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Abstract Modern architectures rely on memory fences to prevent uretbseak-
enings of memory consistency. As the fences’ semantics raagubtle, the au-
tomation of their placement is highly desirable. But precigethods for restoring
consistency do not scale to deployed systems code. We ctmbaele some pre-
cision for genuine scalability: our technique is suitaldelérge code bases. We
implement it in our newnusketeer tool, and detail experiments on more than
350 executables of packages found in Debian Linux 7.1 peegncached (about
10000 LoC).

1 Introduction

Concurrent programs are hard to design and implement, iedigaghen running on
multiprocessor architectures. Multiprocessors impletmerak memory modelahich
feature e.ginstruction reordering store buffering(both appearing on x86), @tore
atomicity relaxatior(a particularity of Power and ARM). Hence, multiprocessaitew
more behaviours than Lamporg&equential Consisten€$C) [20], a theoretical model
where the execution of a program corresponds to an inténiga¥the different threads.
This has a dramatic effect on programmers, most of whom ésbimprogram with SC.

Fortunately, architectures provide spedeice(or barrier) instructions to prevent
certain behaviours. Yet both the questionssfereandhowto insert fences are con-
tentious, as fences are architecture-specific and expgensiv

Attempts at automatically placing fences include Visualdgt 2013, which offers
an option to guarantee acquire/release semantics (we gtagyerformance impact of
this policy in Sec[R). The C++11 standard provides an ektloAPI for inter-thread
communication, giving the programmer some control overcliénces are used, and
where. But the use of such APIs might be a hard task, even fmregrogrammers. For
example, Norris and Demsky reported a bug found in a puldi€tEl implementation
of a work-stealing queu&[27].

We address here the question of howsymthesiséences, i.e. automatically place
them in a program to enforce robustness/stabllifv [9,5]i¢ivimplies SC). This should
lighten the programmer’s burden. The fence synthesis teetis to be based on a pre-
cise model of weak memory. In verification, models commorlg anoperational
style, where an execution is an interleaving of transitiaosessing the memory (as
in SC). To address weaker architectures, the models areentgthwith buffers and
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queues that implement the features of the hardware. Sigikgood fraction of the
fence synthesis methods, e lg.1[Z3.18,19]2413,10] (seeFads2), rely on operational
models to describe executions of programs.

ChallengesThus, methods using operational models inherit the linoitest of methods
based on interleavinge,g.the “severely limited scalability’; as [24] puts it. Indeed,
none of them scale to programs with more than a few hundred tificode, due to the
very large number of executions a program can have. Anati@ediment to scalability
is that these methods establish if there is a need for fenceggloring the executions
of a program one by one.

Finally, considering models a la Power makes the problgmificantly more diffi-
cult. Intel x86 offers only one fencenfence), but Power offers a variety of synchroni-
sation: fences (e.gync andlwsync), or dependencies (address, data or control). This
diversity makes the optimisation more subtle: one canmoplsi minimise the number
of fences, but rather has to consider the costs of the diffexynchronisation mecha-
nisms; it might be cheaper to use one full fence than four ciégecies.

Our approach We tackle these challenges with a static approach. Our eludimodel
almost mandates this approach: we rely on the axiomaticrsééraaf [@]. We feel that
an axiomatic semantics is an invitation to build abstragects that embrace all the
executions of a program.

Previous works, e.gl [30[5.9]10], show that weak memonabielirs boil down to
the presence of certain cycles, callerdical cycles in the executions of the program.
A critical cycle essentially represents a minimal violatiof SC, and thus indicates
where to place fences to restore SC. We detect these cyatasaBy, by exploring an
over-approximation of the executions of the program.

Contributions Our method is sound for a wide range of architectures, inctud86-
TSO, Power and ARM; and scales for large code bases, suateagached (about
10000 LoC). We implemented it in our nemusketeer tool. Our method is the most
precise of the static analysis methods (see Bec. 2). To d@tmparison, we imple-
mented all these methods in our tool; for example,phasieve policy [32] was de-
signed for Java only, and we now provide it for x86-TSO, Posret ARM. Thus, our
tool musketeer gives a comparison point for the field.

Outline We discuss the performance impact of fences inBec. 2, andystalated work

in Sec[B. We recall our weak memory semantics in Bec. 4. Wl detw we detect
critical cycles in Sed]5, and how we place fences in Eec. @dal¥, we compare
existing tools and our new toohusketeer. We provide the sources, benchmarks and
experimental reports online [attp://www.cprover.org/ivmm/musketeer.

