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Abstract Modern architectures rely on memory fences to prevent undesired weak-
enings of memory consistency. As the fences’ semantics may be subtle, the au-
tomation of their placement is highly desirable. But precise methods for restoring
consistency do not scale to deployed systems code. We chooseto trade some pre-
cision for genuine scalability: our technique is suitable for large code bases. We
implement it in our newmusketeer tool, and detail experiments on more than
350 executables of packages found in Debian Linux 7.1, e.g.memcached (about
10000 LoC).

1 Introduction

Concurrent programs are hard to design and implement, especially when running on
multiprocessor architectures. Multiprocessors implement weak memory models, which
feature e.g.instruction reordering, store buffering(both appearing on x86), orstore
atomicity relaxation(a particularity of Power and ARM). Hence, multiprocessorsallow
more behaviours than Lamport’sSequential Consistency(SC) [20], a theoretical model
where the execution of a program corresponds to an interleaving of the different threads.
This has a dramatic effect on programmers, most of whom learned to program with SC.

Fortunately, architectures provide specialfence(or barrier) instructions to prevent
certain behaviours. Yet both the questions ofwhereandhow to insert fences are con-
tentious, as fences are architecture-specific and expensive.

Attempts at automatically placing fences include Visual Studio 2013, which offers
an option to guarantee acquire/release semantics (we studythe performance impact of
this policy in Sec. 2). The C++11 standard provides an elaborate API for inter-thread
communication, giving the programmer some control over which fences are used, and
where. But the use of such APIs might be a hard task, even for expert programmers. For
example, Norris and Demsky reported a bug found in a published C11 implementation
of a work-stealing queue [27].

We address here the question of how tosynthesisefences, i.e. automatically place
them in a program to enforce robustness/stability [9,5] (which implies SC). This should
lighten the programmer’s burden. The fence synthesis tool needs to be based on a pre-
cise model of weak memory. In verification, models commonly adopt anoperational
style, where an execution is an interleaving of transitionsaccessing the memory (as
in SC). To address weaker architectures, the models are augmented with buffers and
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queues that implement the features of the hardware. Similarly, a good fraction of the
fence synthesis methods, e.g. [23,18,19,24,3,10] (see also Fig. 2), rely on operational
models to describe executions of programs.

ChallengesThus, methods using operational models inherit the limitations of methods
based on interleavings,e.g.the “severely limited scalability”, as [24] puts it. Indeed,
none of them scale to programs with more than a few hundred lines of code, due to the
very large number of executions a program can have. Another impediment to scalability
is that these methods establish if there is a need for fences by exploring the executions
of a program one by one.

Finally, considering models à la Power makes the problem significantly more diffi-
cult. Intel x86 offers only one fence (mfence), but Power offers a variety of synchroni-
sation: fences (e.g.sync andlwsync), or dependencies (address, data or control). This
diversity makes the optimisation more subtle: one cannot simply minimise the number
of fences, but rather has to consider the costs of the different synchronisation mecha-
nisms; it might be cheaper to use one full fence than four dependencies.

Our approachWe tackle these challenges with a static approach. Our choice of model
almost mandates this approach: we rely on the axiomatic semantics of [6]. We feel that
an axiomatic semantics is an invitation to build abstract objects that embrace all the
executions of a program.

Previous works, e.g. [30,5,9,10], show that weak memory behaviours boil down to
the presence of certain cycles, calledcritical cycles, in the executions of the program.
A critical cycle essentially represents a minimal violation of SC, and thus indicates
where to place fences to restore SC. We detect these cycles statically, by exploring an
over-approximation of the executions of the program.

Contributions Our method is sound for a wide range of architectures, including x86-
TSO, Power and ARM; and scales for large code bases, such asmemcached (about
10000 LoC). We implemented it in our newmusketeer tool. Our method is the most
precise of the static analysis methods (see Sec. 2). To do this comparison, we imple-
mented all these methods in our tool; for example, thepensieve policy [32] was de-
signed for Java only, and we now provide it for x86-TSO, Powerand ARM. Thus, our
tool musketeer gives a comparison point for the field.

Outline We discuss the performance impact of fences in Sec. 2, and survey related work
in Sec. 3. We recall our weak memory semantics in Sec. 4. We detail how we detect
critical cycles in Sec. 5, and how we place fences in Sec. 6. InSec. 7, we compare
existing tools and our new toolmusketeer. We provide the sources, benchmarks and
experimental reports online athttp://www.cprover.org/wmm/musketeer.

2 Motivation

Before optimising the placement of fences, we investigatedwhether naive approaches
to fence insertion indeed have a negative performance impact. To that end, we measured

http://www.cprover.org/wmm/musketeer
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Fig. 1. Overheads for the different fencing strategies

the overhead of different fencing methods on a stack and a queue from theliblfds lock-
free data structure package (http://liblfds.org). For each data structure, we built a harness
(consisting of 4 threads) that concurrently invokes its operations. We built several ver-
sions of the above two programs:

– (M) with fences inserted by our toolmusketeer;
– (P) with fences following thedelay set analysisof the pensieve compiler [32],

i.e. a static over-approximation of Shasha and Snir’s eponymous (dynamic) analy-
sis [30] (see also the discussion of Lee and Padua’s work [22]in Sec. 3);

– (V) with fences following theVisual Studiopolicy, i.e. guaranteeing acquire/release
semantics (in the C11 sense [2]), but not SC, for reads and writes ofvolatile
variables (seehttp://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx, accessed
04-11-2013). On x86, no fences are necessary as the model is sufficiently strong al-
ready; hence, we only provide data for ARM;

– (E) with fences after each access to a shared variable;
– (H) with anmfence (x86) or admb (ARM) after every assembly instruction that

writes (x86) or reads or writes (ARM)static globalor heap data.

