
The CProver User Manual

SatAbs – Predicate Abstraction with SAT

CBMC – Bounded Model Checking

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Bounded Model Checking with CBMC 5

1.3 Automatic Program Verification with SatAbs 5

1.4 A Short Tutorial . 5

1.5 Hardware/Software Co-Verification 6

2 Installation 7

2.1 Installing CBMC . 7

2.2 Installing SatAbs . 7

2.3 Installing the Eclipse Plugin 9

2.4 Installing goto-cc . 10

3 CBMC: Bounded Model Checking for C/C++ 11

3.1 A Short Tutorial . 11

3.1.1 First Steps . 11

3.1.2 Verifying Modules . 12

3.1.3 Loop Unwinding . 12

3.1.4 Unbounded Loops . 13

3.1.5 A Note About Compilers and the ANSI-C Library . . 14

3.2 Command Line Interface . 15

4 Verifying C/C++ Programs with SatAbs 16

4.1 Background . 16

4.1.1 Abstraction and Refinement 16

4.1.2 Properties . 18

4.2 Using the Command Line Interface 19

4.3 Tutorials . 20

4.3.1 Example: Reference Counting in Linux Device Drivers 21

4.3.2 Example: Buffer Overflow in a Mail Transfer Agent . 23

4.3.3 Unit Testing with SatAbs 26

1

5 The Eclipse User Interface 31

6 Build Systems and Libraries 36

6.1 Integration into Build Systems with goto-cc 36

6.1.1 Example: Building wu-ftpd 36

6.1.2 Important Notes . 36

6.2 Libraries . 37

6.2.1 Linking libraries . 37

6.2.2 Abstractions for Zero-Terminated Strings 37

7 ANSI-C/C++ Language Features 39

7.1 Basic Datatypes . 39

7.2 Operators . 39

7.2.1 Boolean Operators . 39

7.2.2 Integer Arithmetic Operators 39

7.2.3 Floating Point Arithmetic Operators 41

7.2.4 The Comma Operator 42

7.2.5 Type Casts . 42

7.2.6 Side Effects . 42

7.2.7 Function Calls . 43

7.3 Control Flow Statements . 44

7.3.1 Conditional Statement 44

7.3.2 return . 44

7.3.3 goto . 45

7.3.4 break and continue 45

7.3.5 switch . 45

7.3.6 Loops . 45

7.4 Non-Determinism . 46

7.5 Assumptions and Assertions 46

7.6 Arrays . 47

7.7 Structures . 48

7.8 Unions . 48

7.9 Pointers . 49

7.9.1 The Pointer Data Type 49

7.9.2 Pointer Arithmetic . 49

2

7.9.3 The Relational Operators on Pointers 49

7.9.4 Pointer Type Casts . 50

7.9.5 String Constants . 52

7.9.6 Pointers to Functions 52

7.10 Dynamic Memory . 53

7.11 Concurrency . 54

8 Hardware and Software Equivalence and Co-Verification 56

8.1 Introduction . 56

8.2 A Small Tutorial . 57

8.2.1 Verilog and ANSI-C 57

8.2.2 Counterexamples . 58

8.2.3 Using the Bound . 59

8.2.4 Synchronizing Inputs 60

8.2.5 Driving Inputs . 61

A CBMC and SATABS License Agreement 63

B Programming APIs 64

B.1 Language Frontends . 64

B.1.1 Scanning and Parsing 64

B.1.2 IRep . 65

B.1.3 Types . 68

B.1.4 Subtypes of typet . 69

B.1.5 Location . 70

B.1.6 Expressions . 70

B.1.7 Subtypes of exprt . 72

B.1.8 Symbols and the Symbol Table 73

B.2 Goto Programs . 74

B.3 Static Analysis . 77

B.3.1 A Brief Introduction to Abstract Interpretation 77

B.3.2 Class Interfaces . 78

B.3.3 Examples . 82

B.3.4 Using the parametrized static analysist class . . . 84

B.4 Propositional Logic . 84

3

1 Introduction

1.1 Motivation

Correctness of computer systems is critical in today’s information society.
Modern computer systems consist of both hardware and software compo-
nents. The complexity of the software embedded in devices we use everyday
has risen dramatically, and correctness of such embedded software is often
a bigger problem than that of the underlying hardware. This is especially
true of software that runs on computers controlling our transportation and
communication infrastructure. Examples of serious software errors are easy
to find.

Manual inspection of complex software is infeasible and costly, so tool sup-
port is in dire need. Many tools rely on engineers to provide test-vectors to
uncover design flaws. Formal verification, on the other hand, is automated,
and tools that implement it can check the behavior of a design for any vector
of inputs.

Numerous tools to hunt down functional design flaws in silicon have been
available for many years, mainly due to the enormous cost of hardware bugs.
The use of such tools is wide-spread. In contrast, the market for tools that
address the need for quality software is still in its infancy.

Research in software quality has an enormous breadth, and due to space
restrictions, we focus the presentation using two criteria:

1. We believe that any form of quality requires a specific guarantee, in
theory and practice.

2. The sheer size of software designs requires techniques that are highly
automated.

In practice, quality guarantees usually do not refer to ’total correctness’
of a design, as ensuring the absence of all bugs is too expensive for most
applications. In contrast, a guarantee of the absence of specific flaws is
achievable, and is a good metric of quality.

This manual documents two programs that try to achieve formal guarantees
of the absence of specific problems: CBMC and SatAbs. The algorithms
implemented by CBMC and SatAbs are complementary, and often, one
tool is able to solve a problem that the other cannot solve.

Both CBMC and SatAbs are verification tools for ANSI-C/C++ programs.
They verify array bounds (buffer overflows), pointer safety, exceptions and
user-specified assertions. Both tools model integer arithmetic accurately,
and are able to reason about machine-level artifacts such as integer overflow.
CBMC and SatAbs are therefore able to detect a class of bugs that has so
far gone unnoticed by many formal verification tools.

4

1.2 Bounded Model Checking with CBMC

CBMC implements a technique called Bounded Model Checking (BMC). In
BMC, the transition relation for a complex state machine and its speci-
fication are jointly unwound to obtain a Boolean formula, which is then
checked for satisfiability by using an efficient SAT procedure. If the formula
is satisfiable, a counterexample is extracted from the output of the SAT
procedure. If the formula is not satisfiable, the program can be unwound
more to determine if a longer counterexample exists.

In many engineering domains, real-time guarantees are a strict requirement.
An example is software embedded in automotive controllers. As a conse-
quence, the loop constructs in these types of programs often have a strict
bound on the number of iterations. CBMC is able to formally verify such
bounds by means of unwinding assertions. Once this bound is established,
CBMC is able to prove the absence of errors.

A more detailed description of how to apply CBMC to program verification
is in Chapter 3.→ 3

1.3 Automatic Program Verification with SatAbs

In many cases, lightweight properties such as array bounds do not rely on
the entire program. A large fraction of the program is irrelevant to the
property. SatAbs exploits this observation and computes an abstraction of
the program in order to handle large amounts of code.

In order to use SatAbs it is not necessary to understand the abstraction
refinement process. For the interested reader, a high-level introduction is
provided in Chapter 4.1.→ 4.1

Just as CBMC, SatAbs attempts to build counterexamples that refute the
property. If such a counterexample is found, it is presented to the engineer
to facilitate localization and repair of the program.

1.4 A Short Tutorial

In order to give a brief overview of the capabilities of SatAbs we start with
a series of small examples. The description of the installation of the tool is
postponed to Chapter 2.→ 2

The issue of buffer overflows has brought wide public attention. A buffer is a
contiguous allocated chunk of memory, represented by an array or a pointer
in C. Programs written in C do not provide automatic bounds checking on
the buffer, which means a program can – accidentally or maliciously – write
past a buffer. The following example is a perfectly valid C program (in the
sense that a compiler compiles it without any errors):

int main () {
int bu f f e r [1 0] ;
bu f f e r [2 0] = 10 ;

}

However, the write access to an address outside the allocated memory region
can lead to unexpected behavior. In particular, such bugs can be exploited

5

to overwrite the return address of a function, thus enabling the execution
of arbitrary user induced code. SatAbs is able to detect this problem and
reports that the “upper bound property” of the buffer is violated. SatAbs

is capable of checking the lower and upper bounds, even for arrays with
dynamic size.

1.5 Hardware/Software Co-Verification

Software programs often interact with hardware in a non-trivial manner,
and many properties of the overall design only arise from the interplay of
both components. CBMC and SatAbs therefore support Co-Verification,
i.e., are able to reason about a C/C++ program together with a circuit
description given in Verilog.

These co-verification capabilities can also be applied to perform refinement
proofs. Software programs are often used as high-level descriptions of cir-
cuitry. While both describe the same functionality, the hardware implemen-
tation usually contains more detail. It is highly desirable to establish some
form for equivalence between the two descriptions.

Hardware/Software co-verification and equivalence checking with CBMC

and SatAbs are described in Chapter 8.→ 8

6

2 Installation

This Chapter provides step-by-step installation instructions for CBMC and
SatAbs. CBMC and SatAbs are command line tools, but a graphical user
interface is also available.

Both CBMC and SatAbs require a code pre-processing environment com-
prising of a suitable preprocessor and an a set of header files. These pro-
grams and files usually come with a compiler.

In addition to that, the SatAbs verification system relies on an additional
model checker for the abstract models. It is modular and can be used
with different model checking tools. Currently, SatAbs supports the model
checkers Cadence SMV, NuSMV, CMU SMV, SPIN, and BOPPO.

The license for CBMC and SatAbs is provided in Chapter A.

Note that the Windows and Linux x86 binaries are also contained in the
Eclipse plugin. Therefore, if you intend to run CBMC or SatAbs exclu-
sively within Eclipse, you can skip the installation of the command line
tools. However, you still have to install a model checking tool as described
below.

2.1 Installing CBMC

1. Download CBMC. The binaries are available from:

http://www.cs.cmu.edu/~modelcheck/cbmc/

The Windows and Linux x86 binaries are also contained in the Eclipse
plugin for CBMC. Therefore, if you intend to run CBMC exclusively
within Eclipse, you can skip the extraction of the binaries from the
archive.

2. Unzip/untar the archive in a directory of your choice. We recommend
to add this directory to your PATH. The Windows version of CBMC

requires the preprocessor cl.exe, which is part of Visual Studio. The
path to cl.exe must be part of the PATH environment variable of your
system.

2.2 Installing SatAbs

1. Download SatAbs. The binaries are available from:

http://www.cprover.org/satabs/

The Windows and Linux x86 binaries are also contained in the Eclipse
plugin for SatAbs. Therefore, if you intend to run SatAbs exclusively
within Eclipse, you can skip the extraction of the binaries from the
archive. You still have to install a model checking tool as described
below.

7

2. Unzip/untar the archive in a directory of your choice. We recommend
to add this directory to your PATH. The Windows version of SatAbs

requires the preprocessor cl.exe, which is part of Visual Studio. The
path to cl.exe must be part of the PATH environment variable of your
system.

3. You need to install a Model Checker in order to be able to run SatAbs.
You can choose between following alternatives:

(a) Cadence SMV. Available from

http://www.kenmcmil.com/smv.html

Cadence SMV is a commercial model checker. The free version
that is available on the homepage above must not be used for
commercial purposes (read the license agreement thoroughly be-
fore you download the tool). The documentation for SMV can
be found in the directory where you unzip/untar SMV under
./smv/doc/smv/. We recommend to add the smv binary (lo-
cated in ./smv/bin/ relative to the path where you unpacked it)
to your PATH. SatAbs uses Cadence SMV by default.

(b) NuSMV. Available from

http://nusmv.irst.itc.it/

NuSMV is the open source alternative to SMV. Installation in-
structions and documentation can be found on the NuSMV hom-
peage. We recommend to use NuSMV on platforms where SMV
is not available (e.g., MAC OS X). Again, the NuSMV binary
should be added to your PATH. Use the option --modelchecker

nusmv to instruct SatAbs to use NuSMV.

(c) BOPPO. Available from

http://www.cprover.org/satabs/

BOPPO is a model checker that uses SAT-solving algorithms.
BOPPO relies on a built-in SAT solver and Quantor, a solver
for quantified boolean formulas that is currently bundled with
BOPPO, but also available separately from

http://fmv.jku.at/quantor/

We recommend to add both tools to your PATH. By default, Sat-

Abs uses the Cadence SMV model checker. Use the option
--modelchecker boppo when you call SatAbs and want it to
use BOPPO instead of SMV.

(d) SPIN. Available from

http://spinroot.com/spin/whatispin.html

SPIN is an explicit state model checker. Since predicate abstrac-
tion generates abstract programs with many uninitialized vari-
ables, explicit state model checking algorithms do not scale very
well for this purpose. We recommend to use one of the symbolic
model checking tools mentioned above.

8

4. Now you can execute SatAbs. Try running satabs on the small
examples presented in the tutorial (Section 1.4). If you use the SMV→ 1.4

model checker, the only parameters you have to specify are the names
of the files that contain your program.

2.3 Installing the Eclipse Plugin

As mentioned above, we provide a graphical user interface, which is re-
alized as a plugin to the Eclipse framework. Eclipse is available at http:

//www.eclipse.org. We do not provide installation instructions for Eclipse
(basically, you only have to download the current version and extract the
files to your hard-disk) and assume that you have already installed the cur-
rent version. You need version 3.2 or better; the plugin does not work with
version 3.1. In case you are running Windows, make sure that the path
containing the Visual Studio is in the PATH environment variable.

To install the Eclipse SatAbs plugin, perform following steps:

1. In Eclipse, open the menu Help→ Software Updates→Find and Install.

2. Select the radio button “Search for new features to install”.

3. In the window that pops up, select “New remote site” and enter the
URL http://www.cprover.org/satabs/plugin/lin/ (for Linux) or
http://www.cprover.org/satabs/plugin/win/ (for Windows) or http:
//www.cprover.org/satabs/plugin/osx/ (for MacOS X) into the
URL field. Provide a name for the SatAbs update site, e.g., SatAbs

plugin (see Figure 2.1).