2 Motivation

Before optimising the placement of fences, we investigathéther naive approaches
to fence insertion indeed have a negative performance itmpathat end, we measured
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Fig. 1. Overheads for the different fencing strategies
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the overhead of different fencing methods on a stack and aegiuem thdiblfds lock-
free data structure packagmetp://liblfds.org). For each data structure, we built a harness
(consisting of 4 threads) that concurrently invokes itsrapiens. We built several ver-
sions of the above two programs:

— (m) with fences inserted by our toolusketeer;

— (P) with fences following thedelay set analysisf the pensieve compiler [32],
i.e. a static over-approximation of Shasha and Snir's epmus (dynamic) analy-
sis [30] (see also the discussion of Lee and Padua’s workifi22¢c[B);

— (v) with fences following thé&/isual Studigolicy, i.e. guaranteeing acquire/release
semantics (in the C11 sensé [2]), but not SC, for reads artéswofvol ati |l e
variables (sebttp://msdn.microsoft.com/en-us/library/vstudio/|j635841.aspx, accessed
04-11-2013). On x86, no fences are necessary as the modéidsently strong al-
ready; hence, we only provide data for ARM,;

— (E) with fences after each access to a shared variable;

— (H) with anmfence (x86) or admb (ARM) after every assembly instruction that
writes (x86) or reads or writes (ARMtatic globalor heap data

We emphasise that these experiments required us to imptgiiagn(E) and (V)
ourselves, so that they would handle the architecturesntbatonsidered. This means
in particular that our tool provides theensieve policy (P) for TSO, Power and ARM,
whereas the originglensieve targeted Java only.

We ran all version$00 times, on an x86-64 Intel Core i5-3570 with 4 cores (3.40 GHz)
and 4 GB of RAM, and on an ARMv7 (32-bhit) Samsung Exynos 441th Wi cores
(1.6 GHz) and 2 GB of RAM.

For each program version, FIg. 1 shows the mean overheddtierunfenced pro-
gram. We give the overhead irser time(as given by Linux i ne), i.e. the time spent
by the program in user mode on the CPU. We refer the readerrtetody of the sta-
tistical significance of these experiments (using confidentervals) in the full version
of this paperl[B]. Amongst the approaches that guaranted.8Call butv), the best
results were achieved with our tomlusketeer.
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3 Related work

The work of Shasha and Snir]30] authors tool |model stylé objective
is a foundation for the field of Abdullaetal. [3] |memorax|operationalreachability
fence synthesis. Most of the work Alglave et al. [6] | offence | axiomatic SC

. . . . . Bouajjani et al.[[1D] trencher |operational SC
cited below inherits their notions ;g et al 18] |pensieve | axiomatic,  SC

of delayandcritical cycle A delay  Kuperstein et al[[18] fender |operationalreachability
is a pair of instructions in a thread Kuperstein et al[[I9]blender |operationalreachability

that can be reordered by the under- Linden et al.[2ZB] | remmex |operationalreachability
Liu et al. [24] dfence |operationalspecification

lying a_rch|tecture. A cnucgl_cycle_ Sura et al.l[32] |pensieve | axiomatic SC
essentially represents a minimal vi-

olation of SC. Fig[R classifies the Fig. 2. Fence synthesis tools

methods mentioned in this section

w.r.t. their style of model (operational or axiomatic). Végort our experimental com-
parison of these tools in Sdd. 7. Below, we detail fence sgishmethods per style. We
write TSO for Total Store Order, implemented in Sparc TS| E1d Intel x86 [28].
We write PSO for Partial Store Order and RMO for Relaxed Mantder, two other
Sparc architectures. We write Power for IBM Power [1].

Operational modelsLinden and Wolper[[23] explore all executions (using whadyth
call automata acceleratigrto simulate the reorderings occuring under TSO and PSO.
Abdulla et al. [3] couple predicate abstraction for TSO wéthounterexample-guided
strategy. They check if an error state is reachable; if ®y, talculate what they call the
maximal permissiveets of fences that forbid this error state. Their methodantaes
that the fences they find anecessaryi.e., removing a fence from the set would make
the error state reachable again.

Kuperstein et al[]118] explore all executions for TSO, PS@arubset of RMO, and
along the way build constraints encoding reorderings egth error states. The fences
can be derived from the set of constraints at the error sta@tes same author§ [[19]
improve this exploration under TSO and PSO using an abstrarpretation they call
partial coherence abstractigrrelaxing the order in the write buffers after a certain
bound, thus reducing the state space to explore. Liu €4l .dgffer adynamic synthe-
sisapproach for TSO and PSO, enumerating the possible setaadddo prevent an
execution picked dynamically from reaching an error state.

Bouajjani et al.[[10] build on an operational model of TSOey ook forminimum
violations (viz. critical cycles) by enumeratingttackers(viz. delays). Like us, they
use linear programming. However, they first enumerate allsthiutions, then encode
them as anLP, and finally ask the solver to pick the least expensive one.ntathod
directly encodes the whole decision problem ai & The solver thus both constructs
the solution (avoiding the exponential-sit€ problem) and ensures its optimality.

All the approaches above focus on TSO and its siblings PSR4, whereas we
also handle the significantly weaker Power, including gsuietle barriers (e.dwsync)
compared to the simplenfence of x86.



Axiomatic modelKrishnamurthy et al[T17] apply Shasha and Snir's methosirigle
program multiple datasystems. Their abstraction is similar to ours, except tiat o
not handle pointers.

Lee and Padual22] propose an algorithm based on Shasha aisdagmk. They
use dominators in graphs to determine which fences are deshtinThis approach was
later implemented by Fang et €l. |15]jpensieve, a compiler for Java. Sura et al. later
implemented a more precise approactpémsieve [32] (see €) in Sec[2). They pair
the cycle detection with an analysis to detect synchroioiséihat could prevent cycles.

