verification techniques [Séméria et al., 2002, Rowson, 1994]
allow to discover bugs early in the development process before production, at
which time changes in the design are prohibitive both in term of delays and costs.
Methods for Hardware/Software co-verification are based on simulation.

Test benches try to capture the intent of a design and test scenarios at which
the designer thinks. Traditionally, simulation-based verification techniques be-
long to three different categories:

1. Directed-random verification denote testing approaches that use concrete
values to drive the execution of the circuit. Such a test describes a single
execution path. In order to build faith in the correctness of the model, the
scenario must cover a significant part of the functionalities of the design.

2. In random testing the simulator chooses the values of the inputs randomly.
Simulation must last for long periods to ensure that a significant part of the
behaviors are covered. In particular, random testing can miss important
corner cases.

127

APPENDIX B. SYNTHESIS OF C/C++ TEST-BENCHES FOR FORMAL
VERIFICATION

3. Finally, directed-random verification denotes techniques that adjust the de-
gree of freedom of the inputs using constraints. Languages such as Vera,
’e’, and System Verilog allow to specify the domain of the inputs using sym-
bolic equations. Simulators with support for constrained-random verifica-
tion techniques can then solve the equations and generate random stimuli
that extensively test the scenario [Behm et al., 2004, Haque and Michelson,
2001].

Engineers can estimate the percentage of behaviors that are covered during
simulation using coverage heuristics. Several metrics for coverage exists, e.g,
Tasiran and Keutzer [2001], Devadas et al. [1996]. Code coverage heuristics assume
that the word-level representation of the design is available and quantify how
much of the code has been visited during simulation. Circuit coverage describes
a second family of heuristics based on the quantification of the activity of the
elements in the circuits such as registers and outputs. Testing techniques can
achieve high coverage with respect to these heuristics, typically more than 90
percents [Bartley et al., 2002], but may miss subtle corner cases.

HW-CBMC [Kroening et al., 2003] is a tool for checking behavioral consis-
tency of C/C++ programs and Verilog using Bounded Model Checking. The test
bench and the design are unrolled in tandem and translated into a boolean for-
mula that is satisfiable if and only if there exists a mismatch between the test
bench and the circuit. In that case, the satisfiable assignment provides a counter-
example in the program and the design that exposes the bad behavior. Such ap-
proach provides formal safety guarantees for all execution traces up to a certain
bound.

HW-CBMC maps the state of the circuit into the memory space of the test
bench using arrays. By convention, the test bench must declare an external array
with the same name as the top module. The ith element of this array represents
the state of the module at time i. The size of the array must match the number of
time the circuit is unrolled.

Instead of encoding the test bench into a SAT formula, our technique trans-
lates the program into SYSTEM VERILOG properties and builds a harness for the
circuit. The design under test and its harness are then verified with a separate
tool. We see two important reasons for adopting a decoupled approach. First,
our technique avoids to unwind the circuit upfront. In particular, the verifica-
tion engine can choose different verification strategies other than bounded model
checking. Second, the approach is more easy to integrate in already existing de-
sign flows as modelcheckers can be used unmodified.

We have presented a novel technique to encode a test bench written in C++
into a set of SYSTEM VERILOG properties that are suitable for formal verifica-
tion. A similar approach can apply to any testing language with support for
constrained-random verification. While in general pure simulation constructs
such as delays and immediate assertions cannot be analysed with current formal
verification tools, our technique enables to combine the verification of hardware
and software using existing model checkers for SYSTEM VERILOG.

128

Bibliography

Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie.
Zing: Exploiting program structure for model checking concurrent software.
In Proceedings of CONCUR, pages 1–15, 2004.

T. Ball and S.K. Rajamani. Boolean programs: A model and process for software
analysis. Technical Report MSR-TR-2000-14, Microsoft Research, 2000a.

Thomas Ball and Sriram K. Rajamani. BEBOP: A symbolic model checker for
Boolean programs. In SPIN Workshop on Model Checking of Software, volume
1885 of LNCS. Springer, 2000b.

Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–3, NewYork,
NY, USA, 2002. ACM. ISBN 1-58113-450-9.

Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and
Static Driver Verifier: Technology transfer of formal methods inside Microsoft.
In IFM, 2004.

Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner.
Thorough static analysis of device drivers. In European Systems Conference (Eu-
roSys), 2006.