We emphasise that these experiments required us to implement (P), (E) and (V)
ourselves, so that they would handle the architectures thatwe considered. This means
in particular that our tool provides thepensieve policy (P) for TSO, Power and ARM,
whereas the originalpensieve targeted Java only.
We ran all versions100 times, on an x86-64 Intel Core i5-3570 with 4 cores (3.40 GHz)
and 4 GB of RAM, and on an ARMv7 (32-bit) Samsung Exynos 4412 with 4 cores
(1.6 GHz) and 2 GB of RAM.

For each program version, Fig. 1 shows the mean overhead w.r.t. the unfenced pro-
gram. We give the overhead inuser time(as given by Linuxtime), i.e. the time spent
by the program in user mode on the CPU. We refer the reader to our study of the sta-
tistical significance of these experiments (using confidence intervals) in the full version
of this paper [8]. Amongst the approaches that guarantee SC (i.e. all butV), the best
results were achieved with our toolmusketeer.

http://liblfds.org
http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx


3 Related work

authors tool model style objective
Abdulla et al. [3] memorax operationalreachability
Alglave et al. [6] offence axiomatic SC

Bouajjani et al. [10] trencher operational SC
Fang et al. [15] pensieve axiomatic SC

Kuperstein et al. [18] fender operationalreachability
Kuperstein et al. [19] blender operationalreachability

Linden et al. [23] remmex operationalreachability
Liu et al. [24] dfence operationalspecification
Sura et al. [32] pensieve axiomatic SC

Fig. 2.Fence synthesis tools

The work of Shasha and Snir [30]
is a foundation for the field of
fence synthesis. Most of the work
cited below inherits their notions
of delayandcritical cycle. A delay
is a pair of instructions in a thread
that can be reordered by the under-
lying architecture. A critical cycle
essentially represents a minimal vi-
olation of SC. Fig. 2 classifies the
methods mentioned in this section
w.r.t. their style of model (operational or axiomatic). We report our experimental com-
parison of these tools in Sec. 7. Below, we detail fence synthesis methods per style. We
write TSO for Total Store Order, implemented in Sparc TSO [31] and Intel x86 [28].
We write PSO for Partial Store Order and RMO for Relaxed Memory Order, two other
Sparc architectures. We write Power for IBM Power [1].

Operational modelsLinden and Wolper [23] explore all executions (using what they
call automata acceleration) to simulate the reorderings occuring under TSO and PSO.
Abdulla et al. [3] couple predicate abstraction for TSO witha counterexample-guided
strategy. They check if an error state is reachable; if so, they calculate what they call the
maximal permissivesets of fences that forbid this error state. Their method guarantees
that the fences they find arenecessary, i.e., removing a fence from the set would make
the error state reachable again.

Kuperstein et al. [18] explore all executions for TSO, PSO and a subset of RMO, and
along the way build constraints encoding reorderings leading to error states. The fences
can be derived from the set of constraints at the error states. The same authors [19]
improve this exploration under TSO and PSO using an abstractinterpretation they call
partial coherence abstraction, relaxing the order in the write buffers after a certain
bound, thus reducing the state space to explore. Liu et al. [24] offer adynamic synthe-
sis approach for TSO and PSO, enumerating the possible sets of fences to prevent an
execution picked dynamically from reaching an error state.

Bouajjani et al. [10] build on an operational model of TSO. They look forminimum
violations (viz. critical cycles) by enumeratingattackers(viz. delays). Like us, they
use linear programming. However, they first enumerate all the solutions, then encode
them as anILP, and finally ask the solver to pick the least expensive one. Our method
directly encodes the whole decision problem as anILP. The solver thus both constructs
the solution (avoiding the exponential-sizeILP problem) and ensures its optimality.

All the approaches above focus on TSO and its siblings PSO andRMO, whereas we
also handle the significantly weaker Power, including quitesubtle barriers (e.g.lwsync)
compared to the simplermfence of x86.



Axiomatic modelsKrishnamurthy et al. [17] apply Shasha and Snir’s method tosingle
program multiple datasystems. Their abstraction is similar to ours, except that they do
not handle pointers.

Lee and Padua [22] propose an algorithm based on Shasha and Snir’s work. They
use dominators in graphs to determine which fences are redundant. This approach was
later implemented by Fang et al. [15] inpensieve, a compiler for Java. Sura et al. later
implemented a more precise approach inpensieve [32] (see (P) in Sec. 2). They pair
the cycle detection with an analysis to detect synchronisation that could prevent cycles.

Alglave and Maranget [6] revisit Shasha and Snir for contemporary memory models
and insert fences following a refinement of [22]. Theiroffence tool handles snippets of
assembly code only, where the memory locations need to be explicitly given.

Others We cite the work of Vafeiadis and Zappa Nardelli [35], who present an optimi-
sation of the certifiedCompCert-TSO compiler to remove redundant fences on TSO.
Marino et al. [25] experiment with an SC-preserving compiler, showing overheads of
no more than34 %. Nevertheless, they emphasise that“the overheads, however small,
might be unacceptable for certain applications”.