Alglave and Marangel 6] revisit Shasha and Snir for conteragy memory models
and insert fences following a refinement[ofi[22]. Thaffience tool handles snippets of
assembly code only, where the memory locations need to Beidymiven.

Others We cite the work of Vafeiadis and Zappa Nardélli][35], whogeet an optimi-
sation of the certified@ompCert-TSO compiler to remove redundant fences on TSO.
Marino et al. [25] experiment with an SC-preserving compiowing overheads of
no more tharg4 %. Nevertheless, they emphasise ttiae overheads, however small,
might be unacceptable for certain applications”

4 Axiomatic memory model

Weak memory can occur as follows: a thread mp

sends a write to a store buffer, then a cache, and fi- To 3!
nally to memory. While the write transits through (a)x —1 ()rl«y
buffers and caches, a read can occur before the(b)y —1 (d)r2 —x

- . . Final state? 1=1 A r2=0
value is available to all threads in memory.

To describe such situations, we use the frame-  (a) wx1 (c) Ryl
work of [6], embracing in particular SC, Sun TSO fr o
(i.e. the x86 mode[128]), and a fragment of Power. Ppo < pé
The core of this framework consists mflations
overmemory events (b) Wyl (d) Rx0

We illustrate this framework using Btmus
test(Fig.[d). The top shows a multi-threaded pro- Fig. 3. Message Passingnf)
gram. The shared variablgsandy are assumed
to be initialised to zero. A store instruction (exg.«<— 1 on Tj) gives rise to a write
event (a)Wx1), and a load instruction (e.g1 < y onT}) to a read event(¢)Ry1).
The bottom of Figll3 shows one particular execution of theymm (also calleévent
graph), corresponding to the final statd =1 andr 2=0.

In the framework of[[B], an execution that is not possible @tas a cyclic event
graph (as the one shown in FIg. 3). A weaker architecture mlayx some of the rela-
tions contributing to a cycle. If the removal of the relaxeldjes from the event graph
makes it acyclic, the architecture allows the execution.gxample, Power relaxes the
program ordepo (amongst other things), thereby making the graph in[Hig.\&lac
Hence, the given execution is allowed on Power.

Formalisation An eventis a memory read or a write to memory, composed of a unique
identifier, a direction (R for read or W for write), a memorydaglss, and a value. We



represent each instruction by the events it issues. In[Fige3associate the store in-
structionz — 1 in threadT, with the even{a)Wz1.

A set of events and their program ordgro form anevent structures £ (IE, po).
The program ordepo is a per-thread total order ovEr We writedp (with dp C po)
for the relation that modeldependencielsetween instructions. For instance, there is a
data dependendyetween a load and a store when the value written by the stase w
computed from the value obtained by the load.

We represent theommunicatiorbetween threads via axecution witness( £
(co, rf), which consists of two relations over the events. First,dbleerenceco is a
per-address total order on write events which modelsntieenory coherenceidely
assumed by modern architectures. It links a wiitt® any writew’ to the same address
that hits the memory after. Second, theead-fromrelationrf links a writew to a read
such that reads the value written hy. Finally, we derive thérom-readrelationfr from
co andrf. A readr is in fr with a write w if the write w’ from whichr reads hits the
memory befores. Formally, we havefr, w) € fr £ Juw’.(w’',r) € rf A (w', w) € co.

In Fig.[3d, the specified outcome corresponds to the exechétmw if each location
initially holds0. If r 1=1 in the end, the reat) on T} took its value from the writ¢b)
onTy, hence(b, ¢) € rf. If r 2=0 in the end, the reafl!) took its value from the initial
state, thus before the wrife) on Ty, hence(d, a) € fr. In the following, we writerfe
(resp.coe, fre) for the external read-fron{resp. coherence, from-read), i.e. when the
source and target belong to different threads.

Relaxed or safeWhen a thread can SC x86  Power
read from its own store buffei][4] POWR yesmfence sync
(the typical TSO/x86 scenario), wePOWW yes yes  sync, lwsync
relax the internal read-from, that is,PORW Yyes yes  sync, lwsync, dp _
rf where source and target belong t§°RR Yesyes  sync, lwsync, dp, branchisync
the same thread. When two threads
Ty, and T} can communicate pri-
vately via a cache (a casewfite atomicityrelaxation [4]), we relax the external read-
from rfe, and call the corresponding writeon-atomic This is the main particularity of
Power and ARM, and cannot happen on TSO/x86. Some progrder-pairs may be
relaxed (e.g. write-read pairs on x86, and all tpiones on Power), i.e. only a subset of
po is guaranteed to occur in order. This subset constitutgsrdserved program order
ppo. When a relation must not be relaxed on a given architeciveeall it safe

Fig.[d summarisgspo per architecture. The columns are architectures, e.g &b,
the lines are relations, e.goWR. We write e.gpoWR for the program order between
a write and a read. We write “yes” when the relation is in pipe of the architecture:
e.g.poWR is in theppo of SC. When we write something else, typically the name of
a fence, e.gmfence, the relation is not in th@po of the architecture (e.poWR is
not in theppo of x86), and the fence can restore the ordering: mfgnce maintains
write-read pairs in program order.