Figure 2.1: Installing the Eclipse plugin for SatAbs

4. Select the newly added update site, and press “Finish”.

9

5. Select the feature org.feature.CProver version, and clock “Next”.
Read the license thoroughly before you agree (see also Chapter A),
and install the plugin by clocking “Finish”. You will see a warning
that the plugin is not digitally signed; confirm with “Install”. The
plugin will be downloaded automatically. It contains the Windows
and Linux executables for SatAbs. Note that we do not provide the
SMV executable, nor the preprocessors!

6. Unless you have already added the model checker of your choice (e.g.,
SMV) to your PATH, you should do so now. In the Eclipse window,
select the menu point Windows→Preferences, choose the CBMC and

SATABS preferences and add the corresponding PATH environment vari-
able.

A small tutorial on how to use the Eclipse plugin is provided in Chapter 5.→ 5

2.4 Installing goto-cc

1. Download goto-cc. The binaries are available from:

http://www.cprover.org/goto-cc/

2. Unzip/untar the archive in a directory of your choice. We recommend
to add this directory to your PATH. The Windows version of goto-

cc requires the preprocessor cl.exe, which is part of Visual Studio
(Express). The path to cl.exe must be part of the PATH environment
variable of your system.

Chapter 6 covers the integration of goto-cc into build systems.→ 6

10

3 CBMC: Bounded Model Checking for C/C++

3.1 A Short Tutorial

3.1.1 First Steps

Like a compiler, CBMC takes the names of .c files as command line ar-
guments. CBMC then translates the program and merges the function
definitions from the various .c files, just like a linker. But instead of pro-
ducing a binary for execution, CBMC performs symbolic simulation on the
program.

As an example, consider the following simple program, named file1.c:

int puts (const char * s) { }

int main (int argc , char ** argv) {
int i ;

i f (argc >=1)
puts (argv [2]) ;

}

Of course, this program is faulty, as the argv array might have only one
element, and then the array access argv[2] is out of bounds. Now, run
CBMC as follows:

cbmc file1.c --show-claims

CBMC will print the list of properties it checks. Note that it prints a claim
labeled with ”array argv upper bound” together with the location of the
faulty array access. As you can see, CBMC largely determines the property
it needs to check itself.1 Examples for user-specified properties are given in
Sec. 7.5. Note that these claims need not necessarily correspond to bugs –
these are just potential flaws. Whether one of these claims corresponds to
a bug needs to be determined by further analysis.

The first step of this analysis is symbolic simulation, which corresponds to
a translation of the program into a formula. The formula is then combined
with the property. Let’s run the symbolic simulation:

cbmc file1.c --show-vcc

With this option, CBMC performs the symbolic simulation and prints the
verification conditions on the screen. A verification condition needs to be
proven to be valid in order to assert that the corresponding property holds.
Let’s run the verification:

1 This is realized by means of a preliminary static analysis, which relies on computing a
fixed point on an abstract domain.

11

cbmc file1.c

CBMC transforms the equation you have seen before into CNF and passes
it to a SAT solver. It can now detect that the equation is actually not
valid, and thus, there is a bug in the program. It prints a counterexample
trace, i.e., a program trace that ends in a state which violates the property.
In our example, the program trace ends in the faulty array access. It also
shows the values the input variables must have for the bug to occur. In this
example, argc must be one to trigger the out-of-bounds array access. If you
change the branch condition in the example to argc>=2, the bug is fixed
and CBMC will report a successful verification run.

3.1.2 Verifying Modules

In the example above, we used a program that starts with a main func-
tion. However, CBMC is aimed at embedded software, and these kinds
of programs usually have different entry points. Furthermore, CBMC is
also useful for verifying program modules. Consider the following example,
called file2.c:

int array [1 0] ;

int sum() {
unsigned i , sum ;

sum=0;

for (i =0; i <10; i++)
sum+=array [i] ;

}

In order to set the entry point to the sum function, run

cbmc file2.c --function sum

3.1.3 Loop Unwinding

You will note that CBMC unwinds the for loop in the program. As CBMC

performs Bounded Model Checking, all loops have to have a finite upper run-
time bound in order to guarantee that all bugs are found. CBMC actually
checks that enough unwinding is performed. As an example, consider the
program binsearch.c:

int b insearch (int x) {
int a [1 6] ;
signed low=0, high =16;

while (low<high) {
signed middle=low+((high−low)>>1);

i f (a [middle]<x)
high=middle ;

else i f (a [middle]>x)

12

low=middle+1;
else // a [middle]=x !

return middle ;
}

return −1;
}

If you run CBMC on this function, you will notice that the unwinding does
not stop. The built-in simplifier is not able to determine a run time bound
for this loop. The unwinding bound has to be given as a command line
argument:

cbmc binsearch.c --function binsearch --unwind 5

CBMC not only verifies the array bounds (note that this actually depends
on the result of the right shift), but also checks that enough unwinding is
done, i.e., it proves a run-time bound. For any lower unwinding bound, there
are traces that require more loop iterations. Thus, CBMC will produce an
appropriate counterexample.

3.1.4 Unbounded Loops

However, CBMC can also be used for programs with unbounded loops. In
this case, CBMC is used for bug hunting only; CBMC does not attempt
to find all bugs. Consider the following program:

Bool nondet boo l () ;
Bool LOCK = 0 ;

Bool l o ck () {
i f (nondet boo l ()) {

a s s e r t (!LOCK) ;
LOCK=1;
return 1 ; }

return 0 ;
}

void unlock () {
a s s e r t (LOCK) ;
LOCK=0;

}

int main () {
unsigned go t l o ck = 0 ;
int t imes ;

while (t imes > 0) {
i f (l o ck ()) {

go t l o ck++;
/* c r i t i c a l s e c t i on */

}

13

i f (g o t l o ck !=0)
unlock () ;

go t l ock −−;
t imes−−;

} }

The while loop in the main function has no (useful) run-time bound. Thus,
the –unwind parameter has to be used in order to prevent infinite unwinding.
However, you will note that CBMC will detect that not enough unwinding
is done and aborts with an unwinding assertion violation.

In order to disable this test, run CBMC with the parameter

--no-unwinding-assertions

For an unwinding bound of one, no bug is found. But already for a bound of
two, CBMC detects a trace that violates an assertion. Without unwinding
assertions, CBMC does not prove the program correct, but it can be helpful
to find program bugs.

3.1.5 A Note About Compilers and the ANSI-C Library

Most C programs make use of functions provided by a library; instances are
functions from the standard ANSI-C library such as malloc or printf. The
verification of programs that use such functions has two requirements:

1. Apppropriate header files have to be provided. These header files
contain declarations of the functions that are to be used.

2. Appropriate definitions have to be provided.

Most C compilers come with header files for the ANSI-C library functions.
We briefly discuss how to obtain/install these library files.

Linux Linux systems that are able to compile software are usually equipped
with the appropriate header files. Consult the documentation of your dis-
tribution on how to install the compiler and the header files. First try to
compile some siginificant program before attempting to verify it.

Windows On Microsoft Windows, CBMC/SATABS are preconfigured to
use the compiler shipped with Microsoft’s Visual Studio. Visual Studio
Express is sufficient, and is available for download for free from the Microsoft
webpage. Visual Studio installs the usual set of header files together with
the compiler. However, Visual Studio requires a large set of environment
variables for the compiler to function correctly. It is therefore recommended
to run CBMC or SATABS from the “Visual Studio Command Prompt”,
which can be found in the menu “Visual Studio Tools”.

Note that in both cases, only header files are available. CBMC/SATABS
only come with a small set of definitions, which includes functions such as
malloc. Detailed information about the built-in definitions is in Chapter 6.→ 6

14

3.2 Command Line Interface

This section describes the command line interface of CBMC. Like a C com-
piler, CBMC takes the names of the .c source files as arguments. Additional
options allow to customize the behavior of CBMC.

Option Description

-I path set include path (C/C++)
-D macro define preprocessor macro (C/C++)
--program-only only show program expression
--function name set main function name
--all-claims keep all claims
--unwind nr unwind nr times
--unwindset nr unwind given loop nr times
--show-claims only show claims
--dimacs generate CNF in DIMACS format
--document-subgoals generate subgoals documentation
--slice remove unrelated assignments
--no-assertions ignore assertions
--no-unwinding-assertions do not generate unwinding assertions
--no-bounds-check do not do array bounds check
--no-div-by-zero-check do not do division by zero check
--no-pointer-check do not do pointer check
--bound nr number of transitions
--beautify-greedy beautify the counterexample (greedy

heuristic)
--beautify-pbs beautify the counterexample (PBS)
--cvc output subgoals in CVC syntax
--smt output subgoals in SMT syntax
--outfile Filename output subgoals to given file
--16, --32, --64 set width of machine word
--little-endian allow little-endian word-byte conver-

sions
--big-endian allow big-endian word-byte conversions
--show-symbol-table show symbol table
--show-goto-functions show goto program
--floatbv use genuine IEEE floating point arith-

metic
--ppc-macos set MACOS/PPC architecture
--i386-macos set MACOS/I386 architecture
--i386-linux set Linux/I386 architecture (default)
--no-arch don’t set up an architecture
--arrays-uf-none never turn arrays into uninterpreted

functions
--arrays-uf-always always turn arrays into uninterpreted

functions
--interpeter do concrete execution

Structured output can be obtained from CBMC using the option –xml-ui.
Any output from CBMC (e.g., counterexamples) will then use an XML
representation.

15

4 Verifying C/C++ Programs with SatAbs

4.1 Background

This section provides background information on how SatAbs operates.
The reader who is only interested in running SatAbs may skip to the next
section.

Even for very trivial C programs it is impossible to exhaustively examine
their state space (which is potentially unbounded). However, not all details
in a C program necessarily contribute to a bug, so in theory it is sufficient
to examine the parts of the program that are somehow related to a bug.
In practice, many static verification tools (such as lint) try to achieve this
goal by applying heuristics. This approach comes at a cost: bugs might
be overlooked because the heuristics do not cover all relevant aspects of the
program. Therefore, the conclusion that a program is correct whenever such
a static verification tool is unable to find an error is invalid.

4.1.1 Abstraction and Refinement

refinement

details d

�

�

	
α: calculate

abstraction

abstract

model m′

�

�

	

π: check

property

abstract

explanation

�

�

	

feasibility

analysis δ

counter

example

m: orig.

model

property
p to be

checked

OK

property violated

[property

holds]

[property

violation

found]

[feasible]

[infeasible]

-
R

- - -

��

?

�

6

-

6

?

Figure 4.1: Counterexample-Guided Abstraction Refinement Scheme

A more sophisticated approach that has been very successful recently is to
generate a sound abstraction of the original program (see Figure 4.1). In
this context, soundness refers to the fact that the abstract program contains
(at least) all relevant behaviours (i.e., bugs) that are present in the original
program. In Figure 4.1, the component labelled α is responsible for strip-
ping details from the original program. The number of possible behaviours
increases as the number of details in the abstract program decreases. Intu-
itively, the reason is that whenever the model checking tool lacks the infor-
mation that is necessary to make an accurate decision on whether a branch

16

of an control flow statement can be taken or not, both branches have to be
considered. In the abstract program, a set of concrete states is subsumed by
means of a single abstract state. Consider Figure 4.2: The concrete states
x1 and x2 are mapped to an abstract state X, and similarly Y subsumes y1

and y2. However, all transitions that are possible in the concrete program
are also possible in the abstract model. The abstract transition X → Y

summarizes the concrete transitions x1 → y1 and x1 → y2, and Y → X

corresponds to y2 → x2. The behaviour X → Y → X is feasible in the
original program, because it maps to x1 → y2 → x2. However, Y → X → Y

is feasible only in the abstract model.

YX

�

�

	
x2

�

�

	
x1

�

�

	
y2

�

�

	
y1

-

R�

Figure 4.2: An Example Mapping from Concrete States to Abstract States

The consequence is that the model checker (labeled as π in Figure 4.1) pos-
sibly reports a spurious counterexample. We call a counterexample spurious
whenever it is feasible in the current abstract model but not in the original
program. However, whenever the model checker π is unable to find an exe-
cution trace that violates the given property p we can conclude that there
is no such trace in the original program, either.

The feasibility of counterexamples is checked by symbolic simulation (per-
formed by component δ in Figure 4.1). If the counterexample is indeed
feasible, SatAbs found a bug in the original program and reports it to the
user.

Infeasible counterxamples (that originate from abstract behaviours that re-
sult from the omission of details and are not present in the original program)
are never reported to the user. Instead, the information is used in order to
refine the abstraction such that the spurious counterexample is not part of
the refined model anymore. For instance, the reason for the infeasibility of
Y → X → Y in Figure 4.2 is that neither y1 nor y2 can be reached from x2.
Therefore, the abstraction can be refined by partitioning X.

The refinement steps are illustrated in Figure 4.3. The first step (1) is
to generate a very coarse abstraction with a very small state space. This
abstraction is then successively refined (2, 3,. . .) until either a feasible coun-
terexample is found or the abstract program is detailed enough to show that
there is no path that leads to a violation of the given property. The problem
is that this point is not necessarily reached for every input program, i.e., it is
possible that the the abstraction refinement loop never terminates. There-
fore, SatAbs allows to specify an upper bound for the number of iterations.
Note that whenever this upper bound is reached and no counterexample was! →
found, that does not necessarily mean that there is none. In this case, you
cannot make any conclusions at all with respect to the correctness of the

17

6

le
v
el

o
f
a
b
st

ra
ct

io
n

m′

m

�

a
b
st

ra
ct

(1)

m′

m′′

m

�
	

refine

(2)

m′

m′′

m′′′

m

�
	

	
refine

(3) -
iterations

Figure 4.3: Iterative Abstraction Refinement

input program.

4.1.2 Properties

We have mentioned properties several times so far, but we never explained
what kind of properties SatAbs can verify. We cover this topic in more
detail in this section. While users of SatAbs almost never have to be
concerned about the underlying refinement abstraction algorithms, under-
standing the classes of properties that can be verified is crucial.

SatAbs allows the verification of following properties:

� Buffer overflows. For each array, SatAbs checks whether the upper
and lower bounds are violated whenever the array is accessed (i.e.,
whenever the program reads from or writes to the buffer).