4 Axiomatic memory model

mp
T0 T1

(a)x← 1 (c)r1← y
(b)y← 1 (d)r2← x

Final state?r1=1 ∧ r2=0

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po
rf

po
fr

Fig. 3. Message Passing (mp)

Weak memory can occur as follows: a thread
sends a write to a store buffer, then a cache, and fi-
nally to memory. While the write transits through
buffers and caches, a read can occur before the
value is available to all threads in memory.

To describe such situations, we use the frame-
work of [6], embracing in particular SC, Sun TSO
(i.e. the x86 model [28]), and a fragment of Power.
The core of this framework consists ofrelations
overmemory events.

We illustrate this framework using alitmus
test(Fig. 3). The top shows a multi-threaded pro-
gram. The shared variablesx andy are assumed
to be initialised to zero. A store instruction (e.g.x ← 1 on T0) gives rise to a write
event ((a)Wx1), and a load instruction (e.g.r1 ← y on T1) to a read event ((c)Ry1).
The bottom of Fig. 3 shows one particular execution of the program (also calledevent
graph), corresponding to the final stater1=1 andr2=0.

In the framework of [6], an execution that is not possible on SC has a cyclic event
graph (as the one shown in Fig. 3). A weaker architecture mayrelax some of the rela-
tions contributing to a cycle. If the removal of the relaxed edges from the event graph
makes it acyclic, the architecture allows the execution. For example, Power relaxes the
program orderpo (amongst other things), thereby making the graph in Fig. 3 acyclic.
Hence, the given execution is allowed on Power.

Formalisation An eventis a memory read or a write to memory, composed of a unique
identifier, a direction (R for read or W for write), a memory address, and a value. We



represent each instruction by the events it issues. In Fig. 3, we associate the store in-
structionx← 1 in threadT0 with the event(a)Wx1.

A set of eventsE and their program orderpo form anevent structureE , (E, po).
The program orderpo is a per-thread total order overE. We writedp (with dp ⊆ po)
for the relation that modelsdependenciesbetween instructions. For instance, there is a
data dependencybetween a load and a store when the value written by the store was
computed from the value obtained by the load.

We represent thecommunicationbetween threads via anexecution witnessX ,

(co, rf), which consists of two relations over the events. First, thecoherenceco is a
per-address total order on write events which models thememory coherencewidely
assumed by modern architectures. It links a writew to any writew′ to the same address
that hits the memory afterw. Second, theread-fromrelationrf links a writew to a readr
such thatr reads the value written byw. Finally, we derive thefrom-readrelationfr from
co andrf. A readr is in fr with a writew if the write w′ from which r reads hits the
memory beforew. Formally, we have:(r, w) ∈ fr , ∃w′.(w′, r) ∈ rf ∧ (w′, w) ∈ co.

In Fig. 3, the specified outcome corresponds to the executionbelow if each location
initially holds0. If r1=1 in the end, the read(c) onT1 took its value from the write(b)
onT0, hence(b, c) ∈ rf. If r2=0 in the end, the read(d) took its value from the initial
state, thus before the write(a) on T0, hence(d, a) ∈ fr. In the following, we writerfe
(resp.coe, fre) for the external read-from(resp. coherence, from-read), i.e. when the
source and target belong to different threads.

SC x86 Power
poWR yesmfence sync
poWW yes yes sync, lwsync
poRW yes yes sync, lwsync, dp
poRR yes yes sync, lwsync, dp, branch;isync

Fig. 4. ppo and fences per architecture

Relaxed or safeWhen a thread can
read from its own store buffer [4]
(the typical TSO/x86 scenario), we
relax the internal read-from, that is,
rf where source and target belong to
the same thread. When two threads
T0 and T1 can communicate pri-
vately via a cache (a case ofwrite atomicityrelaxation [4]), we relax the external read-
from rfe, and call the corresponding writenon-atomic. This is the main particularity of
Power and ARM, and cannot happen on TSO/x86. Some program-order pairs may be
relaxed (e.g. write-read pairs on x86, and all butdp ones on Power), i.e. only a subset of
po is guaranteed to occur in order. This subset constitutes thepreserved program order,
ppo. When a relation must not be relaxed on a given architecture,we call it safe.

Fig. 4 summarisesppo per architecture. The columns are architectures, e.g. x86,and
the lines are relations, e.g.poWR. We write e.g.poWR for the program order between
a write and a read. We write “yes” when the relation is in theppo of the architecture:
e.g.poWR is in theppo of SC. When we write something else, typically the name of
a fence, e.g.mfence, the relation is not in theppo of the architecture (e.g.poWR is
not in theppo of x86), and the fence can restore the ordering: e.g.mfence maintains
write-read pairs in program order.

Following [6], the relationfence (with fence ⊆ po) induced by a fence isnon-
cumulativewhen it only orders certain pairs of events surrounding the fence. The re-
lation fence is cumulativewhen it additionally makes writes atomic, e.g. by flushing
caches. In our model, this amounts to making sequences of external read-from and



fences (rfe; fence or fence; rfe) safe, even thoughrfe alone would not be safe. In Fig. 3,
placing a cumulative fence between the two writes onT0 will not only prevent their re-
ordering, but also enforce an ordering between the write(a) onT0 and the read(c) on
T1, which reads fromT0.