Mike G. Bartley, Darren Galpin, and Tim Blackmore. A comparison of three
verification techniques: directed testing, pseudo-random testing and property
checking. In DAC ’02: Proceedings of the 39th conference on Design automation,
pages 819–823, New York, NY, USA, 2002. ACM. ISBN 1-58113-461-4.

Gérard Basler, Daniel Kroening, and Georg Weissenbacher. SAT-based summari-
sation for Boolean programs. In SPIN Workshop on Model Checking of Software,
volume 4595 of LNCS, 2007.

Michael Behm, John Ludden, Yossi Lichtenstein, Michal Rimon, and Michael Vi-
nov. Industrial experience with test generation languages for processor verifi-
cation. dac, 00:36–40, 2004.

129

BIBLIOGRAPHY BIBLIOGRAPHY

David Berner and Jean-Pierre Talpin. SystemCXML: An extensible SystemC front
end using XML. In proceedings of the forum on specification and design danguages
(FDL)., 2005.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:118–149, 2003.

K Bierhoff. Iterator specification with typestates. In SAVCBS ’06: Proceedings of the
2006 conference on Specification and verification of component-based systems, pages
79–82. ACM, 2006.

Nicolas Blanc, Daniel Kroening, and Natasha Sharygina. Scoot: A tool for the
analysis of SystemC models. In TACAS, Lecture Notes in Computer Science,
pages 467–470. Springer, 2008.

Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of Pro-
gram Construction, pages 102–126, 2000.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., 35(8):677–691, 1986. ISSN 0018-9340.

Randal E. Bryant, Shuvendu K Lahiri, and Sanjit A. Seshia. Modeling and veri-
fying systems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Computer Aided Verification (CAV), volume 2404 of
LNCS. Springer, 2002.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In Proceedings of
LICS, pages 428–439. IEEE Computer Society, 1990.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of soft-
ware components in C. IEEE Trans. on Software Engineering, 30(6):388–402, June
2004.

E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI–C programs using SAT. Formal Methods in System Design, 25:105–127,
September–November 2004.

Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SA-
TABS: SAT-based predicate abstraction for ANSI-C. In TACAS, volume 3440 of
Lecture Notes in Computer Science. Springer, 2005. ISBN 3-540-25333-5.

Edmund Clarke, Himanshu Jain, and Daniel Kroening. Verification of SpecC us-
ing predicate abstraction. Form. Methods Syst. Des., 30(1):5–28, 2007. ISSN 0925-
9856.

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifi-
cation of finite state concurrent systems using temporal logic specifications: A
practical approach. In POPL, pages 117–126, 1983.

130

BIBLIOGRAPHY BIBLIOGRAPHY

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV ’00: Proceedings of the
12th International Conference on Computer Aided Verification, Lecture Notes in
Computer Science, pages 154–169, London, UK, 2000. Springer. ISBN 3-540-
67770-4.

D. R. Cok. Specifying Java iterators with JML and Esc/Java2. In Specification and
verification of component-based systems, pages 71–74, 2006.

Byron Cook, Daniel Kröning, and Natasha Sharygina. Symbolic model checking
for asynchronous Boolean programs. In SPIN Workshop on Model Checking of
Software, volume 3639 of LNCS. Springer, 2005.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond
safety. In CAV, pages 415–418, 2006.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991. ISSN
0164-0925.

Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. An observability-based code
coverage metric for functional simulation. iccad, 00:418, 1996. ISSN 1092-3152.

Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of au-
tomated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 27(7):1165–
1178, July 2008.

Jr. EdmundM. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

N. Eén andNiklas Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing (SAT), pages 502–518, 2003.

E. Allen Emerson and Richard J. Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In CHARME, pages
142–156, 1999.

Dawson Engler and Ken Ashcraft. RacerX: Effective, static detection of race con-
ditions and deadlocks. In SOSP ’03: Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, pages 237–252, New York, NY, USA, 2003.
ACM. ISBN 1-58113-757-5.

131

BIBLIOGRAPHY BIBLIOGRAPHY

M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. In International Conference
on Software Engineering, pages 213–224, 1999.

Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.
In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 219–232, New York, NY, USA, 2000.
ACM. ISBN 1-58113-199-2.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 110–121, New
York, NY, USA, 2005. ACM. ISBN 1-58113-830-X.

R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathe-
matical aspects of computer science: Proc. American Mathematics Soc. symposia, vol-
ume 19, pages 19–31, Providence RI, 1967. American Mathematical Society.