� Pointer safety. SatAbs searches for null-pointer dereferences.

� Divison by zero. SatAbs checks whether there is a path in the
program that executes a divison by zero.

� User specified assertions. This is the most generic class of sup-
ported properties. SatAbs checks for assertion violations. The user
can use the assert function to specify arbitrary conditions that have
to hold at certain points in the program.

(A more detailed list of properties checked by SatAbs can be found in
Chapter 7.) All the properties described above are reachability properties.
They are always of the form “Is there a path such that property . . . is
violated?”. The counterexamples to such properties are always paths. Users
of the Eclipse plugin for SatAbs can step through counterexamples in a
way that is similar to debugging programs. The installation of this plugin
is explained in Section 2.

In general, properties are specified by predicates. Examples for such predi-
cates are

� (i >= 0) and !(i >= MAX-1). Such predicates are automatically in-
troduced by SatAbs whenever an array a of size MAX is accessed with
index i (i.e., whenever a[i] occurs in the program). They make sure
that the lower and upper array bounds are not violated.

18

� !(m%2 == 0). This predicate is introduced if the user has stated by
means of an assertion that m has to be odd (i.e., if assert (m % 2);

occurs in the program).

SatAbs calls these predicates claims. Each claim is associated to a specific
line of code, i.e., a claim is violated when the predicate can become false at
the corresponding program location. Claims are (implicitely) stated within
the program: Currently there is no possibility to introduce claims other
than by adding assertions to the program. The claims for a program can be
inspected by using the --show-claims option of SatAbs. SatAbs is able
to check several claims at once. However, as soon as a violation of one claim
is found, it is reported. A single claim can be verifie by using the --claim

<n> option of SatAbs, where <n> denotes the index of the claim in the
list obtained by calling SatAbs with the --show-claims flag. Whenever
a claim is violated, SatAbs reports a feasible path that leads to a state
in which the predicate that corresponds to the violated claim evaluates to
false.

SatAbs cannot check programs that use functions that are only available! →
in binary (compiled) form1. At the moment, (libarary) functions for which
no C source code is available have to be replaced by stubs. The usage of
stubs and harnesses (as known from unit testing) also allows to check more
complicated properties (like, for example, if function fopen is always called
before fclose). This technique is explained in detail in Section 4.3.

4.2 Using the Command Line Interface

This section explains the usage of the command line version of SatAbs.
The executable satabs is called with a set of (optional) parameters, which
are described below, followed by the file(s) that shall be verified. Currently,
SatAbs cannot verify the files of the program under test separately. If a
program comprises more than one file, then all these files have to be verified
in one step by providing all file names in one single command line.

Example:

satabs --show-claims file1.c file2.c

This call instructs SatAbs to generate and display a list of claims for the
program that is contained in file1.c and file1.c. If, for instance, you
wanted to verify the 2nd claim in this list, you could do this by calling

satabs --claim 2 file1.c file2.c

Verifying claims separately is highly recommended for reasons of scalability.

SatAbs Parameters There are several command line parameters that
allow you to control the behaviour of SatAbs. We divide them into two
groups: The switches in the first group have an impact on how SatAbs

actually behaves. The remaining switches tell SatAbs to provide more
information and are therefore useful for debugging or inspecting the verifi-
cation results. Calling satabs --help lists the switches described below.

1 This restriction is not imposed by the verification algorithms that are used by Sat-

Abs– they also work on assembly code. The reason is simply that so far no assembly
language frontend is available for SatAbs.

19

Parameters to modify behavior

--16, --32 The int type of the system you run your pro-
gram on is assumed to have a size of 16 bits (and
32 bits, respectively). This information is neces-
sary in order to model overflows accurately.

--function name Set the name of the main function (i.e., the entry
point of the program). By default, main will be
considered to be the main function.

--claims <n> Verify only a single claim. <n> denotes an index
into the list of claims that SatAbs prints when
called with the parameter --show-claims. It is
recommended to verify claims separately in order
to avoid scalability problems.

--modelchecker

name
Specify the model checker that SatAbs shall
use. Currently the values boppo, cadence-smv,
nusmv, cmu-smv, spin, and satmc are supported.

--iterations # Allows you to specify the maximum number of
refinement iterations. By default, the number of
iterations is 50.

Parameters to increase verbosity

--show-claims Lists the claims (see Section 4.1.2) that SatAbs

will try to verify for the given program.
--show-goto-program Allows you to inspect the “goto-program” that

corresponds to your input program. Goto-
programs correspond to the original input pro-
gram, but the function calls have been inlined,
and control flow statements have been replaced
by conditional jumps (“guareded gotos”) to ba-
sic blocks.

--show-value-sets Show the data used for pointer analysis

Structured output can be obtained from SatAbs using the option –xml-ui.
Any output from SatAbs (e.g., counterexamples) will then use an XML
representation.

4.3 Tutorials

Similar to unit testing, the model checking approach requires the user to
clearly define what parts of the program should be tested. This requirement
has following reasons:

� Despite recent advances, the size of the programs that model checkers
can cope with is still restricted.

� Typically, you want to verify your program and not the libraries that
it uses (these are usually assumed to be correct).

� SatAbs cannot verify binary libraries.

� SatAbs does not provide a model for the hardware (e.g., hard disk,
input/output devices) the tested program runs on. Since SatAbs

is supposed to examine the behaviour of the tested program for all

20

possible inputs and outputs, it is reasonable to model input and output
by non-deterministic choice.

This section provides an introduction to model checking “real” C programs
with SatAbs. It starts with a small example that is based on Linux device
drivers.

4.3.1 Example: Reference Counting in Linux Device Drivers

Microsoft’s Slam2 toolkit has been successfully used to find bugs in Win-
dows device drivers. Slam automatically verifies device driver whether a
device driver adheres to a specifications. Slam provides a test harness
for device drivers that calls the device driver dispatch routines in a non-
deterministic order. Therefore, the model checker examines all combinations
of calls. Motivated by the success this approach, we provide an example
based on Linux device drivers.

Dynamically loadable modules enable the Linux Kernel to load device drivers
on demand and to release them when they are not needed anymore. When
a device driver is registered, the kernel provides a major number that is
used to uniquely identify the device driver. The corresponding device can
be accessed through special files in the filesystem; they are conventionally
located in the /dev directory. If a process accesses a device file the kernel
calls the corresponding open, read and write functions of the device driver.
Since a driver must not be released by the kernel as long as it is used by at
least one process, the device driver must maintain a usage counter (in mod-
ern Linux kernels, this is done automatically, however, drivers that must
maintain backward compatibility have to adjust this count).

We provide a skeleton of such a driver. The driver contains following func-
tions:

1. register chrdev: (in spec.c, Figure 4.4) Registers a character de-
vice. In our implementation, the function sets the variable usecount

to zero and returns a major number for this device (a constant, if
the user provides 0 as argument for the major number, and the value
specified by the user otherwise).

2. unregister chrdev: (in spec.c, Figure 4.4) Unregisters a character
device. This function asserts that the device is not used by any process
anymore (we use the macro MOD IN USE to check this).

3. dummy open: (in driver.c, Figure 4.5) This function increases the
usecount. If the device is locked by some other process dummy open

returns -1. Otherwise it locks the device for the caller.

4. dummy read: (in driver.c, Figure 4.5) This function “simulates” a
read access to the device. In fact it does nothing, since we are cur-
rently not interested in the potential buffer overflow that may result
from a call to this function. Note the usage of the function nondet int

(in line 17): This is an internal SatAbs function that nondeterministi-
cally returns an arbitrary integer value. The function assume (line 18)

2 http://research.microsoft.com/SLAM

21

1 int usecount;

2 int dummy major;

3 extern int locked;

4 int register chrdev (unsigned int major, const char* name)

5 {

6 usecount = 0;

7 if (major == 0)

8 return MAJOR NUMBER;

9 return major;

10 }

11 int

unregister chrdev (unsigned int major, const char* name)

12 {

13 if (MOD IN USE) {

14 ERROR: assert (0);

15 }

16 else

17 return 0;

18 }

Figure 4.4: Sources (spec.c) for the (un)registering of device drivers

tells SatAbs to ignore all traces that do not adhere to the given as-
sumption. Therefore, whenever the lock is held, dummy read will re-
turn a value between 0 and max. If the lock is not held then dummy read

returns -1.

5. dummy release: (in driver.c) If the lock is held, then dummy release

decreases the usecount, releases the lock, and returns 0. Otherwise,
the function returns -1.

We now want to check if any valid sequence of calls of the dispatch func-
tions (Figure 4.5) can lead to the violation of the assertion in line 14 in
Figure 4.4. Obviously, a call to dummy open that is immediately followed by
a call to unregister chrdev violates the assertion. Therefore, we rule out
this invalid sequence of calls by ensuring (see line 26 in Figure 4.6) that no
device is unregistered while still being locked.

The model checking harness that calls the dispatching functions is shown in
Figure 4.6.

The function main in spec.c gives an example of how these functions are
called. First, a character device “dummy” is registered. The major number is
stored in the inode structure of the device. The values for the file structure
are assigned non-deterministically. In line 14 the variable random is assigned
non-deterministically. Subsequently, in line 15, the value of random is re-
stricted to be 0 ≤random≤ 3 by a call to assume. Whenever the value of
random is not in this interval, the corresponding execution trace is simply

22

pruned by SatAbs. Depending on the value of random, the harness calls
either dummy open, dummy read or dummy close. Therefore, if there is a
sequence of calls to these three functions that leads to a violation of the
assertion in unregister chrdev in line 28, then SatAbs will eventually
consider it.

If we ask satabs to show us the verification claims (--show-claims) for
our example, we obtain

1. Claim 1 : In File driver.c (Figure 4.5), line 7: assertion
(*inode).i rdev >> 8 == dummy major

2. Claim 2 : In File spec.c (Figure 4.4), line 14: assertion
FALSE

It seems obvious that claim 1 can never be violated. SatAbs confirms this
assumption: We call

satabs --claim 1 driver.c spec.c

and SatAbs reports VERIFICATION SUCCESSFUL after a few iterations. How-
ever, if we try to verify claim 2, SatAbs reports that the property in line 14
in file spec.c (Figure 4.4), function unregister chrdev is violated (i.e.,
the assertion is FALSE, therefore the VERIFICATION FAILED). Furthermore,
SatAbs provides a detailed description of the counterexample (i.e., the
execution trace that violates the property). On this trace, dummy open is
called twice, leading to a usecount of 2 (the second call of course fails with
rval=-1, but the counter is increased nevertheless). Then, dummy release

is called to release the lock on the device. Finally, the loop is left and
the call to unregister chrdev results in a violation of the assertion (since
usecount is still 1, even though locked=0).

4.3.2 Example: Buffer Overflow in a Mail Transfer Agent

The example presented in Section 4.3.1 is obviously a toy example and can
hardly be used to convince your project manager to use static verification
in your next project. Even though we recommend to use formal verification
and specification already in the early phases of your project, the sad truth
is that in most projects verification (of any kind) is still pushed to the very
end of the development cycle. Therefore, this section is dedicated to the
verification of legacy code. However, the techniques presented here can also
be used for unit testing.

We explain how to model check Aeon3 version 0.2a, a small mail transfer
agent written by Piotr Benetkiewicz. freshmeat.net claims that Aeon is a
“good choice for hardened or minimalistic boxes”.

Our first naive attempt to verify Aeon using

satabs --show-claims aeon.c base64.c lib aeon.c

fails due to the following reasons:

1. Parsing errors. On some of the architectures that SatAbs supports,
the frontend of SatAbs fails to parse the ANSI-C standard header files

3 (available for download on the SatAbs homepage and on http://freshmeat.net/

projects/aeon/)

23

that are distributed with your compiler of choice (e.g., GCC makes use
of extensions of the C programming language that cannot be handled
by SatAbs).

2. Missing library functions. As already stated on page 19, SatAbs is
unable to find the source code for library functions like strcmp, getenv
and strtok.

To solve the first of these problems, we provide a set of header files that
are suitable for the SatAbs C parser. The header files can be downloaded
from the SatAbs homepage. Assuming that you have unpacked these files
to the directory ../include (relative to the source files of Aeon) you can
now instruct SatAbs to use these header files as follows:

satabs --show-claims -I ../include aeon.c base64.c lib aeon.c

After complaining that the bodies of approximately 30 library functions are
missing, SatAbs will provide more than 150 claims for Aeon.

Now, do you have to provide a body for all missing library functions? There
is no easy answer to this question, but a viable answer would be “most
likely not”. It is necessary to understand how SatAbs handles functions
without bodies: It simply assumes that such a function returns an arbitrary
value, but that no other locations than the one on the left hand side of the
assignment are changed. Obviously, there are cases in which this assumption
is unsound, since the function potentially modifies all memory locations that
it can somehow address. Consider the first few lines of the main function
of Aeon in Figure 4.7 and the function getConfig in Figure 4.8. The
function getConfig makes calls to strcpy, strcat, getenv, fopen, fgets,
and fclose. It is very easy to provide an implementation for the functions
from the string library (string.h), and we do so in Figure 4.9.

The implementation of getenv is not so straight forward. The man-page
of getenv (which we obtain by entering man 3 getenv in a Unix or cygwin
command prompt) tells us:

‘getenv’ searches the list of environment variable names and values (us-
ing the global pointer "‘char **environ’") for a variable whose name
matches the string at NAME. If a variable name matches, ‘getenv’ returns
a pointer to the associated value.

SatAbs has no information whatsoever about the content of environ. Even
if SatAbs could access the environment variables on your computer, a suc-
cessful verification of Aeon would then only guarantee that the claims for
this program hold on your computer with a specific set of environment vari-
ables. We have to assume that environ contains environment variables that
have an arbitrary content of arbitrary length. The content of environment
variables is not only arbitrary but could be malefic, since it can be modified
by the user.