ArchitecturesAn architectureA determines the setsafeA of relations safe onA. Fol-
lowing [6], we always consider the coherenceco, the from-read relationfr and the
fences to be safe. SC relaxes nothing, i.e.rf andpo are safe. TSO authorises the re-
ordering of write-read pairs and store buffering but nothing else.

Critical cycles Following [30,5], for an architectureA, a delayis apo or rf edge that
is not safe (i.e. is relaxed) onA. An execution(E, X) is valid onA yet not on SC iff
it contains critical cycles [5]. Formally, acritical cyclew.r.t. A is a cycle inpo ∪ com,
wherecom , co ∪ rf ∪ fr is thecommunication relation, which has the following
characteristics (the last two ensure the minimality of the critical cycles): (1) the cycle
contains at least one delay forA; (2) per thread, (i) there are at most two accessesa and
b, and (ii) they access distinct memory locations; and (3) fora memory locationℓ, there
are at most three accesses toℓ along the cycle, which belong to distinct threads.

Fig. 3 shows a critical cycle w.r.t. Power. Thepo edge onT0, thepo edge onT1, and
therf edge betweenT0 andT1, are all unsafe on Power. On the other hand, the cycle in
Fig. 3 does not contain a delay w.r.t. TSO, and is thus not a critical cycle on TSO.

To forbid executions containing critical cycles, one can insert fences into the pro-
gram to prevent delays. To prevent apo delay, a fence can be inserted between the two
accesses forming the delay, following Fig. 4. To prevent anrf delay, a cumulative fence
must be used (see Sec. 6 for details). For the example in Fig. 3, for Power, we need to
place a cumulative fence between the two writes onT0, preventing both thepo and the
adjacentrf edge from being relaxed, and use a dependency or fence to prevent thepo
edge onT1 from being relaxed.

5 Static detection of critical cycles

We want to synthesise fences to prevent weak behaviours and thus restore SC. We
explained in Sec. 4 that we should place fences along the critical cycles of the program
executions. To find the critical cycles, we look for cycles inan over-approximationof all
the executions of the program. We hence avoid enumeration ofall traces, which would
hinder scalability, and get all the critical cycles of all program executions at once. Thus
we can find all fences preventing the critical cycles corresponding to two executions in
one step, instead of examining the two executions separately.

To analyse a C program, e.g. on the left-hand side of Fig. 5, weconvert it to a
goto-program(right-hand side of Fig. 5), the internal representation ofthe CProver
framework; we refer tohttp://www.cprover.org/goto-cc for details. The pointer analysis
we use is a standard concurrent points-to analysis that we have shown to be sound for
our weak memory models in earlier work [7]. A full explanation of how we handle
pointers is available in [8]. The C program in Fig. 5 featurestwo threads which can
interfere. The first thread writes the argument “input” tox, then randomly writes1 to
y or readsz, and then writes1 to x. The second thread successively readsy, z andx.

http://www.cprover.org/goto-cc


void thread 1(int input )
{

int r1;
x = input ;
if (rand()%2)

y = 1;
else

r1 = z;
x = 1;

}

void thread 2()
{

int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;

}

thread 1
int r1;
x = input ;
Bool tmp;

tmp = rand();
[! tmp%2] goto 1;
y = 1;
goto 2;

1: r1 = z;
2: x = 1;

end function

thread 2
int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;
end function

Fig. 5. A C program (left) and its goto-program (right)

In the corresponding goto-program, theif-else structure has been transformed into a
guard with the condition of theif followed by a goto construct. From the goto-program,
we then compute anabstract event graph(aeg), shown in Fig. 6(a). The eventsa, b1, b2

andc (resp.d, e andf ) correspond to thread1 (resp. thread2) in Fig. 5. We only consider
accesses to shared variables, and ignore the local variables. We finally explore theaeg
to find the potential critical cycles.

An aeg represents all the executions of a program (in the sense of Sec. 4). Fig. 6(b)
and (c) give two executions associated with theaeg shown in Fig. 6(a). For readability,
the transitivepo edges have been omitted (e.g. between the two eventsd′ andf ′). The
concrete events that occur in an execution are shown in bold.In anaeg, the events do
not have concrete values, whereas in an execution they do. Also, anaeg merely indi-
cates that two accesses to the same variable could form a datarace (see the competing
pairs (cmp) relation in Fig. 6(a), which is a symmetric relation), whereas an execution
has oriented relations (e.g. indicating the write that a read takes its value from, see e.g.
the rf arrow in Fig. 6(b) and (c)). The execution in Fig. 6(b) has a critical cycle (with
respect to e.g. Power) between the eventsa′, b′2, d′, andf ′. The execution in Fig. 6(c)
does not have a critical cycle.

Full details of the construction of theaegs from goto-programs, including a seman-
tics of goto-programs in terms of abstract events, are available in the full version of this
paper [8]. Function calls are inlined for better precision.Currently, the implementation
does not handle recursion.