Masahiro Fujita and Hiroshi Nakamura. The standard SpecC language. In ISSS
’01: Proceedings of the 14th international symposium on Systems synthesis, pages
81–86, New York, NY, USA, 2001. ACM. ISBN 1-58113-418-5.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. In ECOOP ’93: Pro-
ceedings of the 7th European Conference on Object-Oriented Programming, pages
406–431, London, UK, 1993. Springer-Verlag. ISBN 3-540-57120-5.

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Lecture Notes in Computer Science.
Springer, Secaucus, NJ, USA, 1996. ISBN 3540607617.

Patrice Godefroid. Software model checking: The VeriSoft approach. Form. Meth-
ods Syst. Des., 26(2):77–101, 2005. ISSN 0925-9856.

Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS.
In CAV ’97: Proceedings of the 9th International Conference on Computer Aided Ver-
ification, Lecture Notes in Computer Science, pages 72–83, London, UK, 1997.
Springer. ISBN 3-540-63166-6.

D. Gregor and S. Schupp. STLlint: lifting static checking from languages to li-
braries. Softw. Pract. Exper., 36(3):225–254, 2006. ISSN 0038-0644.

D. Gregor and S. Schupp. Making the usage of STL safe. In IFIP TC2/WG2.1
Working Conference on Generic Programming, pages 127–140, 2003.

Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software model-checker
for verification and refutation. In Computer Aided Verification (CAV), volume
4144 of LNCS. Springer, 2006.

132

BIBLIOGRAPHY BIBLIOGRAPHY

Faisal Haque and Jonathan Michelson. Art of Verification with VERA. Verification
Central, 2001. ISBN 097119940X.

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Automatic gener-
ation of schedulings for improving the test coverage of systems-on-a-chip. In
FMCAD ’06: Proceedings of the Formal Methods in Computer Aided Design, pages
171–178, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-
2707-8.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
Blast. In Proceedings of the Tenth International Workshop on Model Checking of
Software (SPIN), 2003a.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In Principles of Programming Languages (POPL). ACM Press, 2002.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-
modular abstraction refinement. In Computer Aided Verification (CAV), volume
2725 of LNCS. Springer, 2003b.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. ISSN 0001-0782.

C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming lan-
guage PASCAL. Acta Informatica, 2, 1973.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In Principles of Programming Languages, pages 14–26, 2001.

ISO/IEC. ISO/IEC 14882:2003 (E). Programming languages - C++, 2003.

B. Jacobs, F Piessens, and W. Schulte. Vc generation for functional behavior and
non-interference of iterators. In Specification and verification of component-based
systems, pages 67–70, 2006.

Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Jones Cordy, Hall Kevin,
Will Partain, and Phil Wadler. The Glasgow Haskell compiler: a technical
overview, 1992.

James C. King. Symbolic execution and program testing. volume 19, pages 385–
394, New York, NY, USA, 1976. ACM.

K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie
Mellon University, 1992.

Nikolaos Kostaras and H. T. Vergos. Syce: An integrated environment for system
design in systemc. In RSP ’05: Proceedings of the 16th IEEE International Workshop
on Rapid System Prototyping, pages 258–260, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2361-7.

133

BIBLIOGRAPHY BIBLIOGRAPHY

N. R. Krishnaswami. Reasoning about iterators with separation logic. In Specifi-
cation and verification of component-based systems, pages 83–86, 2006.

D. Kroening and N. Sharygina. Formal verification of SystemC by automatic
hardware/software partitioning. In MEMOCODE ’05: Proceedings of the 2nd
ACM/IEEE International Conference on Formal Methods and Models for Co-Design,
pages 101–110, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7803-9227-2.

D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs. In
TACAS, LNCS, pages 168–176. Springer, 2004.

Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diam-
eters. In VMCAI 2003: Proceedings of the 4th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, pages 298–309, London, UK,
2003. Springer-Verlag. ISBN 3-540-00348-7.

Daniel Kroening, Edmund M. Clarke, and Karen Yorav. Behavioral consistency
of C and Verilog programs using bounded model checking. In DAC, pages
368–371, May 2003.

Sudipta Kundu, Malay Ganai, and Rajesh Gupta. Partial order reduction for scal-
able testing of SystemC TLM designs. In DAC ’08: Proceedings of the 45th an-
nual conference on Design automation, pages 936–941, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-115-6.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978. ISSN 0001-0782.