Following [€], the relationfence (with fence C po) induced by a fence iaon-

Fig. 4. ppo and fences per architecture

cumulativewhen it only orders certain pairs of events surrounding greé. The re-
lation fence is cumulativewhen it additionally makes writes atomic, e.g. by flushing
caches. In our model, this amounts to making sequences efratread-from and



fences (fe; fence or fence; rfe) safe, even thougtie alone would not be safe. In Fig. 3,
placing a cumulative fence between the two writeggmvill not only prevent their re-
ordering, but also enforce an ordering between the Waijeon T, and the readc) on
Ty, which reads from¥y.

Architectures An architectureA determines the sahfe4 of relations safe om. Fol-
lowing [6], we always consider the coherenug, the from-read relatiorfir and the
fences to be safe. SC relaxes nothing, ifeandpo are safe. TSO authorises the re-
ordering of write-read pairs and store buffering but noghéise.

Critical cycles Following [30.5], for an architecturd, adelayis apo or rf edge that
is not safe (i.e. is relaxed) aA. An execution(F, X) is valid on A yet not on SC iff
it contains critical cycled[5]. Formally, eritical cyclew.r.t. A is a cycle inpo U com,
wherecom £ coUrfuUfr is thecommunication relationwhich has the following
characteristics (the last two ensure the minimality of ttigcal cycles): (1) the cycle
contains at least one delay fdr (2) per thread, (i) there are at most two accessmsd
b, and (i) they access distinct memory locations; and (3aforemory locatiod, there
are at most three accesseg tong the cycle, which belong to distinct threads.

Fig.[d shows a critical cycle w.r.t. Power. The edge oril, thepo edge oril;, and
therf edge betweefty and77y, are all unsafe on Power. On the other hand, the cycle in
Fig.[d does not contain a delay w.r.t. TSO, and is thus nottigakcycle on TSO.

To forbid executions containing critical cycles, one caseit fences into the pro-
gram to prevent delays. To preverpadelay, a fence can be inserted between the two
accesses forming the delay, following Hij). 4. To preventfalelay, a cumulative fence
must be used (see SE&t. 6 for details). For the example ildFigr Bower, we need to
place a cumulative fence between the two write§prpreventing both thpo and the
adjacentf edge from being relaxed, and use a dependency or fence tentriepo
edge oril; from being relaxed.

5 Static detection of critical cycles

We want to synthesise fences to prevent weak behavioursharsdréstore SC. We
explained in Sedl]4 that we should place fences along thieatritycles of the program
executions. To find the critical cycles, we look for cycleamover-approximation of all
the executions of the program. We hence avoid enumeratial whces, which would
hinder scalability, and get all the critical cycles of albgram executions at once. Thus
we can find all fences preventing the critical cycles coroesiing to two executions in
one step, instead of examining the two executions sepgratel

To analyse a C program, e.g. on the left-hand side of[Big. Scovevert it to a
goto-program(right-hand side of Fig[15), the internal representatiorthef CProver
framework; we refer tinttp://mww.cprover.org/goto-cc for details. The pointer analysis
we use is a standard concurrent points-to analysis that we ¢teown to be sound for
our weak memory models in earlier woiK [7]. A full explanatiof how we handle
pointers is available if]8]. The C program in Fig. 5 featunes threads which can
interfere. The first thread writes the argument “inputztathen randomly writeg to
y or readsz, and then writed to x. The second thread successively regds andz.
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void thread_1(int input) void thread_2() thr?ﬁ?-rll_ thr?ﬁ?_rZZ -
{ { i _g
int r1; int r2, r3, r4; XB;('HF:Uth'), :g ;32’
it rand(962) s tmp=rand(; =X
y =1 14 = x: [! t_m]r.)_AJZ] goto 1; end_function
else 1 yo_to 5
rl =z . 9 .
Xx=1 1: 11 =z;
) ’ 2:x=1;
end_function

Fig.5. A C program (left) and its goto-program (right)

In the corresponding goto-program, thieelse structure has been transformed into a
guard with the condition of thi# followed by a goto construct. From the goto-program,
we then compute aabstract event grapfaeg), shown in Fig[l5(a). The evenisb;, by
andc (resp.d, e andf) correspond to threadresp. threag) in Fig.[H. We only consider
accesses to shared variables, and ignore the local vasidlitefinally explore thaeg

to find the potential critical cycles.

An aeg represents all the executions of a program (in the sensecdikeFig [H(b)
and (c) give two executions associated with dieg shown in Fig[B(a). For readability,
the transitivepo edges have been omitted (e.g. between the two evéatsd /). The
concrete events that occur in an execution are shown in bolhaeg, the events do
not have concrete values, whereas in an execution they do, Ahaeg merely indi-
cates that two accesses to the same variable could form aat&tésee the competing
pairs ¢mp) relation in Fig[6(a), which is a symmetric relation), weas an execution
has oriented relations (e.g. indicating the write that & te&es its value from, see e.g.
therf arrow in Fig.[®(b) and (c)). The execution in Fig. 6(b) hasitical cycle (with
respect to e.g. Power) between the evehts), d’, and f’. The execution in Fid16(c)
does not have a critical cycle.