Loops and arraysWe explain how to deal with loops statically. If we build ouraeg
directly following thecfg, with apos back-edge connecting the end of the body to its

(a)Wx

(b1)Wy

(c)Wx

(d)Ry

(e)Rz

(f )Rx

(b2)Rz

pospos

pospos

pos

pos
cmp

cmp

cmp

(a′)Wx1

(b′1)Wy1

(c′)Wx1

(d′)Ry1

(e′)Rz0

(f ′)Rx0

(b′2)Rz

po

po

po

pofr

rf

fr

co

(a′′)Wx2

(b′′1 )Wy

(c′′)Wx1

(d′′)Ry0

(e′′)Rz0

(f ′′)Rx1

(b′′2 )Rz0

po

po

po

po

rf

co

(a) aeg of Fig. 5 (b) ex. with critical cycle (c) ex. without criticalcycle

Fig. 6. Theaeg of Fig. 5 and two executions corresponding to it



entry, we already handle most of the cases. Recall from Sec. 4that in a critical cycle
(2.i) there are two events per thread, and (2.ii) two events on the same thread target two
different locations. Let us analyse the cases.

The first case is an iterationi of this loop on which a critical cycle connects two
events(ai) and(bi). The critical cycle will be trivially captured by its staticcounterpart
that abstracts in particular these events with abstract events(a) and(b).

Now, for a given execution, if a critical cycle connects the event(ai) of an iteration
i to the event(bj) of a later iterationj (i.e., i ≤ j), then these events are abstracted
respectively by(a) and (b) in the aeg. As we do not evaluate the expressions, we
abstracted the loop guard and any local variable that would vary across the iterations.
Thus, all the iterations can be statically captured by one abstract representation of the
body of the loop. Then, thanks to thepos back-edge and the transitivity of our cycle
search, any critical cycle involving(ai) and(bj) is abstracted by a static critical cycle
relating(a) and(b), even though(b) might be before(a) in the body of the loop.

The only case that is not handled by this approach is when(ai) and(bj) are ab-
stracted by the same abstract event, say(c). As the variables addressed by the events
on the same thread of a cycle need to be different, this case can only occur when(ai)
and(bj) are accessing an array or a pointer whose index or offset depends on the itera-
tion. We do not evaluate these offsets or indices, which implies that two accesses to two
distinct array positions might be abstracted by the same abstract event(c).

In order to detect such critical cycles, we copy the body of the loop and do not add a
pos back-edge. Hence, a static critical cycle will connect(c) in the first instance of the
body and(c) in the second instance of the body to abstract the critical cycle involving
(ai) and(bj). The back-edge is no longer necessary, as the abstract events reachable
through this back-edge are replicated in the second body. Thus, all the previous cases
are also covered.

We have implemented the duplication of the loop bodies only for loops that contain
accesses to arrays. In case of nested loops, we ensure that weduplicate each of the
sub-bodies only once in order to avoid an exponential explosion. This approach is again
sufficient owing to the maximum of two events per thread in a critical cycle and the
transitivity ofpo.

Pointers We explain how to deal with the varying imprecision of pointer analyses in
a sound way. If we have a precise pointer analysis, we insert as many abstract events
as required for the objects pointed to. Similarly to array accesses, a pointer might refer
to two separate memory locations dynamically, e.g., if pointer arithmetic is used. If
such an access is detected inside a loop, the body is replicated as described above. If
the analysis cannot determine the location of an access, we insert an abstract event
accessing any shared variable. This event can communicate with any variable accessed
in other threads.

Cycle detectionOnce we have theaeg, we enumerate (using Tarjan’s algorithm [34])
its potential critical cycles by searching for cycles that contain at least one edge that is
a delay, as defined in Sec. 4.
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cycle 2, delay(f, g): dp(f,g) + f(f,g) + lwf(f,g) ≥ 1
cycle 3, delay(f, h): dp(f,h) + f(f,g) + f(g,h) + lwf(f,g) + lwf(g,h) ≥ 1
cycle 4, delay(g, h): f(g,h) ≥ 1

Fig. 7.Example of resolution withbetween

6 Synthesis

In Fig. 7, we have anaeg with five threads:{a, b}, {c, d}, {e, f, g, h}, {i, j} and{k, l}.
Each node is an abstract event computed as in the previous section. The dashed edges
represent thepos between abstract events in the same thread. The full lines represent
the edges involved in a cycle. Thus theaeg of Fig. 7 has four potential critical cycles.
We derive the set of constraints in a process we define later inthis section. We now have
a set of cycles to forbid by placing fences. Moreover, we wantto optimise the placement
of the fences.

ChallengesIf there is only one type of fence (as in TSO, which only featuresmfence),
optimising only consists of placing a minimal amount of fences to forbid as many cycles
as possible. For example, placing a full fencesync betweenf andg in Fig. 7 might
forbid cycles 1, 2 and 3 under Power, whereas placing it somewhere else might forbid
at best two amongst them.

Since we handle several types of fences for a given architecture (e.g. dependencies,
lwsync andsync on Power), we can also assign some cost to each of them. For exam-
ple, following the folklore, a dependency is less costly than anlwsync, which is itself
less costly than async. Given these costs, one might want to minimise their sum along
different executions: to forbid cycles 1, 2 and 3 in Fig. 7, a single lwsync betweenf
andg can be cheaper at runtime than three dependencies respectively betweene andg,
f andg, andf andh. However, if we had only cycles 1 and 2, the dependencies would
be cheaper. We see that we have to optimise both the placementand the type of fences
at the same time.