B. Liskov and S. Zilles. Programming with abstract data types. In ACM SIGPLAN
Symposium on very high level languages, pages 50–59. ACM, 1974.

Kenneth L. McMillan. Applications of Craig interpolants in model checking. In
TACAS, pages 1–12, 2005.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

Alice Miller, Alastair F. Donaldson, and Muffy Calder. Symmetry in temporal
logic model checking. ACM Comput. Surv., 38(3), 2006.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1982. ISBN 0387102353.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, 2001.

134

BIBLIOGRAPHY BIBLIOGRAPHY

Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa: an
extraction tool for systemc descriptions of systems-on-a-chip. In EMSOFT ’05:
Proceedings of the 5th ACM international conference on Embedded software, pages
317–324, New York, NY, USA, 2005. ACM. ISBN 1-59593-091-4.

M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: a pragmatic ap-
proach to model checking real code. In Symposium on Operating System Design
and Implementation, 2002.

MayurNaik, AlexAiken, and JohnWhaley. Effective static race detection for Java.
In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 308–319, New York, NY, USA, 2006.
ACM. ISBN 1-59593-320-4.

Robert H. B. Netzer and Barton P. Miller. What are race conditions? Some issues
and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992. ISSN 1057-
4514.

Doron Peled. All from one, one for all: On model checking using representatives.
In CAV ’93: Proceedings of the 5th International Conference on Computer Aided Veri-
fication, Lecture Notes in Computer Science, pages 409–423, London, UK, 1993.
Springer. ISBN 3-540-56922-7.

Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In CAV ’94: Proceedings of the 6th International Conference on Com-
puter Aided Verification, pages 377–390, London, UK, 1994. Springer. ISBN 3-
540-58179-0.

Daniel Gracia Pérez, Gilles Mouchard, and Olivier Temam. A new optimized
implemention of the SystemC engine using acyclic scheduling. InDATE, pages
552–557. IEEE, 2004. ISBN 0-7695-2085-5-1.

Hendrik Post and Wolfgang Küchlin. Automatic data environment construction
for static device drivers analysis. In Specification and Verification of Component-
based Systems (SAVCBS). ACM Press, 2006.

Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. SIGPLAN
Not., 39(6):14–24, 2004. ISSN 0362-1340.

G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems, 22(2):416–430,
2000.

J. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
In Computer Science, pages 55–74. IEEE, 2002.

James A. Rowson. Hardware/software co-simulation. In DAC, pages 439–440,
New York, NY, USA, 1994. ACM. ISBN 0-89791-653-0.

135

BIBLIOGRAPHY BIBLIOGRAPHY

J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and W. Mueller. The
simulation semantics of SystemC. In DATE ’01: Proceedings of the conference on
Design, automation and test in Europe, pages 64–70, Piscataway, NJ, USA, 2001.
IEEE Press. ISBN 0-7695-0993-2.

Ashraf Salem. Formal semantics of synchronous SystemC. In DATE ’03: Pro-
ceedings of the conference on Design, Automation and Test in Europe, page 10376,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1870-2.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. Comput. Syst., 15(4):391–411, 1997. ISSN 0734-2071.

Nick Savoiu, Shukla Sandeep, and Gupta Rajesh. Improving SystemC simulation
through Petri net reductions. InMEMOCODE, pages 131–140, 2005.

Thorsten Schubert and Wolfgang Nebel. The Quiny SystemC front end: self-
synthesising designs. In FDL, pages 135–143. ECSI, 2006. ISBN 978-3-00-
019710-9.

Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Uni-
versität München, 2002.

Luc Séméria, RenuMehra, Barry Pangrle, Arjuna Ekanayake, Andrew Seawright,
and Daniel Ng. Rtl c-based methodology for designing and verifying a multi-
threaded processor. In DAC, pages 123–128, New York, NY, USA, 2002. ACM.

Alper Sen, Vinit Ogale, and Magdy S. Abadir. Predictive runtime verification of
multi-processor SoCs in SystemC. InDAC ’08: Proceedings of the 45th annual con-
ference on Design automation, pages 948–953, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-115-6.

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties
using induction and a sat-solver. In FMCAD ’00: Proceedings of the Third Inter-
national Conference on Formal Methods in Computer-Aided Design, pages 108–125,
London, UK, 2000. Springer-Verlag. ISBN 3-540-41219-0.