SatAbs provides several functions to model user input, one of which, namely
nondet uint, is used in the implementation of getenv in Figure 4.10. The
prototype declaration of the function nondet uint tells us that nondet uint

will return an unsigned integer. Since we do not provide a body to this
function, SatAbs will consider all possible return values. In Figure 4.10
we use nondet uint to determine the length of the the string that getenv

24

returns. The subsequent call to assume guarantees that buf size is at
least one (since we need to zero-terminate the string) and is bounded by
SATABS MAX BUF LEN. In our first approximation of the behaviour of getenv
we completely ignore the content of the string.

We could model the function fgets in a similar manner, but before we do
this, let us have another look at the claims that Satabs generates if we
provide the implementations from the string library and for getenv. (The
file stubs.c can be downloaded from the SatAbs homepage.)

satabs --show-claims -I ../include aeon.c base64.c \
lib aeon.c ../stubs/stubs.c

Now SatAbs will generate approximately 700 claims. Most of these claims
require that we verify that the upper and lower bounds of buffers or arrays
are not violated. Let us look at the first few claims that SatAbs generates:

� Claim 4:
file stubs.c line 8 column 10 function c::strcpy
dereference failure: array ‘home’ lower bound
!(i < 0) || !(dest == &home[0])

� Claim 5:
file stubs.c line 8 column 10 function c::strcpy
dereference failure: array ‘home’ upper bound
!(dest == &home[0]) || !(i >= 512)

The variable home looks familiar; We encountered it line 7 of the func-
tion getConfig in Figure 4.8. The function getenv in combination with
functions strcpy, strcat or sprintf is indeed often the source for buffer
overflows. Therefore, we try to use SatAbs to check if the upper bound of
the array home:

satabs --claim 5 -I ../include aeon.c base64.c \
lib aeon.c ../stubs/stubs.c

SatAbs runs for quite a while and will eventually give up, telling us that it’s
upper bound for abstraction refinement iterations has been exceeded. This
is not exactly the result we were hoping for, and we could now increase the
bound for iterations with help of the --iterations command line switch
of SatAbs.

Before we do this, let us investigate why SatAbs failed to provide a sat-
isfying result. The function strcpy contains a loop that counts from 1 to
the length of the input string. Predicate abstraction, the mechanism Sat-

Abs is based on, is unable to detect such loops and will therefore unroll the
loop body as often as necessary. The array home has MAX LEN elements, and
MAX LEN is defined to be 512 in aeon.h. Therefore, SatAbs would have to
run through at least 512 iterations, only to verify (or reject) one of the more
than 700 claims! Does this fact defeat the purpose of static verification?

SatAbs provides a mechanism to bypass this problem by providing a de-
tection for deep loops. For this purpose, SatAbs has to rely on a close
cooperation with the abstract model checker. Currently, the only model

25

checker that provides loop detection is BOPPO (please refer to Chapter 2
to find out where to obtain and how to install BOPPO).

The switch --loop-detection tells SatAbs to activate the detection of
deep loops. Furthermore, we tell SatAbs to use BOPPO instead of the
default model checker SMV:

satabs --claim 5 --modelchecker boppo --loop-detection \
-I ../include aeon.c base64.c lib aeon.c ../stubs/stubs.c

This time, SatAbs will tell us that it found a potential buffer overflow:

� Violated property:
file stubs.c line 8 column 10 function c::strcpy
dereference failure: array ‘home’ upper bound
!(dest == &home[0]) || !(i >= 512)

Furthermore, SatAbs provides a counterexample trace that demonstrates
how the buffer overflow be reproduced. If you use the Eclipse plugin (as
described in Chapter 5), you can step through this counterexample, although
it might be a bit tedious to step through 512 iterations of the loop in strcpy.

4.3.3 Unit Testing with SatAbs

As mentioned in Section 4.3.2, it is highly recommendable to use formal
verificat as early as possible in your development cycle. Unit testing is used
in most software development projects, and static verification with Sat-

Abs can be very well combined with this task. Unit testing relies on a
number test cases that yield the desired code coverage. Such test cases are
imlemented by a software testing engineer in terms of a test harness (aka test
driver) and a set of function stubs. Typically, a slight modification to the
test harness allows it to be used with SatAbs. Replacing the explicit input
values with non-deterministic inputs (as explained in sections 4.3.1 and 4.3.2
guarantees that SatAbs will try to achieve full path and state coverage
(due to the fact that predicate abstraction implicitely detects equivalence
classes). However, it is not guaranteed that SatAbs terminates in all cases.
Keep in mind that you must not make any assumptions about the validity
of the claims if SatAbs did not run to completion!

26

1 extern int dummy major;

2 int locked;

3 int init module (void) {

4 locked = FALSE;

5 }

6 int dummy open (struct inode *inode, struct file *filp) {

7 assert (MAJOR (inode->i rdev) == dummy major);

8 MOD INC USE COUNT;

9 if (locked)

10 return -1;

11 locked = TRUE;

12 return 0; /* success */

13 }

14 unsigned int dummy read (struct file *filp,

char *buf, int max) {

15 int n;

16 if (locked) {

17 n = nondet int ();

18 assume ((n >= 0) && (n <= max));

19 /* writing to the buffer is not modeled here */

20 return n;

21 }

22 return -1;

23 }

24 int dummy release (struct inode *inode,

struct file *filp) {

25 if (locked) {

26 MOD DEC USE COUNT;

27 locked = FALSE;

28 return 0;

29 }

30 return -1;

31 }

Figure 4.5: Sources (driver.c) for the “dummy” device driver

27

1 int main (int argc, char** argv) {

2 int rval, size;

3 struct file my file;

4 char *buffer; /* we do not model this buffer */

5 struct inode inode;

6 unsigned char random;

7 dummy major = register chrdev (0, "dummy");

8 inode.i rdev = dummy major << MINORBITS;

9 init module ();

10 /* assign arbitrary values */

11 my file.f mode = nondet uint ();

12 my file.f pos = nondet uint ();

13 do {

14 random = nondet uchar ();

15 assume (0 <= random && random <= 3);

16 switch (random) {

17 case 1:

18 rval = dummy open (&inode, &my file);

19 break;

20 case 2:

21 count = dummy read (&my file, buffer,

BUF SIZE);

22 break;

23 default:

24 dummy release (&inode, &my file);

25 }

26 } while (random || locked);

27 cleanup module ();

28 unregister chrdev (dummy major, "dummy");

29 return 0;

30 }

Figure 4.6: Sources for the model checking harness

28

1 int main(int argc, char **argv)

2 {

3 char settings[MAX SETTINGS][MAX LEN];

4 . . .

5 numSet = getConfig(settings);

6 if (numSet == -1) {

7 logEntry(M̈issing config file!)̈;

8 exit(1);

9 }

10 . . .

Figure 4.7: First few lines of main of Aeon (aeon.c)

1 /* reading rc file, handling missing options */

2 int getConfig(char settings[MAX SETTINGS][MAX LEN])

3 {

4 char home[MAX LEN];

5 FILE *fp; /* .rc file handler */

6 int numSet = 0; /* number of settings */

7 strcpy(home, getenv("HOME")); /* get home path */

8 strcat(home, "/.aeonrc"); /* full path to rc file */

9 fp = fopen(home, "r");

10 if (fp == NULL) return -1; /* no cfg - ERROR */

11 while (fgets(settings[numSet], MAX LEN-1, fp)

12 && (numSet < MAX SETTINGS)) numSet++;

13 fclose(fp);

14 return numSet;

15 }

Figure 4.8: Function getConfig of Aeon (lib aeon.c)

29

1 char *strcpy (char *dest, const char *src)

2 {

3 int i;

4 for (i = 0 ;; i++) {

5 dest[i] = src[i];

6 if (src[i] == ’\0’)

7 break;

8 }

9 }

10 char *strcat(char *dest, const char *src)

11 {

12 int i, j;

13 i = 0; j = 0;

14 while (dest[i] != ’\0’)

15 i++;

16 do {

17 dest[i] = src[j];

18 i++; j++;

19 } while (src[j] != ’\0’);

20 return dest;

21 }

Figure 4.9: Functions strcpy and strcat (stubs.c)

1 unsigned int nondet uint (void);

2 #define SATABS MAX BUF LEN (65535)

3 char *getenv(const char *name)

4 {

5 char* buffer;

6 size t buf size = nondet uint ();

7 assume (buf size > 1

8 && buf size <= SATABS MAX BUF LEN+1);

9 buffer = (char*)malloc (buf size*sizeof(char));

10 buffer[buf size-1]=0;

11 return buffer;

12 }

Figure 4.10: Function getenv (stubs.c)

30

5 The Eclipse User Interface

Many readers will agree that command line interfaces are a bit archaic nowa-
days. Therefore, we provide a user interface for CBMC and SatAbs that
integrates the command line tools seamlessly into Eclipse.1. We assume
that you have already installed Eclipse as well as the SatAbs plugin. The
installation of the plugin is covered by Chapter 2,and installation instruc-→ 2

tions for Eclipse can be found on the Eclipse homepage. We assume some
basic familiarity with Eclipse. This section provides a short, step by step
introduction to the user interface and is based on the SatAbs example in
Section 4.3.1.The files used for the example are available for download at→ 4.3.1

http://www.cprover.org/satabs/examples/linux_toy_driver/.

1. Start Eclipse.

2. Create a new SatAbs project as shown in Figure 5.1. Name your
project DummyDriver.

Figure 5.1: Creating a new SatAbs project.

3. Once you have created a SatAbs project, right click on the element
DummyDriver in the Eclipse Navigator (or, alternatively, click on the
File menu) and select New → New Task to create a new SatAbs task.
Name the task usecount.

4. Double click the element usecount.tsk in the Navigator to show the
Eclipse view that provides the settings for this task. Figure 5.2 shows
the Files Selection tab, which allows you to select the source files
you want to run SatAbs on. Click on the Change button to select
the directory where the source files you want to verify are located.
Choose the driver example described in the previous section.

5. Select the source files spec.c and driver.c (see Figure 5.2). Do not
select the header files, as the C preprocessor already includes the files.

1 Eclipse is an open-sourced integrated development environment and can be downloaded
from http://www.eclipse.org.

31

Figure 5.2: Selecting source files using the Eclipse plugin for SATABS

6. The Includes and Defines tab can be used to specify include paths
and add definitions. This is useful if you want to replace the standard
header files by a specific, SatAbs enhanced version. (Due to the GNU
extensions to C, SatAbs fails to parse some of the GCC header files.)
In a later section, we provide a more complex example where this is
necessary.

7. The Options tab (see Figure 5.3) allows you to specify the command
line options for SatAbs. This tab reflects exactly the parameters
presented in Section 4.2. Make sure that checking of assertions is
activated.

8. Create a launch configuration by clicking the green run button ().
Figure 5.4 shows the dialog that allows you to create a new run con-
figuration for SatAbs. Name the new configuration Satabs and make
sure that the satabs executable is selected (not cbmc).

9. Now run SatAbs on usecount.tsk by clicking again. SatAbs

generates two claims for the driver example, one for each assertion.

10. Verify the first assertion2 by clicking on driver.c with the right mouse
button and selecting Check Selection. As in the previous section, Sat-

Abs takes a few seconds the verify that the assertion cannot be vi-

olated. This is indicated by the symbol that is displayed in the
left-most column of the claim. Furthermore, assertions that have al-
ready been verified are highlighted in green in the source file.

11. Repeat the same step for the second assertion. This time, SatAbs

takes a bit longer to come to a conclusion. The log view in Figure 5.6
shows that SatAbs needs several refinement abstraction iterations.

2 In the source file view, the assertion is highlighted yellow, indicating that it has not
been checked so far.

32

Figure 5.3: Specifying the command line options for SATABS

After some time, SatAbs should report that the claim can be violated
(see Figure 5.7).

12. SatAbs provides a detailed execution trace that explains how the
assertion can be violated. The Trace view shown in Figure 5.7 can be
used to step through the counterexample and provides the values of
the variables in each step. Since the program is not actually executed,3

you can step forwards as well as backwards, a feature which makes it
much easier to understand the counterexample and find the error in
the program.

3 Therefore, you cannot change the values of the variables, as you can do in a debugger.

33

Figure 5.4: Running SATABS in Eclipse

Figure 5.5: Using SATABS to verify an assertion

34

Figure 5.6: SATABS is checking an assertion (iterations shown in log)

Figure 5.7: Stepping through a counterexample in Eclipse

35

6 Build Systems and Libraries

6.1 Integration into Build Systems with goto-cc

Existing software projects usually do not come in a single source file that
may simply be passed to a model checker. They rather come in a multitude
of source files in different directories and refer to external libraries and
system-wide options. A build system then collects the configuration options
from the system and compiles the software according to build rules.

The most prevalent build tool on Unix (-based) systems surely is the make
utility. This tool uses build rules given in a Makefile that comes with the
software sources. Running software verification tools on projects like these
is greatly simplified by a compiler that first collects all the necessary models
into a single model file. goto-cc is such a model file extractor, which can
seamlessly replace gcc in Makefiles. The normal build system for the project
may be used to build the software, but the result will be a model file with
suitable detail for verification, as opposed to a flat executable program.

6.1.1 Example: Building wu-ftpd

1. Download the sources of wu-ftpd from
ftp://ftp.wu-ftpd.org/pub/wu-ftpd/wu-ftpd-current.tar.gz

2. Unpack the sources by running
tar xfz wu-ftpd-current.tar.gz

3. Change to the source directory, by entering, e.g.,
cd wu-ftpd-2.6.2

4. Configure the project for verification by running
./configure YACC=byacc CC=goto-cc --host=none-none-none

5. Build the project by running
make

This creates multiple model files in the src directory. Among them is
a model for the main executable ftpd.

6. Run a model-checker, e.g., CBMC, on the model file:
cbmc --binary src/ftpd

6.1.2 Important Notes

More elaborate build or configuration scripts often make use of features of
the compiler or the system library to detect configuration options automat-
ically, e.g., in a configure script.

Replacing gcc by goto-cc at this stage may confuse the script, or detect
wrong options. For example, missing library functions do not cause goto-

cc to throw an error (only to issue a warning). Because of this, configuration

36

scripts sometimes falsely assume the availability of a system function or
library.

In the case of this or similar problems, it is more advisable to configure
the project using the normal routine, and replacing the compiler setting
manually in the generated Makefiles, e.g., by replacing lines like CC=gcc by
CC=goto-cc.