Full details of the construction of treegs from goto-programs, including a seman-
tics of goto-programs in terms of abstract events, areabiailin the full version of this
paper[8]. Function calls are inlined for better precisiGnrrently, the implementation
does not handle recursion.

Loops and arraysWe explain how to deal with loops statically. If we build cagg
directly following thecfg, with apo, back-edge connecting the end of the body to its

(a)Wx _(dRy (a’)Wx1 (d)Ry1 (a”)Wx2 _(d")Ry0

o, /port, . Cmp o, 0/ [ p& >po co % >po

(b)Rz  (b)Ny (Rz (b!;)Rz (b1)Wyl (¢')Rz0 Y)R20 Eb’{)wy (")R20
i ) v

Ny \\\i\ v \ A /\\
(OWx ~ CmP (f)Rx (@wwx1 T (f')RX0 (wxr T (f")Rx1

(a) aeg of Fig.[H (b) ex. with critical cycle (c) ex. without criticalcle

Fig. 6. Theaeg of Fig.[d and two executions corresponding to it



entry, we already handle most of the cases. Recall from[$#twatdn a critical cycle
(2.i) there are two events per thread, and (2.ii) two eventhie same thread target two
different locations. Let us analyse the cases.

The first case is an iteratiainof this loop on which a critical cycle connects two
eventya;) and(b;). The critical cycle will be trivially captured by its statiounterpart
that abstracts in particular these events with abstractteye) and(b).

Now, for a given execution, if a critical cycle connects thert (a,) of an iteration
i to the event(b;) of a later iteratiory (i.e.,¢ < j), then these events are abstracted
respectively by(a) and (b) in the aeg. As we do not evaluate the expressions, we
abstracted the loop guard and any local variable that woartg &cross the iterations.
Thus, all the iterations can be statically captured by orstrabt representation of the
body of the loop. Then, thanks to tipe, back-edge and the transitivity of our cycle
search, any critical cycle involvin@:;) and(b;) is abstracted by a static critical cycle
relating(a) and(b), even thoughb) might be beforéa) in the body of the loop.

The only case that is not handled by this approach is whenand (b;) are ab-
stracted by the same abstract event, @gyAs the variables addressed by the events
on the same thread of a cycle need to be different, this caserdst occur wher{a;)
and(b;) are accessing an array or a pointer whose index or offsethdepn the itera-
tion. We do not evaluate these offsets or indices, whichiesghat two accesses to two
distinct array positions might be abstracted by the sameadieventc).

In order to detect such critical cycles, we copy the body eflttop and do not add a
pos back-edge. Hence, a static critical cycle will connggtin the first instance of the
body and(¢) in the second instance of the body to abstract the criticeleapvolving
(a;) and(b;). The back-edge is no longer necessary, as the abstracseeachable
through this back-edge are replicated in the second bodys, Tl the previous cases
are also covered.

We have implemented the duplication of the loop bodies amiydops that contain
accesses to arrays. In case of nested loops, we ensure tlthiplieate each of the
sub-bodies only once in order to avoid an exponential exmiod his approach is again
sufficient owing to the maximum of two events per thread initicad cycle and the
transitivity of po.

Pointers We explain how to deal with the varying imprecision of poimg@alyses in
a sound way. If we have a precise pointer analysis, we insemtany abstract events
as required for the objects pointed to. Similarly to arragesses, a pointer might refer
to two separate memory locations dynamically, e.g., if fimrithmetic is used. If
such an access is detected inside a loop, the body is reggieat described above. If
the analysis cannot determine the location of an accessnsegtian abstract event
accessing any shared variable. This event can communiditamy variable accessed
in other threads.

Cycle detectionOnce we have thaeg, we enumerate (using Tarjan’s algorithmi[34])
its potential critical cycles by searching for cycles thamniin at least one edge that is
a delay, as defined in Ség. 4.
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cycle 3, delay(f, h): dp(fh) +f (t) +am TIW () +TW gy > 1

cycle 4, delay(g, h): f (g,n) >

Fig. 7. Example of resolution withetween

6 Synthesis

In Fig.[d, we have ameg with five threads{a, b}, {c, d}, {e, f, g, h}, {3, j} and{k,[}.
Each node is an abstract event computed as in the previotisrséche dashed edges
represent th@o, between abstract events in the same thread. The full lingesent
the edges involved in a cycle. Thus theg of Fig.[d has four potential critical cycles.
We derive the set of constraints in a process we define lathisisection. We now have
a set of cycles to forbid by placing fences. Moreover, we waoptimise the placement
of the fences.

Challengesilf there is only one type of fence (as in TSO, which only featunfence),
optimising only consists of placing a minimal amount of festo forbid as many cycles
as possible. For example, placing a full fersyac betweenf andg in Fig.[d might
forbid cycles 1, 2 and 3 under Power, whereas placing it sdmesvelse might forbid
at best two amongst them.

Since we handle several types of fences for a given archie¢t.g. dependencies,
lwsync andsync on Power), we can also assign some cost to each of them. For exa
ple, following the folklore, a dependency is less costlynthalwsync, which is itself
less costly than aync. Given these costs, one might want to minimise their sumgalon
different executions: to forbid cycles 1, 2 and 3 in . 7jrayke Iwsync betweenf
andg can be cheaper at runtime than three dependencies reghebiweere andg,
fandg, andf andh. However, if we had only cycles 1 and 2, the dependenciesdvoul
be cheaper. We see that we have to optimise both the placameie type of fences
at the same time.