Kenneth Slonneger and Barry Kurtz. Domain theory and fixed-point semantics.
In Formal Syntax and Semantics of Programming Languages: A Laboratory Based Ap-
proach, pages 341–394. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995. ISBN 0201656973.

A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report
ANSI X3J16/94-0095, ISO WG21/N0482, 1994.

Wilson Synder. Verilator. http://www.veripool.org.

SystemC. Open systemc initiative (OSCI). http://www.systemc.org.

136

BIBLIOGRAPHY BIBLIOGRAPHY

SystemVerilog. 1800-2005 IEEE std. for System Verilog.
http://www.systemverilog.org.

Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of
hardware designs. IEEE Design and Test of Computers, 18(4):36–45, 2001. ISSN
0740-7475.

Veldhuizen Todd. Using C++ template metaprograms. pages 459–473, 1996.

Moshe Y. Vardi. Formal techniques for SystemC verification. In DAC ’07: Pro-
ceedings of the 44th annual conference on Design automation, pages 188–192, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-627-1.

Verilog. 13364-2001 IEEE std. for Verilog hardware description language.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203–232, 2003.

C. Wang and D. Musser. Dynamic verification of C++ generic algorithms. IEEE
Transactions on Software Engineering, 23(5):314–323, 1997.

Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial
order reduction. In TACAS, Lecture Notes in Computer Science, pages 382–
396. Springer, 2008.

B. W. Weide. Savcbs 2006 Challenge: Specification of iterators. In Specification and
verification of component-based systems, pages 75–78, 2006.

Thomas Witkowski. Formal verification of Linux device drivers. Master’s thesis,
Dresden University of Technology, 2007.

Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weissenbacher.
Model checking concurrent Linux device drivers. In ASE ’07: Proceedings of the
22nd IEEE/ACM international conference on Automated software engineering, pages
501–504, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4.

Yichen Xie and Alexander Aiken. Saturn: A SAT-based tool for bug detection. In
Computer Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005.

137

	Introduction
	Thesis
	Summary of the Contributions of this Dissertation
	Organisation of the Thesis

	Background
	Overview of System-Level Modeling Languages
	Classic Design Methodologies
	Design Methodologies using SystemC

	Model Checking
	Bounded-Model Checking
	Predicate Abstraction
	Partial-Order Reduction

	A Research Compiler for C++
	Introduction
	Overview of the Frontend
	The Internal Representation
	Types
	Expressions
	Statements

	Inheritance
	Virtual Functions
	Templates
	Template Classes
	Template Functions
	Template Specialization
	Future Work

	Code Resynthesis

	Verification of C++/STL Programs
	Introduction
	Axiomatic Semantics
	The Assertion Language
	Iterators
	Sequential Containers

	An Operational Model for the STL
	Experimental Results
	Bibliographic Notes
	Summary

	The SystemC Language
	Introduction
	Method Processes and Threads
	Threads and Clocked Threads
	Method Processes

	The Concurrency Model of SystemC

	A Formal View of the SystemC Scheduler
	Introduction
	The Evaluation Phase
	The Delta Phase
	The Simulation Time
	Correctness of Partial Order Reduction for SystemC

	Static Analysis for SystemC with Scoot
	Introduction
	Overview of Scoot
	Static Analysis of SystemC
	The Supported Subset
	Implementation of Modules
	Implementation of Signals
	Implementation of Ports
	Discovering Module Hierarchy

	Static Scheduling
	Conversion of Threads
	Code Re-synthesis

	Bibliographic Notes
	The SystemCXML Frontend
	The ParSyC Frontend
	The Quiny Frontend
	The Pinapa Frontend

	Race-Analysis for SystemC
	Introduction
	Introductory example
	Implementation
	A Scheduler with Partial Order Reduction
	Computing the Process Commutativity Conditions
	The Running Example
	Implementation of the Strengthening Loop
	Model Checking SystemC Threads

	Experimental Evaluation
	The Running Example
	State Machines
	An Asynchronous Dual-Port Memory
	A RISC Processor

	Bibliographic Notes
	Summary

	Conclusion
	Verification of Concurrent Device Drivers
	introduction
	Predicate Abstraction in Presence of Concurrency
	Concurrency

	Modelling the Linux Kernel
	Experiments
	Bibliographic Notes
	Summary

	Synthesis of C/C++ test-benches for Formal Verification
	The Running Example
	Extraction of Symbolic Constraints
	System Verilog Harness
	Bibliographic Notes