We model our problem as aninteger linear program(ILP) (see Fig. 8), which we
explain in this section. Solving ourILP gives us a set of fences to insert to forbid
the cycles. This set of fences is optimal in that it minimisesthe cost function. More



Input: aeg (Es,pos,cmp) and potential critical cyclesC = {C1, ..., Cn}
Problem: minimise

P

(l,t)∈potential-places(C) tl × cost(t)
Constraints: for all d ∈ delays(C)
(* for TSO, PSO, RMO, Power *)

if d ∈ poWR then
P

e∈between(d) fe ≥ 1

if d ∈ poWW then
P

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRW thendpd +
P

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRR thendpd +
P

e∈between(d) fe + lwfe +
P

e∈ctrl(d) cfe ≥ 1

(* for Power *)
if d ∈ cmp then

P

e∈cumul(d) fe +
P

e∈cumul(d)∩¬poWR∩¬poRW lwfe ≥ 1

Output: the setactual-places(C) of pairs(l, t) s.t.tl is set to 1 in theILP solution

Fig. 8. ILP for inferring fence placements

precisely, the constraints are the cycles to forbid, each variable represents a fence to
insert, and the cost function sums the cost of all fences.

6.1 Cost function of theILP

We handle several types of fences: full (f), lightweight (lwf), control fences (cf), and
dependencies (dp). On Power, the full fence issync, the lightweight onelwsync. We
write T for the set{dp, f, cf, lwf}. We assume that each type of fence has ana priori
cost (e.g. a dependency is cheaper than a full fence), regardless of its location in the
code. We writecost(t) for t ∈ T for this cost.

We take as input theaeg of our program and the potential critical cycles to fence.
We define two sets of pairs(l, t) wherel is apos edge of theaeg andt a type of fence.
We introduce anILP variabletl (in {0, 1}) for each pair(l, t).

The setpotential-places is the set of such pairs that can be inserted into the pro-
gram to forbid the cycles. The setactual-places is the set of such pairs that have been
set to1 by ourILP. We output this set, as it represents the locations in the code in need
of a fence and the type of fence to insert for each of them. We also output the total
cost of all these insertions, i.e.

∑
(l,t)∈potential-places(C) tl × cost(t). The solver should

minimise this sum whilst satisfying the constraints.

6.2 Constraints in theILP

We want to forbid all the cycles in the set that we are given after filtering, as explained
in the preamble of this section. This requires placing an appropriate fence on each delay
for each cycle in this set. Different delay pairs might need different fences, depending
e.g. on the directions (write or read) of their extremities.Essentially, we follow the table
in Fig. 4. For example, a write-read pair needs a full fence (e.g.mfence on x86, orsync
on Power). A read-read pair can use anything amongst dependencies and fences. Our
constraints ensure that we use the right type of fence for each delay pair.

Inequalities as constraintsWe first assume that all the program order delays are in
pos and we ignore Power and ARM special features (dependencies,control fences and



communication delays). This case deals with relatively strong models, ranging from
TSO to RMO. We relax these assumptions below.

In this setting,potential-places(C) is the set of all thepos delays of the cycles in
C. We ensure that every delay pair for every execution is fenced, by placing a fence on
the staticpos edge for this pair, and this for each cycle given as input. Thus, we need at
least one constraint per static delay paird in each cycle.

If d is of the formpoWR, as(g, h) in Fig. 7 (cycle 4), only a full fence can fix
it (cf. Fig. 4), thus we imposefd ≥ 1. If d is of the formpoRR, as(f, h) in Fig. 7
(cycle 3), we can choose any type of fence, i.e.dpd + cfd + lwfd + fd ≥ 1.

Our constraints cannot be equalities because it is not certain that the resulting system
would be satisfiable. To see this, suppose our constraints were equalities, and consider
Fig. 7 limited to cycles 2, 3 and 4. Using only full fences, lightweight fences, and
dependencies (i.e. ignoring control fences for now), we would generate the constraints
(i) lwf(f,g) + f(f,g) = 1 for the delay(f, g) in cycle 2,(ii) dp(f,h) + lwf(f,h) + f(f,h) +
lwf(g,h) + f(g,h) = 1 for the delay(f, h) in cycle 3, and(iii) f(g,h) = 1 for the delay
(g, h) in cycle 4.

Preventing the delay(g, h) in cycle 4 requires a full fence, thusf(g,h) = 1. By
the constraint(ii) , and sincef(g,h) = 1, we derivef(f,g) = 0 and lwf(f,g) = 0. But
these two equalities are not possible given the constraint(i). By using inequalities, we
allow several fences to live on the same edge. In fact, the constraints only ensure the
soundness; the optimality is fully determined by the cost function to minimise.

Delaysare in fact inpo+
s , not always inpos: in Fig. 7, the delay(e, g) in cycle 1 does

not belong topos but topo+
s . Thus given apo+

s delay(x, y), we consider all thepos

pairs which appear betweenx andy, i.e.:between(x, y) , {(e1, e2) ∈ pos | (x, e1) ∈
po∗

s∧(e2, y) ∈ po∗
s}. For example in Fig. 7, we havebetween(e, g) = {(e, f), (f, g)}.

Thus, ignoring the use of dependencies and control fences for now, for the delay(e, g)
in Fig. 7, we will not imposef(e,g) + lwf(e,g) ≥ 1 but ratherf(e,f) + lwf(e,f) + f(f,g) +
lwf(f,g) ≥ 1. Indeed, a full fence or a lightweight fence in(e, f) or (f, g) will prevent
the delay in(e, g).