We model our problem as dnteger linear progran(ILP) (see Fig[B), which we
explain in this section. Solving oULP gives us a set of fences to insert to forbid
the cycles. This set of fences is optimal in that it minimiffes cost function. More



Input: aeg (E,,pos,cmp) and potential critical cyclesC = {C1, ..., Cy}
Problem: minimise " (1,t) €potential-places(C) 1 X cost(t)
Constraints: for all d € delaygC)
(* for TSO, PSO, RMO, Power *)

if d € pOWR then} . pemeenay fe > 1

if d € poWW then} i eneen(ay fe + Wfe > 1

if d € poRW thendp, + 3= _cpemeen(a) fe + Wl > 1

if d € poRR thendp, + >, chemeen(ay fe + We  + 3 oy Sfe = 1
(* for Power *)

ifd e cmp thenZeecumul(d) fe + Zeecumul(d)ﬂﬁpOWRﬂﬁpoRW IWf@ 21
Output: the setactual-places(C') of pairs(l,t) s.t.t; is set to 1 in thdLP solution

Fig. 8. ILP for inferring fence placements

precisely, the constraints are the cycles to forbid, eaclabie represents a fence to
insert, and the cost function sums the cost of all fences.

6.1 Cost function of thelLP

We handle several types of fences: fu)), (ightweight (wf), control fencesdf), and
dependenciesdf). On Power, the full fence isync, the lightweight ondwsync. We
write T for the set{dp,f, cf, lwf}. We assume that each type of fence has amiori
cost (e.g. a dependency is cheaper than a full fence), regardf its location in the
code. We writecost(t) fort € T for this cost.

We take as input thaeg of our program and the potential critical cycles to fence.
We define two sets of paif$, t) wherel is apo, edge of theaeg andt a type of fence.
We introduce anLP variablet; (in {0, 1}) for each pair(l, t).

The setpotential-places is the set of such pairs that can be inserted into the pro-
gram to forbid the cycles. The sattual-places is the set of such pairs that have been
set tol by ourlLP. We output this set, as it represents the locations in the codeed
of a fence and the type of fence to insert for each of them. \8fe altput the total
cost of all these insertions, i.8. ; ) cpotential-places(c) i % COSt(t). The solver should
minimise this sum whilst satisfying the constraints.

6.2 Constraints in thelLP

We want to forbid all the cycles in the set that we are giveerdittering, as explained
in the preamble of this section. This requires placing an@muate fence on each delay
for each cycle in this set. Different delay pairs might ne#f&rent fences, depending
e.g. on the directions (write or read) of their extremitiessentially, we follow the table
in Fig.[. For example, a write-read pair needs a full fenag tefence on x86, orsync
on Power). A read-read pair can use anything amongst depeiedeand fences. Our
constraints ensure that we use the right type of fence fdr dalay pair.

Inequalities as constraintaNVe first assume that all the program order delays are in
po;s and we ignore Power and ARM special features (dependemrciespl fences and



communication delays). This case deals with relativelgrermodels, ranging from
TSO to RMO. We relax these assumptions below.

In this settingpotential-places(C) is the set of all th@o, delays of the cycles in
C. We ensure that every delay pair for every execution is fepog placing a fence on
the statiopo, edge for this pair, and this for each cycle given as inputsTiue need at
least one constraint per static delay pain each cycle.

If d is of the formpoWR, as(g, k) in Fig.[d (cycle 4), only a full fence can fix
it (cf. Fig.[d), thus we imposé&; > 1. If d is of the formpoRR, as(f, h) in Fig.[d
(cycle 3), we can choose any type of fence,dg, + cfy + Iwf; + g > 1.

Our constraints cannot be equalities because it is notinehia the resulting system
would be satisfiable. To see this, suppose our constraines e@galities, and consider
Fig.[@ limited to cycles 2, 3 and 4. Using only full fences,hligeight fences, and
dependencies (i.e. ignoring control fences for now), weldigenerate the constraints
(i) Wl gy +f(yg) = 1forthe delay(f, g) in cycle 2,(ii) dp; ) + Wz n) + f(pn) +
Wf(g 1y + f(g,n) = 1 for the delay(f, h) in cycle 3, andiii) ., ) = 1 for the delay
(g,h) incycle 4.

Preventing the delayg, i) in cycle 4 requires a full fence, thdg, ) = 1. By
the constraintii), and since, ) = 1, we derivef; ,y = 0 andlwf;, = 0. But
these two equalities are not possible given the const@irBy using inequalities, we
allow several fences to live on the same edge. In fact, thetcaints only ensure the
soundness; the optimality is fully determined by the costfion to minimise.

