
Static over-approximation for (mutually) recursive functions in the con-
struction of the abstract event graph

In the case of recursive calls, we can connect the abstract events of the function so that any cycle appearing in a sequence of
dynamic calls can appear in the abstract event graph as a cycle. The strategy is similar to the method used for unbounded
loops. In this construction, we call last events of the body of a function the events that are preceding any return in the
function. The first events of the body of a function are the first events of the subgraph built out of the function.

1. The function calls are first “unfolded twice”: we explore the body of the recursive function with a depth of 2, as if
we were inlining them twice;

2. We construct inside the body the abstract event graph as before;

3. At the recursive callsite, we connect by pos the last abstract events of the first function body before the call to the
first abstract events of the second body, and the last abstract events of the second body to the first abstract events
after the call in the first body. This models the simplest dynamic call case, in which an event of the caller and an
event of the callee could both belong to a critical cycle;

4. Then we connect by pos the last abstract events before the recursive call in the second body to the first abstract
events in the first body, and we connect the last abstract events of the first body to the first abstract events after
the recursive call in the second body. This models the recursive calls, in which one might encounter a critical cycle
involving twice the same static abstract event.

We construct the cmp during this process as before. Any cycle occurring for a sequence of dynamic function calls is a
cycle in this subgraph. To extend this to mutually recursive functions, we take the period in the sequence of recursive
calls to the first function, that is, the smallest sequence of calls that is repeated, then duplicate it and apply the same
transformations, as depicted in Fig. 1.

main

⊕

�

⊕

foo

⊕

⊕

�

⊕

⊕

bar

⊕

⊕

�

⊕

⊕

foo

⊕

⊕

�

⊕

⊕

bar

⊕

⊕

�

⊕

⊕

...

..................................︸ ︷︷ ︸
period

Figure 1: Construction of pos for mutual recursive functions. Each of the vertical line is the body of a function. The
circles are abstract events, the squares are call-sites, the dashed lines represent a potential function call. The coloured
edges are the pos edges we construct: in green, the edges built in step 2; in red, the edges added in step 3; in blue, the
edges described in step 4. Note that the absence of a green edge over a recursive callsite would mean that this function
would trivially not terminate if the callsite is reachable.

1