A helpful command that accomplishes this task successfully for many projects
is the following:

for i in ‘find . -name Makefile‘; do

sed -e ’s/^\(\s*CC[\t]*=\)\(.*$\)/\1goto-cc/g’ -i $i

done

6.2 Libraries

6.2.1 Linking libraries

Some software projects come with their own libraries; also, the goal may be
to analyze a library by itself. For this purpose it is possible to use goto-cc

to link multiple model files into a library of model files. An object file can
then be linked against this model library. For this purpose, goto-cc also
supports a pure linker mode.

To apply this linker mode, create a link to the goto-cc binary by the name
of goto-ld (alternatively copy the goto-cc binary, if your system does not
support links). The goto-ld tool can now be used as a seamless replacement
for the ld tool present on most Unix (-based) systems.

The default linker may need to be replaced by goto-ld in the build script,
which can be achieved in much the same way as replacing the compiler (see
Section 6.1.2).

6.2.2 Abstractions for Zero-Terminated Strings

Overview

CBMC, SatAbs, and goto-cc come with a built-in library for some of
the string functions defined in string.h. In case the input files do not
provide function definitions for any of those functions, the built-in libraries
are automatically added to improve the precision of the analysis. Also, the
abstract function bodies contain assertions enforcing preconditions of the
string functions.

The default library for these functions is not an exact model; it rather only
provides an over-approximation, which means that it may allow behavior
not present in a real implementation. The goal of the over-approximation
is to track the length of the strings, as opposed to their content. Any detail
that relates to the content of zero-terminated strings is therefore lost.

The over-approximation is realized as follows: the input model is augmented
by additional variables that track the termination status, the buffer size,
and the length of a string. These variables may be accessed by using the
following three macros:

37

� Bool CPROVER is zero string(const void *str)

(Returns true if str is zero-terminated.)

� unsigned CPROVER zero string length(const void *str);

(Returns the position of a zero-character in str. Note that this is only
an upper bound for the string length.)

� unsigned CPROVER buffer size(const void *buffer);

(Returns the capacity of buffer.)

These macros are automatically inserted into the model wherever necessary.
This means that all three properties of strings are soundly tracked through-
out the program, in an abstract fashion. While this not only increases the
precision of the analysis (compared to the absence of a model for the string
functions), it also improves the verification performance over full concrete
implementations of the string functions.

Example: strlen

Figure 6.1 shows the principle of the abstract string functions in the built-in
libraries.

1 inline unsigned strlen(const char *s)

2 {

3 CPROVER HIDE:

4 CPROVER assert(CPROVER is zero string(s),

5 "strlen zero-termination");

6 return CPROVER zero string length(s);

7 }

Figure 6.1: The abstract definition of strlen.

Programs may call the standard library function strlen without linking to
a model file of the system library. The abstract definition of the function
is automatically added to the input model. Note that in this example, the
return value of the strlen function is not computed by looping over the
string. The function simply returns a value read modeled by additional
program variables, which may be non-deterministic.

Disabling built-in libraries and string abstraction

The addition of the built-in libraries, or the abstraction of strings, can can
be disabled using the following two command-line options:

� --no-library

(Prevents built-in libraries from being added.)

� --no-string-abstraction

(Disables abstract tracking of string properties.)

38

7 ANSI-C/C++ Language Features

7.1 Basic Datatypes

CBMC and SatAbs support the scalar data types as defined by the ANSI-
C standard, including Bool. By default, int is 32 bits wide, short int is
16 bits wide, and char is 8 bits wide. Using a command line option, these
default widths can be changed. By default, char is signed. Since some
architectures use an unsigned char type, a command line option allows to
change this setting.

There is also support for the floating point data types float, double, and
long double. By default, CBMC and SatAbs use fixed-point arithmetic
for these types. Variables of type float have by default 32 bits (16 bits
integer part, 16 bits fractional part), variables of type double and long

double have 64 bits.

In addition to the types defined by the ANSI-C standard, CBMC and Sat-

Abs support the following types, which are Microsoft C extensions: int8,
int16, int32, and int64. These types define a bit vector with the

given number of bits.

7.2 Operators

7.2.1 Boolean Operators

CBMC and SatAbs support all ANSI-C Boolean operators on scalar vari-
ables a, b:

Operator Description

!a negation
a && b and
a || b or

7.2.2 Integer Arithmetic Operators

CBMC and SatAbs support all integer arithmetic operators on scalar vari-
ables a, b:

39

Operator Description

-a unary minus, negation
a+b sum
a-b subtraction
a*b multiplication
a/b division
a%b remainder
a<<b bit-wise left shift
a>>b bit-wise right shift
a&b bit-wise and
a|b bit-wise or
a^b bit-wise xor
a< b relation
a<=b relation
a> b relation
a>=b relation

Note that the multiplication, division, and reminder operators are very ex-
pensive with respect to the size of the equation that is passed to the SAT
solver. Furthermore, the equations are hard to solve for all SAT solvers
known to us.

As an example, consider the following program:

int main () {
unsigned char a , b ;
unsigned int r e s u l t =0, i ;

a=nondet uchar () ;
b=nondet uchar () ;

for (i =0; i <8; i++)
i f ((b>>i)&1)

r e s u l t+=(a<<i) ;

a s s e r t (r e s u l t==a*b) ;
}

The program nondeterministically selects two 8-bit unsigned values, and
then uses shift-and-add to multiply them. It then asserts that the result
(i.e., the sum) matches a*b. Although the resulting SAT instance has only
about 1400 variables, it takes 12 minutes to solve using Chaff.

Properties Checked Optionally, CBMC and SatAbs allow checking for
arithmetic overflow in case of signed operands. In case of the division and
the remainder operator, CBMC and SatAbs check for division by zero.
This check can be disabled using a command line option.

As an example, the following program nondeterministically selects two un-
signed integers a and b. It then checks that either of them is non-zero and
then computes the inverse of a+b:

40

int main () {
unsigned int a , b , c ;

a=nondet u int () ;
b=nondet u int () ;

i f (a>0 | | b>0)
c=1/(a+b) ;

}

However, due to arithmetic overflow when computing the sum, the division
can turn out to be a division by zero. CBMC generates a counterexample
as follows for the program above:

Initial State

--

c=0 (00000000000000000000000000000000)

State 1 file div_by_zero.c line 4 function main

--

a=4294967295 (11111111111111111111111111111111)

State 2 file div_by_zero.c line 5 function main

--

b=1 (00000000000000000000000000000001)

Failed assertion: division by zero file div_by_zero.c

line 8 function main

7.2.3 Floating Point Arithmetic Operators

CBMC and SatAbs support the following operators on variables of the
types float, double, and long double:

Operator Description

-a unary minus, negation
a+b sum
a-b subtraction
a*b multiplication
a/b division
a< b relation
a<=b relation
a> b relation
a>=b relation

Note that the multiplication and division operators are very expensive with
respect to the size of the equation that is passed to the SAT solver. Fur-
thermore, the equations are hard to solve for all SAT solvers known to
us. CBMC and SatAbs also support type conversions to and from integer
types. Different rounding modes are currently not supported.

41

7.2.4 The Comma Operator

CBMC and SatAbs support the comma operator a, b. The operands are
evaluated for potential side effects. The result of the operator is the right
operand.

7.2.5 Type Casts

CBMC and SatAbs have full support for arithmetic type casts. As an
example, the expression (unsigned char)i for an integer i is guaranteed
to be between 0 and 255 in case of an eight bit character type.

Properties Checked For the unsigned data types, the ANSI-C standard
requires modulo semantics, i.e., that no overflow exception occurs. Thus,
overflow is not checked. For signed data types, an overflow exception is
permitted. Optionally, CBMC and SatAbs check for such arithmetic over-
flows.

7.2.6 Side Effects

CBMC and SatAbs allow all side effect operators with their respective
semantics. This includes the assignment operators (=, +=, etc.), and the
pre- and post- increment and decrement operators.

As an example, consider the following program fragment:

unsigned int i , j ;

i=j++;

After the execution of the program, the variable i will contain the initial
value of j, and j will contain the initial value of j plus one. CBMC generates
the following equation from the program:

i1 = j0

j1 = j0 + 1

CBMC and SatAbs perform the implicit type cast as required by the ANSI-
C standard. As an example, consider the following program fragment:

char c ;
int i ;
long l ;

l = c = i ;

The value of i is converted to the type of the assignment expression c=i,
that is, char type. The value of this expression is then converted to the
type of the outer assignment expression, that is, long int type.

Ordering of Evaluation The ANSI-C standard allows arbitrary order-
ings for the evaluations of expressions and the time the side-effect becomes
visible. The only exceptions are the operators &&, ||, and the ternary oper-
ator ?:. For the Boolean operators, the standard requires strict evaluation

42

from left to right, and that the evaluation aborts once the result is known.
The operands of the expression c ? x : y must be evaluated as follows:
first, c is evaluated. If c is true, x is evaluated, and y otherwise.

As an example, assume that a pointer p in the following fragment may
point to either NULL or a valid, active object. Then, an if statement as
follows is valid, since the evaluation must be done from left to right, and if
p points to NULL, the result of the Boolean AND is known to be false and
the evaluation aborts before p is dereferenced.

i f (p!=NULL && *p==5) {
. . .

For other operators, such as addition, no such fixed ordering exists. As an
example, consider the following fragment:

int g ;

int f () {
g=1;
. . .

}

. . .
g=2;

i f (f ()+g==1) {
. . .

In this fragment, a global variable g is assigned to by a function f(), and just
before an if statement. Furthermore, g is used in an addition expression
in the condition of the if statement together with a call to f(). If f() is
evaluated first, the value of g in the sum will be one, while it is two if g is
evaluated first. The actual result is architecture dependent.

Properties Checked CBMC and SatAbs model this problem as follows:
One option allows setting a fixed ordering of evaluation for all operators.
The other option allows checking for such artifacts: CBMC and SatAbs can
assert that no side-effect affects the value of any variable that is evaluated
with equal priority. This includes changes made indirectly by means of
pointers. In the example, this is realized by write-protecting the variable g

during the execution of f. This rules out programs that show architecture
dependent behavior due to the ordering of evaluation. While such programs
are still valid ANSI-C programs, we do not believe that programs showing
architecture dependent behavior are desirable.

7.2.7 Function Calls

CBMC and SatAbs support functions by inlining. No modular approach
is done. CBMC and SatAbs preserve the locality of the parameters and
the non-static local variables by renaming.

43

As an example, the following program calls the functions f() and g() twice.
While f() uses a static variable, which is not renamed between calls, g()
uses a true local variable, which gets a new value for each call.

int f () {
stat ic int s=0;

s++;

return s ;
}

int g () {
int l =0;

l++;

return l ;
}

int main () {
a s s e r t (f ()==1); // f i r s t c a l l to f
a s s e r t (f ()==2); // second c a l l to f
a s s e r t (g ()==1); // f i r s t c a l l to g
a s s e r t (g ()==1); // second c a l l to g

}

CBMC supports Recursion by finite unwinding, as done for while loops.
CBMC checks that enough unwinding is done by means of an unwinding
assertion (section 7.3.6 provides more details). SatAbs does not support
recursion.

7.3 Control Flow Statements

7.3.1 Conditional Statement

CBMC and SatAbs allow the use of the conditional statement as described
in the ANSI-C standard.

Properties Checked CBMC and SatAbs generate a warning if the as-
signment operator is used as condition of a control flow statement such as
if or while.

7.3.2 return

The return statement without value is transformed into an equivalent goto
statement. The target is the end of the function. The return statement
with value is transformed into an assignment of the value returned and the
goto statement to the end of the function.

44

Properties Checked CBMC and SatAbs enforce that functions with a
non-void return type return a value by means of the return statement. The
execution of the function must not end by reaching the end of the function.
This is realized by inserting assert(FALSE); at the end of the function.
CBMC and SatAbs report an error trace if this location is reachable.

As an example, consider the following fragment:

int f () {
int c=nondet in t () ;

i f (c !=1)
return c ;

}

int main () {
int i ;
i=f () ;

}

In this fragment, f() may exit without returning a value. CBMC produces
the following counterexample:

State 1 file no-return.c line 2 function f

--

c=1 (00000000000000000000000000000001)

Failed assertion: end-of-function assertion

file no-return.c line 6 function f

7.3.3 goto

While only few C programs make use of goto statements, CBMC and Sat-

Abs provide full support for such programs. CBMC distinguishes forward
and backward jumps. In case of backward jumps, the same technique used
for loops is applied: the loop is unwound a given number of times, and
then we check that this number of times is sufficient by replacing the goto

statement by assert(FALSE);.

7.3.4 break and continue

The break and continue statements are replaced by equivalent goto state-
ments as described in the ANSI-C standard.

7.3.5 switch

CBMC and SatAbs provide full support for switch statements, including
fall-through.

7.3.6 Loops

In Bounded Model Checking, the transition system is unwound up to a finite
depth. In case of C programs, this means that for and while are unwound

45

up to a certain depth. In many cases, CBMC is able to automatically detect
the maximum number of times a loop can be executed. This includes while
loops and loops with modifications to the loop counter inside the loop body,
even when done indirectly using a pointer.

However, in case of loops that have no pre-set bound, e.g., loops iterating
on dynamic data structures, the user must specify a bound by means of the
--unwind command line argument. CBMC will then unwind the loops up
to that bound and check that the number is large enough by means of an
unwinding assertion.

SatAbs uses abstraction, and thus, requires no depth-bound. The verifica-
tion result is valid for any number of iterations.

7.4 Non-Determinism

CBMC and SatAbs allow to model user-input by means of non-deterministic
choice functions. The names of these functions have the prefix nondet . The
value range generated is determined by the return type of the function. As
an example,

int nondet in t () ;

returns a nondeterministically chosen value of type int. The functions are
built-in, i.e., the prototype is sufficient. CBMC and SatAbs will evaluate
all traces arising from the possible choices.