Delaysare in fact inpoZ, not always inpo;: in Fig.[d, the delaye, g) in cycle 1 does
not belong togpo, but topo;. Thus given go; delay(z,y), we consider all th@o,
pairs which appear betweerandy, i.e.:between(z,y) £ {(e1,e2) € pos | (z,e1) €
poiAl(es,y) € pot}. Forexample in Fidl7, we havetween(e, g) = {(e, f), (f,9)}-
Thus, ignoring the use of dependencies and control fencemfag, for the delaye, g)
in Fig.[@, we will not imposé . 4 + Iwf. ;y > 1 but ratherf, ¢ + wf. ¢y + 7o) +
Iwf ;4 > 1. Indeed, a full fence or a lightweight fence(a f) or (f, g) will prevent
the delay in(e, g).

Dependenciaseed more care, as they cannot necessarily be placed are/bétgreen

e andg (in the formal sense dbetween(e, g)): dp, sy or dp s,y would not fix the
delay(e, g), but simply maintain the pairg, f) or (f, g), leaving the paife, g) free to

be reordered. Thus if we choose to synchrofiisg) using dependencies, we actually
need a dependency fromto g: dp,. .. Dependencies only apply to pairs that start
with a read; thus for each such pair (seepb®&W andpoRR cases in Fid18), we add
a variable for the dependendy;, g) will be fixed with the constraindp ., .y + fc s) +
Wie, 1) +T(7,9) + Whirg) = 1.

Control fencesplaced after a conditional branch (elme on Power) prevent specu-
lative reads after this branch (see Hif. 4). Thus, when imgjltheaeg, we built a set
poC for each branch, which gathers all the pairs of abstracttevarch that the first
one is the last event before a branch, and the second is theviinst after that branch.
We can place a control fence before the second componentchfsegch pair, if the



second component is a read. Thus, we efidas a possible variable to the constraint
for read-read pairs (s@®RR case in FiglB, wheretrl(d) = between(d) N poC).

Cumulativity For architectures like Power, where stores are non-atongceed to
look for program order pairs that are connected to an exteead-from (e.g{c, d) in
Fig.[d has anf connected to it via ever). In such cases, we need to useuanulative
fence e.g.lwsync or sync, and not, for example, a dependency.

The locations to consider in such cases are: beforpdin the writew of therfe,
or after (inpo;) the read- of therfe, i.e.cumul(w,r) = {(e1, e2) | (e1,e2) € pos A
((e2,w) € potV (r,e1) € pok)}. In Fig.[d (cycle 2),g, %) over-approximates arfe
edge, and the edges where we can insert fences atamnl(g,i) = {(f,9), (¢,7)}-

We need a cumulative fence as soon as there is a potdstialven if the adjacent
po, pairs do not form a delay. For example in Hi§j. 3, suppose tiseaedependency
between the reads @, and a fence maintaining write-write pairs’ds In that case we
need to place a cumulative fence to fix tfig even if the twgpo, pairs are themselves
fixed. Thus, we quantify over ghlo, pairs when we need to place cumulative fences. As
only f andlwf are cumulative, we havaotential-places(C) = {(i,¢) | (t € {dp} Al €
delaysC)) V(t € T\{dp} Al € U cdeaysc) PEtWEEN(A)) V(2 € {f, IWf} Al € pos(C))}.

Comparison witltrencher We illustrate the

difference betweetrencher [[10] and our ap- )Wx ‘
proach using Figld9. There are three cycles ! S
that share the edge, b). They differ in the !
path taken between nodesand g. Suppose |
that the user has inserted a full fence between
a andb. To forbid the three cycles, we need
to fence the thread on the right.

The trencher algorithm first calculates  gig 9. cycles sharing the edde, b)
which pairs can be reordered: in our example,
these aréc, g) viad, (c, g) viae and(c, g) via f. It then determines at which locations
a fence could be placed. In our example, theresasptions:(c, d), (d, g), (¢, e), (e, g),

(¢, f), and(f, g). The encoding thus uséssariables for the fence locations. The algo-
rithm then gathers all thigreducible sets of locations to be fenced to forbid the delay
betweenc and g, where “irreducible” means that removing any of the fencesila/
prevent this set from fully fixing the delay. As all the pathattconnect andg have to

be coveredirencher needs to collect all the combinations of one fence per patard
are? locations per path, leading @ sets. Consequently, as stated[inl [1@ncher
needs to construct an exponential number of sets.

Each set is encoded in thieP with one variable. For this examplgencher thus
uses6 + 8 variables. It also generates one constraint per delay (lhgte force the
solver to pick a set, anglconstraints to enforce that all the location variables atécs
1 if the set containing these locations is picked.

By contrastmusketeer only needss variables: the possible locations for fences.
We detect three cycles, and generate only three consttaifitsthe delay. Thus, on a
parametric version of the examptegncher’s ILP grows exponentially whereasus-
keteer’s is linear-sized.
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CLASSIC FAST

Dek Pet Lam Szy Par Cil CL Fif Lif Anc Har
LoC 50 37 72 54 96 97 111 150 152 188 179
dfence |- - - — - - - - —{7483623~0~0~0~0
memorax (04 21427914 - — —|— — — = = — — — — — — -
musketeer(0.0 5 0.03 0.0 8 0.0 8 0.0[80 3 0010.1 10010110614
offence 002002008008 —-|— - === — = = = — — —
pensieve |0.016 0.06 0.0 24 0.0 22 0.0’0 14 0.08 0.1 330.0290.044 0.1 72
remmex 05205220 4185 -|— = - - = — = - — - — -—
trencher |16 2 13217 4 - - 05863 - - - - — — — — — —

Fig. 10.All tools on thecLAssICandFAST series for TSO

7 Implementation and Experiments

We implemented our new method, in addition to all the methaeiscribed in Sefl 2,
in our toolmusketeer, usingglpk (http:/Awww.gnu.org/software/glpk) as thelLP solver.
We compare these methodsto the existing tools listed inBbec.