Dependenciesneed more care, as they cannot necessarily be placed anywhere between
e andg (in the formal sense ofbetween(e, g)): dp(e,f) or dp(f,g) would not fix the
delay(e, g), but simply maintain the pairs(e, f) or (f, g), leaving the pair(e, g) free to
be reordered. Thus if we choose to synchronise(e, g) using dependencies, we actually
need a dependency frome to g: dp(e,g). Dependencies only apply to pairs that start
with a read; thus for each such pair (see thepoRW andpoRR cases in Fig. 8), we add
a variable for the dependency:(e, g) will be fixed with the constraintdp(e,g) + f(e,f) +
lwf(e,f) + f(f,g) + lwf(f,g) ≥ 1.

Control fencesplaced after a conditional branch (e.g.bne on Power) prevent specu-
lative reads after this branch (see Fig. 4). Thus, when building theaeg, we built a set
poC for each branch, which gathers all the pairs of abstract events such that the first
one is the last event before a branch, and the second is the first event after that branch.
We can place a control fence before the second component of each such pair, if the



second component is a read. Thus, we addcfe as a possible variable to the constraint
for read-read pairs (seepoRR case in Fig. 8, wherectrl(d) = between(d) ∩ poC).

Cumulativity For architectures like Power, where stores are non-atomic,we need to
look for program order pairs that are connected to an external read-from (e.g.(c, d) in
Fig. 3 has anrf connected to it via eventc). In such cases, we need to use acumulative
fence, e.g.lwsync or sync, and not, for example, a dependency.

The locations to consider in such cases are: before (inpos) the writew of the rfe,
or after (inpos) the readr of the rfe, i.e. cumul(w, r) = {(e1, e2) | (e1, e2) ∈ pos ∧
((e2, w) ∈ po∗

s ∨ (r, e1) ∈ po∗
s)}. In Fig. 7 (cycle 2),(g, i) over-approximates anrfe

edge, and the edges where we can insert fences are incumul(g, i) = {(f, g), (i, j)}.
We need a cumulative fence as soon as there is a potentialrfe, even if the adjacent

pos pairs do not form a delay. For example in Fig. 3, suppose thereis a dependency
between the reads onT1, and a fence maintaining write-write pairs onT0. In that case we
need to place a cumulative fence to fix therfe, even if the twopos pairs are themselves
fixed. Thus, we quantify over allpos pairs when we need to place cumulative fences. As
only f andlwf are cumulative, we havepotential-places(C) , {(l, t) | (t ∈ {dp} ∧ l ∈

delays(C)) ∨(t ∈ T\{dp} ∧ l ∈
S

d∈delays(C) between(d)) ∨(t ∈ {f, lwf} ∧ l ∈ pos(C))}.

(a)Wx

(b)Ry

(c)Wy

(e)(d) (f)

(g)Rx

f

pos

pos

cmp

cmp

Fig. 9. Cycles sharing the edge(a, b)

Comparison withtrencher We illustrate the
difference betweentrencher [10] and our ap-
proach using Fig. 9. There are three cycles
that share the edge(a, b). They differ in the
path taken between nodesc andg. Suppose
that the user has inserted a full fence between
a andb. To forbid the three cycles, we need
to fence the thread on the right.

The trencher algorithm first calculates
which pairs can be reordered: in our example,
these are(c, g) via d, (c, g) via e and(c, g) via f . It then determines at which locations
a fence could be placed. In our example, there are6 options:(c, d), (d, g), (c, e), (e, g),
(c, f), and(f, g). The encoding thus uses6 variables for the fence locations. The algo-
rithm then gathers all theirreduciblesets of locations to be fenced to forbid the delay
betweenc andg, where “irreducible” means that removing any of the fences would
prevent this set from fully fixing the delay. As all the paths that connectc andg have to
be covered,trencher needs to collect all the combinations of one fence per path. There
are2 locations per path, leading to23 sets. Consequently, as stated in [10],trencher
needs to construct an exponential number of sets.

Each set is encoded in theILP with one variable. For this example,trencher thus
uses6 + 8 variables. It also generates one constraint per delay (here, 1) to force the
solver to pick a set, and8 constraints to enforce that all the location variables are set to
1 if the set containing these locations is picked.

By contrast,musketeer only needs6 variables: the possible locations for fences.
We detect three cycles, and generate only three constraintsto fix the delay. Thus, on a
parametric version of the example,trencher’s ILP grows exponentially whereasmus-
keteer’s is linear-sized.



CLASSIC FAST

Dek Pet Lam Szy Par Cil CL Fif Lif Anc Har
LoC 50 37 72 54 96 97 111 150 152 188 179
dfence – – – – – – – – – –7.8 3 6.2 3∼ 0 ∼ 0 ∼ 0 ∼ 0
memorax 0.4 2 1.4 2 79.1 4 – – – –– – – – – – – – – – – –
musketeer 0.0 5 0.0 3 0.0 8 0.0 8 0.0 30.0 3 0.0 1 0.1 1 0.0 1 0.1 1 0.6 4
offence 0.0 2 0.0 2 0.0 8 0.0 8 – –– – – – – – – – – – – –
pensieve 0.0 16 0.0 6 0.0 24 0.0 22 0.0 70.0 14 0.0 8 0.1 33 0.0 29 0.0 44 0.1 72
remmex 0.5 2 0.5 2 2.0 4 1.8 5 – –– – – – – – – – – – – –
trencher 1.6 2 1.3 2 1.7 4 – – 0.5 18.6 3 – – – – – – – – – –

Fig. 10.All tools on theCLASSICandFAST series for TSO

7 Implementation and Experiments

We implemented our new method, in addition to all the methodsdescribed in Sec. 2,
in our toolmusketeer, usingglpk (http://www.gnu.org/software/glpk) as theILP solver.
We compare these methodsto the existing tools listed in Sec.3 .