7.5 Assumptions and Assertions

CBMC and SatAbs check assertions as defined by the ANSI-C standard:
The assert statement takes a Boolean condition, and the tools check that
this condition is true for all runs of the program. The logic for assertions is
the usual ANSI-C expression logic. In addition to the assert statement, the
CPROVER assert statement can be used to annotate the assertions with a

comment:

CPROVER assert (! (x&1) , ”x d i v i s i b l e by 2”) ;

CBMC and SatAbs also provide the CPROVER assume statement. The
CPROVER assume statement restricts the program traces that are consid-

ered and allows assume-guarantee reasoning. Similar to an assertion, an as-
sumption takes a Boolean expression as argument. Intuitively, the CPROVER assume

statement aborts the program successfully if the condition evaluates to false.
If the condition evaluates to true, the execution continues.

As an example, the following function first nondeterministically picks an
integer value. It then assumes that the integer is in a specific range and
returns the value.

int one to t en () {
int value=nondet in t () ;

CPROVER assume(value>=1 && value <=10);
return value ;

}

46

Note that the assume statement is not retro-active with respect to assertions.
E.g.,

a s s e r t (value <10);
CPROVER assume(value==0);

may fail, while

CPROVER assume(value==0);
a s s e r t (value <10);

passes.

When using the CPROVER assume statement, it must be ensured that there
still exists a program trace that satisfies the condition. Otherwise, any prop-
erty will pass vacuously. This should be checked by replacing the property
by false. If no counterexample is produced, the assumptions eliminate all
program paths.

7.6 Arrays

CBMC and SatAbs allow arrays as defined by the ANSI-C standard. This
includes multi-dimensional arrays and dynamically-sized arrays.

Dynamic Arrays The ANSI-C standard allows arrays with non-constant
size as long as the array does not have static storage duration, i.e., is a non-
static local variable. Even though such a construct has a potentially huge
state space, CBMC and SatAbs provide full support for arrays with non-
constant size. The size of the Boolean equation that is generated does not
depend on the array size, but rather on the number of read or write accesses
to the array.

Properties Checked CBMC and SatAbs check both lower and upper
bound of arrays, even for arrays with dynamic size. As an example, consider
the following fragment:

{
unsigned s i z e=nondet u int () ;
char a [s i z e] ;

a [10]=0 ;
}

In this fragment, an array a is defined, which has a nondeterministically
chosen size. The code then accesses the array element with index 10. CBMC

produces a counterexample with an upper array bound error on array a. The
trace shows a value for size less then 10.

Furthermore, CBMC and SatAbs check that the size of arrays with dy-
namic size is non-negative. As an example, consider the following fragment:

47

signed s i z e=nondet in t () ;
char a [s i z e] ;

For this fragment, CBMC produces a counterexample in which the size of
the array a is negative.

7.7 Structures

CBMC and SatAbs allow arbitrary structure types. The structures may
be nested, and may contain arrays.

The sizeof operator applied to a structure type yields the sum of the sizes
of the components. However, the ANSI-C standard allows arbitrary padding
between components. In order to reflect this padding, the sizeof operator
should return the sum of the sizes of the components plus a nondeterminis-
tically chosen non-negative value.

Recursive Structures Structures may be recursive by means of pointers
to the same structure. As an example, consider the following fragment:

void *malloc (unsigned) ;

struct nodet {
struct nodet *n ;
int payload ;

} ;

int main () {
unsigned i ;
struct nodet * l i s t =(void *) 0 ;
struct nodet *new node ;

for (i =0; i <10; i++) {
new node=mal loc (s izeof (* new node)) ;
new node−>n=l i s t ;
l i s t=new node ;

}
}

The fragment builds a linked list with ten dynamically allocated elements.

Structures with Dynamic Array The last component of an ANSI-
C structure may be an incomplete array (an array without size). This
incomplete array is used for dynamic allocation. This is described in section
7.10.

7.8 Unions

CBMC and SatAbs allow the use of unions to use the same storage for
multiple data types. Internally, CBMC actually shares the literals used to
represent the variables values among the union members.

48

Properties Checked CBMC and SatAbs do not permit the use of
unions for type conversion, as this would result in architecture dependent
behavior. Specifically, if a member is read, the same member must have
been used for writing to the union the last time.

7.9 Pointers

7.9.1 The Pointer Data Type

Pointers are commonly used in ANSI-C programs. In particular, pointers are
required for call by reference and for dynamic data structures. CBMC and
SatAbs provide extensive support for programs that use pointers according
to rules set by the ANSI-C standard, including pointer type casts and pointer
arithmetic.

The size of a pointer, e.g., sizeof(void *) is by default 4 bytes. This can
be adjusted using a command line option.

Conversion of pointers from and to integers The ANSI-C standard
does not provide any guarantees for the conversion of pointers into integers.
However, CBMC and SatAbs ensure that the conversion of the same ad-
dress into an integer yields the same integer. The ANSI-C standard does
not guarantee that the conversion of a pointer into an integer and then back
yields a valid pointer. CBMC and SatAbs do not allow this construct.

7.9.2 Pointer Arithmetic

CBMC and SatAbs support the ANSI-C pointer arithmetic operators. As
an example, consider the following fragment:

int array [1 0] , *p ;

int main () {
array [1] = 1 ;
p = &array [0] ;
p++;

a s s e r t (*p == 1) ;
}

7.9.3 The Relational Operators on Pointers

The ANSI-C standard allows comparing to pointers using the relational
operators <=, <, >=, <.

Properties Checked The standard restricts the use of these operators
to pointers that point to the same object. CBMC and SatAbs enforce this
restriction by means of an automatically generated assertion.

49

7.9.4 Pointer Type Casts

CBMC and SatAbs provide full support for pointer type casts as described
by the ANSI-C standard. As an example, it is a common practice to convert
a pointer to, e.g., an integer into a pointer to void and then back:

int i ;
void *p ;

p=&i ;
. . .
* ((int *)p)=5;

Note that pointer type casts are frequently used for architecture specific
type conversions, e.g., to write an integer byte-wise into a file or to send it
over a socket:

int i ;
char *p ;

p=(char *)& i ;

for (j =0; j <4; j++) {
/* wr i t e *p */
p++;

}

The result is architecture-dependent. In particular, it exposes the endianess
of the architecture. CBMC and SatAbs support these constructs when
enabled by a command line option. The command line option specifies the
memory model (little endian or big endian).

Properties Checked CBMC and SatAbs check that the type of the
object being accessed matches the type of the dereferencing expression. For
example, the following fragment uses a void * pointer to store the addresses
of both char and int type objects:

int nondet in t () ;
void *p ;
int i ;
char c ;

int main () {
int input1 , input2 , z ;

input1=nondet in t () ;
input2=nondet in t () ;

p=input1 ? (void *)& i : (void *)&c ;

50

i f (input2)
z=*(int *)p ;

else

z=*(char *)p ;
}

CBMC produces the following counterexample:

Initial State

--

c=0 (00000000)

i=0 (00000000000000000000000000000000)

p=NULL

State 1 file line 10 function main

--

input1=0 (00000000000000000000000000000000)

State 2 file line 11 function main

--

input2=1 (00000000000000000000000000000001)

State 3 line 13 function main

--

p=&c

Failed assertion: dereference failure (wrong object type)

line 16 function main

Note that the ANSI-C standard allows the conversion of pointers to struc-
tures to another pointer to a prefix of the same structure. As an example,
the following program performs a valid pointer conversion:

typedef struct {
int i ;
char j ;

} s ;

typedef struct {
int i ;

} p r e f i x ;

int main () {
s x ;
p r e f i x *p ;

p=(p r e f i x *)&x ;

p−>i =1;
}

51

7.9.5 String Constants

ANSI-C implements strings of characters as an array. Strings are then often
represented by means of a pointer pointing to the array. Array bounds
violations of string arrays are the leading cause of security holes in Internet
software such as servers or web browsers.

CBMC and SatAbs provide full support for string constants, usable either
in initializers or as a constant. As an example, the following fragment
contains a string array s, which is initialized using a string constant. Then,
a pointer p is initialized with the address of s, and the second character of
s is modified indirectly by dereferencing p. The program then asserts this
change to s.

char s []= ”abc” ;

int main () {
char *p=s ;

/* wr i t e to p [1] */
p [1]= ’ y ’ ;

a s s e r t (s [1]== ’y ’) ;
}

Properties Checked CBMC and SatAbs perform bounds checking for
string constants as well as for normal arrays. In the following fragment, a
pointer p is pointing to a string constant of length three. Then, an input i
is used as address of an array index operation. CBMC and SatAbs assert
that the input i is not greater than four (the string constant ends with an
implicit zero character).

char *p=”abc” ;

void f (unsigned int i) {
char ch ;

/* r e s u l t s in bounds v i o l a t i o n wi th i>4 */
ch=p [i] ;

}

In addition to that, CBMC and SatAbs check that string constants are
never written into by means of pointers pointing to them.

7.9.6 Pointers to Functions

CBMC and SatAbs allow pointers to functions, and calls through such
a pointer. The function pointed to may depend on nondeterministically
chosen inputs. As an example, the following fragment contains a table of
three function pointers. The program uses a function argument to index

52

the table and then calls the function. It then asserts that the right function
was called.

int g l oba l ;

int f () { g l oba l =0; }
int g () { g l oba l =1; }
int h () { g l oba l =2; }

typedef int (* f p t r) () ;
f p t r t ab l e [] = { f , g , h } ;

void s e l e c t (unsigned x) {
i f (x<=2) {

t ab l e [x] () ;
a s s e r t (g l oba l==x) ;

}
}

7.10 Dynamic Memory

CBMC and SatAbs allow programs that make use of dynamic memory al-
location, e.g., for dynamically sized arrays or data structures such as lists or
graphs. As an example, the following fragment allocates a variable number
of integers using malloc, writes one value into the last array element, and
then deallocates the array:

void *malloc (unsigned) ;

void f (unsigned int n) {
int *p ;

p=mal loc (s izeof (int)*n) ;

p [n−1]=0;

f r e e (p) ;
}

Properties Checked CBMC and SatAbs check array bounds of dynam-
ically allocated arrays, and it checks that a pointer pointing to a dynamic
object is pointing to an active object (i.e., that the object has not yet been
freed and that it is not a static object). Furthermore, CBMC and SatAbs

check that an object is not freed more than once.

In addition to that, CBMC can check that all dynamically allocated mem-
ory is deallocated before exiting the program, i.e., CBMC can prove the
absence of ”memory leaks”.

53

As an example, the following fragment dynamically allocates memory, and
stores the address of that memory in a pointer p. Depending on an input
i, this pointer is redirected to a local variable y. The memory pointed to
by p is then deallocated using free. CBMC detects that there is an illegal
execution trace in case that the input i is true.

void *malloc (unsigned) ;

void f (Bool i) {
int *p ;
int y ;

p=mal loc (s izeof (int)*10) ;

i f (i) p=&y ;

/* error i f p po in t s to y */
f r e e (p) ;

}

Notice that the standard semantics of malloc allow a return value of NULL if
the allocation fails for any reason. This is not part of the model that ships
with CBMC and SatAbs, as too many programs rely on such faults not
occurring. Thus, bugs relating to out-of-memory scenarios may be missed
by CBMC or SatAbs. A simple (but effective) way to mend this is to
replace malloc by a custom function, say my malloc, that returns NULL

non-deterministically:

void *malloc (unsigned) ;
Bool nondet boo l () ;

void *my malloc (unsigned s) {
i f (nondet boo l ()) return 0 ;
return malloc (s) ;

}

7.11 Concurrency

SatAbs is able to verify concurrent (multi-threaded) programs with shared-
variable communication between the threads. Threads are created with the
functions provided by the PThread library. As an example, consider the
following program:

#include <pthread . h>

int g ;

void * thread (void * arg) {
g=2;

54

}

int main () {
pthread t id1 ;

p th r ead c r ea t e (&id1 , NULL, thread , NULL) ;

// t h i s may f a i l
g=1;
a s s e r t (g==1);

}

SatAbs also supports mutual exclusion via the pthread mutex lock() and
pthread mutex unlock() functions. It provides an option that automati-
cally generates assertions for data-races.

CBMC currently does not support concurrency.

55

8 Hardware and Software Equivalence and Co-Verification

8.1 Introduction

A common hardware design approach employed by many companies is to
first write a quick prototype that behaves like the planned circuit in a lan-
guage like ANSI-C. This program is then used for extensive testing and
debugging, in particular of any embedded software that will later on be
shipped with the circuit. An example is the hardware of a cell phone and
its software. After testing and debugging of the program, the actual hard-
ware design is written using hardware description languages like VHDL or
Verilog.

Thus, there are two implementations of the same design: one written in
ANSI-C, which is written for simulation, and one written in register transfer
level HDL, which is the actual product. The ANSI-C implementation is
usually thoroughly tested and debugged.

Due to market constraints, companies aim to sell the chip as soon as possi-
ble, i.e., shortly after the HDL implementation is designed. There is usually
little time for additional debugging and testing of the HDL implementa-
tion. Thus, an automated, or nearly automated way of establishing the
consistency of the HDL implementation is highly desirable.

This motivates the verification problem: we want to verify the consistency
of the HDL implementation, i.e., the product, using the ANSI-C imple-
mentation as a reference [4]. Establishing the consistency does not require a
formal specification. However, formal methods to verify either the hardware
or software design are still desirable.

Related Work There have been several attempts in the past to tackle the
problem. In [7], a tool for verifying the combinational equivalence of RTL-
C and an HDL is described. They translate the C code into HDL and use
standard equivalence checkers to establish the equivalence. The C code has
to be very close to a hardware description (RTL level), which implies that
the source and target have to be implemented in a very similar way. There
are also variants of C specifically for this purpose. The SystemC standard
defines a subset of C++ that can be used for synthesis [6]. Further variants
of ANSI-C for specifying hardware are SpecC and Handel C, among others.

The concept of verifying the equivalence of a software implementation and a
synchronous transition system was introduced by Pnueli, Siegel, and Shtrich-
man [5]. The C program is required to be in a very specific form, since a
mechanical translation is assumed.

In [2], Currie, Hu, and Rajan transform DSP assembly language into an
equation for the Stanford Validity Checker. However, problems involving
bit vector overflow are not detected and while loops are not supported.