Our tool analyses C prograndfence also handles C code, but requires some high-
level specification for each program, which was not avaddblus.memorax works
on a process-based language that is specific to the affehce works on a subset
of assembler for x86, ARM and Powgrensieve originally handled Java, but we did
not have access to it and have therefore re-implemented ¢fi@ochremmex handles
Promela-like programdrencher analyses transition systems. Most of the tools come
with some of the benchmarks in their own languages; not altbmarks were however
available for each tool. We have re-implemented some of énetimarks fooffence.

We now detail our experimentsLASSIC andFAST gather examples from the lit-
erature and related work. TleEBIAN benchmarks are packages of Debian Linux 7.1.
CLASSIC and FAST were run on a x86-64 Intel Core2 Quad Q9550 machine with 4
cores (2.83GHz) and 4 GB of RAMMEBIAN was run on a x86-64 Intel Core i5-3570
machine with 4 cores (3.40 GHz) and 4 GB of RAM.

cLAssIcconsists of Dekker's mutex (DeK) [[14]; Peterson’s mutex) f28]; Lamport’s
fast mutex (Lam)[[2l1]; Szymanski’'s mutex (Szy)[33]; and keais bug (Par)[l13].
We ran all tools in this series for TSO (the model common th &lbr each example,
Fig.[I0 gives the number of fences inserted, and the timee@) seeded. When an
example is not available in the input language of a tool, witewr-". The first four
tools place fences to enforce stability/robustnEig [5@;last three to satisfy a given
safety property. We useghemorax with the option- 01, to compute onenaximal
permissiveset and not all. Foremmex on Szymanski, we give the number of fences
found by default (which may be non-optimal). Its “maximafpéssive” option lowers
the number t@®, at the cost of a slow enumeration. As expectedsketeer is less
precise than most tools, but outperforms all of them.

FAST gathers Cil, Cilk 5 Work Stealing Queue (WSQ)][16]; CL, Chasy WSQ [11];
Fif, Michael et al.’s FIFO WSQLIZ6]; Lif, Michael et al.'s LIB WSQ [26]; Anc,
Michael et al.'s Anchor WSQ[26]; Har, Harris’ sét [12]. Faarah example and tool,


http://www.gnu.org/software/glpk

TSO Power

LoC nodes fences time fences time
memcached 9944 694 3 13.9s 70 89.9s
lingot 2894 183 0 5.3s 5 5.3s
weborf 2097 73 0 0.7s 0 0.7s
timemachine 1336 129 2 0.8s 16 0.8s
see 2626 171 0 1.4s 0 1.5s
blktrace 1567 615 0 6.5s - timeout
ptunnel 1249 1867 2 95.0s - timeout
proxsmtpd 2024 10 0 0.1s 0 0.1s
ghostess 2684 1106 0 25.9s 0 25.9s
dnshistory 1516 1466 1 29.4s 9 64.9s

Fig. 11.musketeer on selected benchmarks mEBIAN series for TSO and Power

Fig.[I0 gives the number of fences inserted (under TSO) amdrtte needed to do so.
For dfence, we used the setting df [24]: the tool has uRtbattempts to find fences.
We were unable to appljfence on some of th&AsT examples: we thus reproduce the
number of fences given in[24], and writefor the time. We appliechusketeer to this
series, for all architectures. The fencing times for TSO Rader are almost identical,
except for the largest example, namely Had (s vs 0.6 s).

DEBIAN gathers}74 executables. These are a subset of the goto-programs tieghéen
built from packages of Debian Linux 7.1 by Michael Tautschii small excerpt of our
results is given in Fid—11. The full data set, including a pamson with the methods
from Secl2, is provided dittp://www.cprover.orgivmm/musketeer. For each program,
we give the lines of code and number of nodes indkg. We usedmusketeer on
these programs to demonstrate its scalability and itstaldi handle deployed code.
Most programs already contain fences or operations thdyithpm, such as compare-
and-swaps or locks. Our toohusketeer takes these fences into account and infers
a set of additional fences sufficient to guarantee SC. Thye$amprogram we handle
is memcached (~ 10000 LoC). Our tool needs3.9 s to place fences for TSO, and
89.9 s for Power. A more meaningful measure for the hardness of stanice is the
number of nodes in thaeg. For exampleptunnel has 1867 nodes and 1249 LoC. The
fencing take®5.0 s for TSO, but times out for Power due to the number of cycles.

8 Conclusion

We introduced a novel method for deriving a set of fencesclviae implemented in

a new tool callednusketeer. We compared it to existing tools and observed that it
outperforms them. We demonstrated on DEBIAN series thamusketeer can handle
deployed code, with a large potential for scalability.
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