Our tool analyses C programs.dfence also handles C code, but requires some high-
level specification for each program, which was not available to us.memorax works
on a process-based language that is specific to the tool.offence works on a subset
of assembler for x86, ARM and Power.pensieve originally handled Java, but we did
not have access to it and have therefore re-implemented the method.remmex handles
Promela-like programs.trencher analyses transition systems. Most of the tools come
with some of the benchmarks in their own languages; not all benchmarks were however
available for each tool. We have re-implemented some of the benchmarks foroffence.

We now detail our experiments.CLASSIC andFAST gather examples from the lit-
erature and related work. TheDEBIAN benchmarks are packages of Debian Linux 7.1.
CLASSIC and FAST were run on a x86-64 Intel Core2 Quad Q9550 machine with 4
cores (2.83 GHz) and 4 GB of RAM.DEBIAN was run on a x86-64 Intel Core i5-3570
machine with 4 cores (3.40GHz) and 4 GB of RAM.

CLASSICconsists of Dekker’s mutex (Dek) [14]; Peterson’s mutex (Pet) [29]; Lamport’s
fast mutex (Lam) [21]; Szymanski’s mutex (Szy) [33]; and Parker’s bug (Par) [13].
We ran all tools in this series for TSO (the model common to all). For each example,
Fig. 10 gives the number of fences inserted, and the time (in sec) needed. When an
example is not available in the input language of a tool, we write “–”. The first four
tools place fences to enforce stability/robustness [5,9];the last three to satisfy a given
safety property. We usedmemorax with the option-o1, to compute onemaximal
permissiveset and not all. Forremmex on Szymanski, we give the number of fences
found by default (which may be non-optimal). Its “maximal permissive” option lowers
the number to2, at the cost of a slow enumeration. As expected,musketeer is less
precise than most tools, but outperforms all of them.

FAST gathers Cil, Cilk 5 Work Stealing Queue (WSQ) [16]; CL, Chase-Lev WSQ [11];
Fif, Michael et al.’s FIFO WSQ [26]; Lif, Michael et al.’s LIFO WSQ [26]; Anc,
Michael et al.’s Anchor WSQ [26]; Har, Harris’ set [12]. For each example and tool,

http://www.gnu.org/software/glpk


TSO Power
LoC nodes fences time fences time

memcached 9944 694 3 13.9s 70 89.9s
lingot 2894 183 0 5.3s 5 5.3s
weborf 2097 73 0 0.7s 0 0.7s
timemachine 1336 129 2 0.8s 16 0.8s
see 2626 171 0 1.4s 0 1.5s
blktrace 1567 615 0 6.5s – timeout
ptunnel 1249 1867 2 95.0s – timeout
proxsmtpd 2024 10 0 0.1s 0 0.1s
ghostess 2684 1106 0 25.9s 0 25.9s
dnshistory 1516 1466 1 29.4s 9 64.9s

Fig. 11.musketeer on selected benchmarks inDEBIAN series for TSO and Power

Fig. 10 gives the number of fences inserted (under TSO) and the time needed to do so.
For dfence, we used the setting of [24]: the tool has up to20 attempts to find fences.
We were unable to applydfence on some of theFAST examples: we thus reproduce the
number of fences given in [24], and write∼ for the time. We appliedmusketeer to this
series, for all architectures. The fencing times for TSO andPower are almost identical,
except for the largest example, namely Har (0.1 s vs0.6 s).

DEBIAN gathers374 executables. These are a subset of the goto-programs that have been
built from packages of Debian Linux 7.1 by Michael Tautschnig. A small excerpt of our
results is given in Fig. 11. The full data set, including a comparison with the methods
from Sec. 2, is provided athttp://www.cprover.org/wmm/musketeer. For each program,
we give the lines of code and number of nodes in theaeg. We usedmusketeer on
these programs to demonstrate its scalability and its ability to handle deployed code.
Most programs already contain fences or operations that imply them, such as compare-
and-swaps or locks. Our toolmusketeer takes these fences into account and infers
a set of additional fences sufficient to guarantee SC. The largest program we handle
is memcached (∼ 10000 LoC). Our tool needs13.9 s to place fences for TSO, and
89.9 s for Power. A more meaningful measure for the hardness of an instance is the
number of nodes in theaeg. For example,ptunnel has 1867 nodes and 1249 LoC. The
fencing takes95.0 s for TSO, but times out for Power due to the number of cycles.

8 Conclusion

We introduced a novel method for deriving a set of fences, which we implemented in
a new tool calledmusketeer. We compared it to existing tools and observed that it
outperforms them. We demonstrated on ourDEBIAN series thatmusketeer can handle
deployed code, with a large potential for scalability.
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