56

The symbolic execution of programs for comparison with RTL is common
practice [3, 1].

The previous work focuses on a small subset of ANSI-C that is particu-
larly close to register transfer language. Thus, the designer is often re-
quired to rewrite the C program manually in order to comply with these
constraints. We extend the methodology to handle the full set of ANSI-C
language features. This is a challenge in the presence of complex, dynamic
data structures and pointers that may dynamically point to multiple objects.
Furthermore, our methodology allows arbitrary loop constructs.

8.2 A Small Tutorial

8.2.1 Verilog and ANSI-C

The following Verilog module implements a 4-bit counter:

module top (input c l k) ;

reg [3 : 0] counter ;

i n i t i a l counter =0;

always @(posedge c l k)
counter=counter +1;

endmodule

CBMC can take Verilog modules as the one above as additional input.
Similar as in co-simulation, the data in the Verilog modules is available to
the C program by means of global variables. For the example above, the
following C fragment shows the definition of the variable that holds the
value of the counter register:

struct module top {
unsigned int counter ;

} ;

extern const struct module top top ;

Using this definition, the value of the counter register in the Verilog frag-
ment above can be accessed as top.counter. Please note that the name of
the variable must match the name of the top module. The C program only
has a view of one state of the Verilog model. The Verilog model makes a
transition once the function next timeframe() is called.

As CBMC performs Bounded Model Checking, the number of timeframes
available for analysis must be bounded (SatAbs has no such restriction).
As it is desirable to change the bound to adjust it to the available computing
capacity, the bound is given on the command line and not as part of the
C program. This makes it easy to use only one C program for arbitrary
bounds. The actual bound is available in the C program using the following
declaration:

57

extern const unsigned int bound ;

Also note that the fragment above declares a constant variable of struct
type. Thus, the C program can only read the trace values and is not able to
modify them. We will later on describe how to drive inputs of the Verilog
module from within the C program.

As described in previous chapters, assertions can be used to verify properties
of the Verilog trace. As an example, the following program checks two values
of the trace of the counter module:

void next t imeframe () ;

struct module top {
unsigned int counter ;

} ;

extern const struct module top top ;

int main () {
next t imeframe () ;
next t imeframe () ;
a s s e r t (top . counter==2);
next t imeframe () ;
a s s e r t (top . counter==3);

}

The following CBMC command line checks these assertions with a bound
of 20:

hw-cbmc counter.c counter.v --module top --bound 20

Note that a specific version of CBMC is used, called hw-cbmc. The module
name given must match the name of the module in the Verilog file. Multiple
Verilog files can be given on the command line.

The --bound parameter is not to be confused with the --unwind parameter.
While the --unwind parameter specifies the maximum unwinding depth for
loops within the C program, the --bound parameter specifies the number
of times the transition relation of the Verilog module is to be unwound.

8.2.2 Counterexamples

For the given example, the verification is successful. If the first assertion is
changed to

a s s e r t (top . counter ==10);

and the bound on the command line is changed to 6, CBMC will produce
a counterexample. CBMC produces two traces: One for the C program,
which matches the traces described earlier, and a separate trace for the
Verilog module. The values of the registers in the Verilog module are also
shown in the C trace as part of the initial state.

58

Initial State

--

bound=6 (00000000000000000000000000000110)

counter= 0, 1, 2, 3, 4, 5, 6

Failed assertion: assertion line 6 function main

Transition system state 0

--

counter=0 (0000)

Transition system state 1

--

counter=1 (0001)

Transition system state 2

--

counter=2 (0010)

Transition system state 3

--

counter=3 (0011)

Transition system state 4

--

counter=4 (0100)

Transition system state 5

--

counter=5 (0101)

Transition system state 6

--

counter=6 (0110)

8.2.3 Using the Bound

The following program is using the bound variable to check the counter
value in all cycles:

void next t imeframe () ;
extern const unsigned int bound ;

struct module top {
unsigned int counter ;

} ;

extern const struct module top top ;

int main () {
unsigned cy c l e ;

for (c y c l e =0; cyc l e<bound ; cy c l e++) {
a s s e r t (top . counter==(cy c l e & 1 5)) ;
next t imeframe () ;

59

}
}

CBMC performs bounds checking, and restricts the number of times that
next timeframe() can be called. SatAbs does not require a bound, and
thus, next timeframe() can be called aribrarily many times.

8.2.4 Synchronizing Inputs

The example above is trivial as there is only one possible trace. The ini-
tial state is deterministic, and there is only one possible transition, so the
verification problem can be solved by mere testing. Consider the following
Verilog module:

module top (input c lk , input i) ;

reg [3 : 0] counter ;

i n i t i a l counter =0;

always @(posedge c l k)
i f (i)

counter=counter +1;

endmodule

Using the C program above will fail, as the Verilog module is free to use zero
as value for the input i. This implies that the counter is not incremented.
The C program has to read the value of the input i in order to be able to
get the correct counter value:

void next t imeframe () ;
extern const unsigned int bound ;

struct module top {
unsigned int counter ;
Bool i ;

} ;

extern const struct module top top ;

int main () {
unsigned cy c l e ;
unsigned C counter =0;

for (c y c l e =0; cyc l e<bound ; cy c l e++) {
a s s e r t (top . counter==(C counter & 15)) ;
i f (top . i) C counter++;
next t imeframe () ;

}
}

60

Similarly, the C model has to synchronize on the choice of the initial value
of registers if the Verilog module does not perform initialization.

8.2.5 Driving Inputs

The C program can also restrict the choice of inputs of the Verilog module.
This is useful for adding environment constraints. As an example, consider
a Verilog module that has a signal reset as an input, which is active-low.
The following C fragment drives this input to be active in the first cycle,
and not active in any subsequent cycle:

CPROVER assume(top . r e s e tn ==0);

for (i =1; i<bound ; i++) {
CPROVER assume(top . r e s e tn) ;

next t imeframe () ;
}

Care must be taken to avoid passing the property vacuously. This happens
if no trace actually satisfies the assumptions.

Mapping Variables within the Module Hierarchy Verilog modules
are hierarchical. The extern declarations shown above only allow reading
the values of signals and registers that are in the top module. In order to
read values from sub-modules, CBMC uses structures.

As an example, consider the following Verilog file:

module counter (input c lk , input [7 : 0] increment) ;

reg [7 : 0] counter ;

i n i t i a l counter =0;

always @(posedge c l k)
counter=counter+increment ;

endmodule

module top (input c l k) ;

counter c1 (c lk , 1) ;
counter c2 (c lk , 2) ;

endmodule

The file has two modules: a top module and a counter module. The counter
module is instantiated twice within the top module. A reference to the
register counter within the C program would be ambiguous, as the two

61

module instances have separate instances of the register. CBMC and Sat-

Abs use the following data structures for this example:

void next t imeframe () ;
extern const unsigned int bound ;

struct counter {
unsigned char increment ;
unsigned char counter ;

} ;

struct module top {
struct module counter c1 , c2 ;

} ;

extern const struct module top top ;

int main () {
next t imeframe () ;
next t imeframe () ;
next t imeframe () ;
a s s e r t (top . c1 . counter==3);
a s s e r t (top . c2 . counter==6);

}

The main function reads both counter values for cycle 3. A deeper hierarchy
(modules in modules) is realized by using additional structure members.
Writing these data structures for large Verilog designs is error prone, and
thus, CBMC can automatically generate them. The declarations above are
generated using the command line

hw-cbmc --gen-interface --module top hierarchy.v

Mapping Verilog Vectors to Arrays or Scalars In Verilog, a defini-
tion such as

wire [3 1 : 0] x ;

can be used for arithmetic (e.g., x+10) and as array of Booleans (e.g., x[2]).
ANSI-C does not allow both, so when mapping variables from Verilog to C,
the user has to choose one option for each such variable. As an example,
the C declaration

unsigned int x ;

will allow using x in arithmetic expressions, while the C declaration

Bool x [3 2] ;

will allow accessing the individual bits of x using the syntax x[bit]. The
--gen-interface option of CBMC will generate the first variant if the
vector has the same size as one of the standard integer types, and the second
option if not so. This choice can be changed by adjusting the declaration
accordingly.

62

Appendix A CBMC and SATABS License Agreement

(C) 2001–2008, Daniel Kroening, Edmund Clarke,
Computer Systems Institute, ETH Zurich
Computer Science Department, Carnegie Mellon University

All rights reserved. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the doc-
umentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by Daniel Kroening,
Edmund Clarke, Computer Systems Institute, ETH Zurich
Computer Science Department, Carnegie Mellon University

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

5. We must be notified by email at kroening@cs.cmu.edu after you install
the program for any purpose.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

63

Appendix B Programming APIs

B.1 Language Frontends

B.1.1 Scanning and Parsing

Figure B.1: From C source code file to IRep

The sources of the C frontend are located in the “ansi-c/” directory. It
uses a standard Flex/Bison setup for scanning and parsing the files. The
Bison grammar produces a tree representation of the input program. The
typechecker annotates this parse tree with types and generates a symbol
table.

The following code illustrates how to use the frontend for parsing files and for
translating them into a symbol table. A call to parse generates the parse
tree of the program. The conversion into the symbol table is performed
during type checking, which is done by a call to the typecheck method. The
symbol table is a map from identifiers to the symbolt data structure.

#include <iostream>

#include <fstream>

#include <sstream>

#include <s t r i ng >

#include <ans i−c/ an s i c l anguage . h>

#include <u t i l / cmdline . h>

#include <u t i l / c on f i g . h>

int main (int argc , const char* argv [])
{

// Command l i n e : parse −I i n c l d i r f i l e 1 . . .
cmdl inet cmdl ;
cmdl . parse (argc , argv , ” I : ”) ;

c on f i g . i n i t () ;

64

i f (cmdl . i s s e t (’ I ’))
c on f i g . a n s i c . i n c l ude pa th s=cmdl . g e t va l u e s (’ I ’) ;

// Set language to C
std : : auto ptr<languaget> c lang (new ans i c l anguage ()) ;

// Symbol t a b l e
context t my context ;

for (cmdl inet : : a r g s t : : i t e r a t o r s i t=cmdl . args . begin () ;
s i t != cmdl . args . end () ; s i t++)

{
// Source code stream
std : : i f s t r e am in (s i t −>c s t r ()) ;

// Parse
clang−>parse (in , ”” , std : : c e r r) ;

// Typecheck
clang−>typecheck (my context , * s i t , s td : : c e r r) ;

}

// Do some f i n a l ad jus tements
clang−> f i n a l (my context , s td : : c e r r) ;

my context . show (std : : cout) ;

return 0 ;
}

B.1.2 IRep

The parse trees are implemented using a class called irept. Its declaration
and definiton can be found in the files “util/irep.h” and “util/irep.cpp”.

The code below shows some details of class irept :

class i r e p t
{
public :

typedef std : : vector<i r ep t > subt ;
typedef std : : map<i r ep name s t r ing , i r ep t > named subt ;
. . .

public :
class dt
{
public :

unsigned r e f c oun t ;
d s t r i ng data ;
named subt named sub ;
named subt comments ;
subt sub ;

65

. . .
} ;

protected :
dt *data ;
. . .

} ;

Every node of any tree is an object of class irept. Each node has a pointer
to an object of class dt. The dt objects are used for storing the actual
content of nodes. Objects of class dt are dynamically allocated and can
be shared between nodes. A reference-counter mechanism is implemented
to automatically free unreachable dt objects. Copying a tree is an O(1)
operation.

The field data of class dt is a (hashed) string representing the label of the
nodes. The fields named sub, comments and sub are links to childs. Edges
are either labeled with a string or ordered. The string-labeled edges are
stored in the map comments if their first character is ’#’. Otherwise, they
are stored in the map named sub. The labels of edges are unique for a given
node; however, their ordering is not preserved. The field sub is a vector of
nodes that is used for storing the ordered children. The order of edges of
this kind is preserved during copy.

Figure B.2: Tree for the expression a+b with int a; char b;.

Interface of Class irept

virtual bool i s n i l () const ;
virtual bool i s n o t n i l () const ;

The first method returns true if the label of the node is equal to “nil”. The
second method returns false if the label of the node is equal to “nil”.

66

const i r e p i d t &id () ;
void id (const i r e p i d t & data) ;

The first method returns a constant reference to the label of the node. The
second method sets the label of the node.

const i r e p t &f i nd (const i rep namet &name) const ;
i r e p t &add (const i rep namet &name) ;
const i r e p i d t &get (const i rep namet &name) const ;

� The first method looks for an edge with label name and returns the
corresponding child. If no edge with label name is found, then nil rep
is returned.

� The second method does the same as the first except that if no edge
with label name if found, then a new child is created and returned.

� The third method does the same as the first except that the label of
the child is returned (instead of a reference). If no edge with label
name is found, then an empty string is returned.

void s e t (const i rep namet &name ,
const i r e p i d t &value) ;

void s e t (const i rep namet &name , const long value) ;
void s e t (const i rep namet &name , const i r e p t &i r ep) ;

These methods create a new edge with label name.

If the second argument is an object of class irept, then it is assigned to the
new child.

If the second argument is a string, then it is set as node-label of the new
child.

If the second argument is a number, then it is converted to a string and set
as node-label of the new child.

void remove (const i rep namet &name) ;

This method looks for an edge with label name and removes it.

67

void move to sub (i r e p t &i r ep) ;
void move to named sub (const i rep namet &name , i r e p t &i r ep) ;

The first method creates a new ordered edge with a child equal to irep.
Then it sets irep to nil. The index of the edge is equal to the size of vector
sub before the call.

The second method does the same but for labeled edges.

void swap (i r e p t &i r ep) ;

Exchange the content of the invoked node with the one of irep.

void make ni l () ;

Set the label of the node to “nil” and remove all outgoing edges.

const subt &get sub () ;
const named subt &get named sub () ;
const named subt &get comments () ;

Return a constant reference to sub, named sub, and comments, respectively.

B.1.3 Types

The class typet inherits from irept. Types may have subtypes. This is
modeled with two edges named “subtype” and “subtypes”. The class typet
only add specialized methods for accessing the subtype information to the
interface of irept.

Figure B.3: A Type Tree

Interface of class typet

68

bool has subtype () const ;
bool has subtypes () const ;

The first method returns true if the a subtype node exists. is not nil. The
second method returns true is a subtypes node exists.

typet &subtype () ;
types t &subtypes () ;

The first method returns a reference to the ’subtype’ node. The second
method returns a reference to the vector of subtypes.

B.1.4 Subtypes of typet

A number of subtypes of typet exist which allow convenient creation and
manipulation of typet objects for special types.

Class Description

util/std types.h
bool typet Boolean type
symbol typet Symbol type. Has edge “identifier” to a

string value, which can be accessed with
get identifier and set identifier.

struct typet,
union typet

Represent a struct, resp. union types. Con-
venience functions to access components
components().

code typet The type of a function/procedure. Con-
venience functions to access arguments()

and return type().
array typet Convenience function size() to access size

of the array.
pointer typet Pointer type, subtype stores the type of the

object pointed to.
reference typet Represents a reference type, subtype stores

the type of the object referenced to.
bv typet Represents a bit vector type with variable

width.
fixed bv typet Represents a bit vector that encodes a

fixed-point number.
floatbv typet Represents a bit vector that encodes a

floating-point number.
string typet Represents a string type.

69

B.1.5 Location

The class locationt inherits from the class irept. It is used to store locations
in text files. It adds specialized methods to manipulate the edges named
“file”, “line”, “column”, “function”.

Figure B.4: A location tree

B.1.6 Expressions

The class exprt inherits from class irept. Expressions have operands and
a type. This is modeled with two edges labeled “operands” and “type”,
respectively. The class exprt only adds specialized methods for accessing
operands and type information to the interface of irept.

Figure B.5: A binary expression

Interface of class exprt

expl ic it exprt (const i r e p i d t &id) ;

Creates an exprt object with a given label and no type.

exprt (const i r e p i d t &id , const typet &type) ;

Creates an exprt object with a given label and type.

const typet &type () const ;
typet &type () ;

Return a reference to the ’type’ node

70

bool has operands () const ;

Return true if the expression has operands.

const operandst &operands () const ;

Return a reference to the vector of operands.

const exprt &op0 () ;
const exprt &op1 () ;
const exprt &op2 () ;
const exprt &op3 () ;
exprt &op0 () ;
exprt &op1 () ;
exprt &op2 () ;
exprt &op3 () ;

Return a reference to a specific operand.

void make true () ;
void make fa l s e () ;
void make bool (bool value) ;

Turn the current exprt instance into a expression of type “bool” with label
“constant” and a single edge labeled “value”, which points to a new node
with label either “true” or “false”.

void make typecast (const typet & type) ;

Turns the current exprt instance into a typecast. The old value of the
instance is appended as the single operand of the typecast, i.e., the result
is a typecast-expression of the old expression to the indicated type.

void make not () ;

Turns the current exprt instance into an expression with label “not” of
the same type as the original expression. The old value of the instance is
appended as the operand of the “not”-node. If the original expression is
of type “bool”, the result represents the negation of the original expression
with the following simplifications possibly applied:

� ¬¬f = f

� ¬true = false

� ¬false = true

void negate () ;

Turns the current exprt instance into a negation of itself, depending on its
type:

� For boolean expressions, make not is called.

71

� For integers, the current instance is turned into a numeric negation
expression “unary-” of its old value. Chains of ”unary-” nodes and
negations of integer constants are simplified.

� For all other types, irept::make nil is called.

bool sum(const exprt &expr) ;
bool mul (const exprt &expr) ;
bool subt rac t (const exprt &expr) ;

Expect the “this” object and the function argument to be constants of
the same numeric type. Turn the current exprt instance into a constant
expression of the same type, whose “value” edge points to the result of the
sum, product, or difference of the two expressions. If the operation fails for
some reason (e.g., the types are different), true is returned.

bool i s c o n s t a n t () const ;

Returns true if the expression label is “constant”.

bool i s b o o l e an () const ;

Returns true if the label of the type is “bool”.

bool i s f a l s e () const ;
bool i s t r u e () const ;

The first function returns true if the expression is a boolean constant with
value “false”. The second function returns true for any boolean constant
that is not of value “false”.

bool i s z e r o () const ;
bool i s o n e () const ;

The first function returns true if the expression represents a zero numeric
constant, or if the expression represents a null pointer. The second function
returns true if the expression represents a numeric constant with value “1”.

B.1.7 Subtypes of exprt

A number of subtypes of exprt provide further convenience functions for
edge access or other specialized behaviour:

Class Description

util/std expr.h
transt Represents a SMV-style transition sys-

tem with invariants invar(), initial state
init() and transition function trans().

true exprt Boolean constant true expression.
false exprt Boolean constant false expression.

72

Class Description

symbol exprt Represents a symbol (e.g., a variable oc-
currence), convenience function for manip-
ulating “identifier”-edge set identifier

and get identifier

predicate exprt Convenience constructors to create expres-
sions of type “bool”.

binary relation exprt

: predicate exprt

Convenience functions to create and ma-
nipulate binary expressions of type “bool”.

equality exprt :

binary relation exprt

Convenience functions to create and ma-
nipulate equality expressions such as “a
== b”.

ieee float equal exprt

:

binary relation exprt

Convenience functions to create and
manipulate equality expressions between
floating-point numbers.

index exprt Represents an array access expression such
as “a[i]”. Convenience functions array()

and index() for accessing the array ex-
pressions and indexing expression.

typecast exprt Represents a cast to the type of the expres-
sion.

and exprt,
implies exprt,
or exprt, not exprt

Representations of logical operators with
convenience constructors.

address of exprt Representation of a C-style &a address-of
operation. Convenience function object()

for accessing operand.
dereference exprt Representation of a C-style *a pointer-

dereference operation. Convenience func-
tion object() for accessing operand.

if exprt Representation of a conditional expre-
sion, with convenience functions cond(),
true case() and false case() for access-
ing operands.

member exprt Represents a some struct.some field

member access.

B.1.8 Symbols and the Symbol Table

Symbol

A symbol is an object of class symbolt. This class is declared in “util/sym-
bol.h”. The code below shows a partial declaration of the interface:

class symbolt
{
public :

typet type ;
exprt va lue ;
std : : s t r i n g name ;

73

std : : s t r i n g base name ;
. . .

} ;

Symbol names are unique. Scopes are handled by adding prefixes to sym-
bols:

int main (int argc , char* argv []) {

// Symbol name : c : : main : : 0 : : a l i c e
char a l i c e = 0 ; // Symbol base : a l i c e

{
// Symbol name : c : : main : : 1 : : a l i c e

int a l i c e = 0 ; // Symbol base : a l i c e
}

}

Symbol Table

A symbol table is an object of class contextt. This class is declared in “util/-
context.h”. The code below shows a partial declaration of the interface:

class context t
{
public :

// In s e r t the symbol
bool add (const symbolt &symb) ;

// In s e r t symb in to the
// t a b l e and erase i t .
// New symbol po in t s to the
// newly i n s e r t e d element .

bool move(symbolt &symbol , symbolt *&new symbol) ;

// In s e r t symb in to the
// t a b l e . Then symb i s erased .

bool move(symbolt &symb) ;

// Return the entry o f the
// symbol wi th g i ven name .

const i r e p t &value (const std : : s t r i n g &name) const ;
} ;

B.2 Goto Programs

Goto programs are a representation of the control flow graph of a pro-
gram that uses only guarded goto and assume statements to model non-
sequential flow. The main definition can be found in “goto-programs/
goto program template.h”, which is a template class. The concrete instan-
tiation of the template that is used in the framework can be found in “goto-
programs/ goto program.h”. A single instruction in a goto program is rep-

74

resented by the class goto programt:: instructiont whose definition can be
found again in “goto-programs/ goto program template.h”.

In the class goto programt, the control flow graph is represented as a mix-
ture of sequential transitions between nodes, and non-sequential transitions
at goto-nodes. The sequential flow of the program is captured by the list
instructions that is a field of the class goto programt. Transitions via
goto statements are represented in the list targets, which is a field of the
class goto programt::instructiont, i.e., each goto-instruction carries a
list of possible jump destinations. The latter list targets is a list of iter-
ators which point to elements of the list instructions. An illustration is
given in Figure B.6.

Figure B.6: Representation of program flow in goto programt

Instructions can have a number of different types as represented by enum

goto program instruction typet and can be accessed via the field type

in instructiont. These include:

GOTO : Represents a non-deterministic branch to the instructions given in the
list targets. Goto statements are guarded, i.e., the non-deterministic
branch is only taken if the expression in guard evaluates to true, other-
wise the program continues sequentially. Guarded gotos can be used,
for example, to model if statements. The guard is then set to the
negated condition of the statement, and goto target is set to bypass
the conditionally executed code if this guard evaluates to true.

ASSUME : An assumption statement that restricts viable paths reaching the in-
struction location to the ones that make the expression guard evaluate
to true.

ASSERT : An assertion whose guard is checked for validity when the instruction
is reached.

75

RETURN : A return statement in a function.

FUNCTION END : Denotes the end of a function.

ASSIGN : A variable assignment.

SKIP : No operation.

OTHER : Any operation not covered by enum goto program instruction typet.

A number of convenience functions in instructiont, such as is goto(),
is assume(), etc., simplify type queries. The following code segment shows
a partial interface declaration of goto program template and instructiont.

template <class codeT , class guardT>

class goto program templatet
{
public :

// l i s t o f i n s t r u c t i o n type
typedef std : : l i s t <class i n s t r u c t i o n t > i n s t r u c t i o n s t ;

//a r e f e r ence to an i n s t r u c t i o n in the l i s t
typedef typename

std : : l i s t <class i n s t r u c t i o n t > : : i t e r a t o r t a r g e t t ;

// Sequen t i a l l i s t o f i n s t r u c t i on s ,
// r ep r e s en t i n g s e q u en t i a l program f l ow
i n s t r u c t i o n s t i n s t r u c t i o n s ;

typedef typename

std : : map<c on s t t a r g e t t , unsigned> target numberst ;

//A map conta in ing the unique number o f each t a r g e t
target numberst target numbers ;

//Get the succe s so r s o f a g i ven i n s t r u c t i o n
void g e t s u c c e s s o r s (t a r g e t t target , t a r g e t s t &su c c e s s o r s) ;

. . .

class i n s t r u c t i o n t
{
public :

codeT code ;

// i d e n t i f i e r o f enc l o s i n g func t i on
i r e p i d t func t i on ;

// l o c a t i o n in the source f i l e
l o c a t i o n t l o c a t i o n ;

// type o f i n s t r u c t i o n ?
go to p rog ram in s t ru c t i on type t type ;

//Guard s ta tement f o r gotos , assume , a s s e r t
guardT guard ;

76

// t a r g e t s f o r go to s
t a r g e t s t t a r g e t s ;

// s e t o f a l l p r edece s so r s (s e qu en t i a l , and go tos)
std : : set<ta rge t t > incoming edges ;

// a g l o b a l l y unique number to i d e n t i f y a
// program l o c a t i o n . I t i s guaranteed to be
// ordered in program order w i th in one
// goto program
unsigned locat ion number ;

// a g l o b a l l y unique number to i d e n t i f y l oops
unsigned loop number ;

// t rue i f t h i s i s a goto jumping back to an
// e a r l i e r i n s t r u c t i o n in the s e q u en t i a l program
// f l ow
bool i s backwards goto () const ;

} ;

}

B.3 Static Analysis

B.3.1 A Brief Introduction to Abstract Interpretation

The theory of abstract interpretation approximates the semantics of for-
mulas and in our case of programs. Usually the semantics of a program is
defined by a (concrete) domain Dc and the relationships within this domain
(changing over time by executing some instructions). Given an interpreta-
tion I based on the domain Dc the question of whether a property expressed
by a logical formula p holds, i.e., (Dc, I) |= p, can be answered via model
checking. The state explosion entailed by the number of possible execution
paths and the undecidability caused by infinite models, however, is a major
hurdle toward scalability to large software systems.

To overcome these difficulties a particular approach is to approximate the
concrete domain Dc via a so called abstract domain Da, i.e., a concrete
domain of values Dc is replaced by an (abstract) domain of descriptions
of values Da. Even if an abstract domain is not as precise as its concrete
counterpart, it still permits to answer some questions using static analysis
for instance.

The framework of abstract interpretation was introduced and formalized by
P. Cousot and R. Cousot in 1977 [1]. It relies on lattice theory and Ga-
lois connections and we refer to [2] for an in-depth description of abstract
interpretation. Nevertheless, we will now explain the basics needed to un-
derstand the class interface of abstract domain baset, static analysis

and its base class static analysis baset.

77

Definitions To be a useful abstraction an abstract domain Da should form
a lattice. The latter is a partially ordered set with the pre-order relation
⊑ where every subset S ⊆ DA has a least upper bound denoted by ⊔S as
well as a greatest lower bound ⊓S. The supremum ⊤ of Da is the least
upper bound of Da and the infimum ⊥ of Da is the greatest lower bound
of Da. The abstract domain is then denoted by Da(⊑,⊥,⊤,⊔,⊓). In the
context of abstract interpretation, the pre-order relation ⊑ can intuitively
be interpreted as a precision pre-ordering which tells us if a description of
values a ∈ Da is more (less or equally) precise than another description of
values b ∈ Da.

B.3.2 Class Interfaces

The base class abstract domain baset

This abstract class establishes the base for the data structure needed to
abstract the concrete computation domain. Other classes will derive from
it in order to refine the abstract domain we would like to implement.

Type definition Description

locationt A location is an iterator pointing to an in-
struction of an instruction list of a goto
program.

Type Definitions

Attribute Description

bool:seen specifies if an instance (element) of the
abstract domain abstract domain baset

has already been visited by the visit

member function of the abstract
static analysis baset class.

Attributes

Member function Description

initialize (&ns, l) pure member function that will be defined
in specializations of this class. It is in-
tended to set the state (see below statet)
associated to the location l to the infin-
mum ⊥ of the lattice Da (abstract do-
main).

78

Member function Description

transform (&ns,

from l, to l)

pure virtual member function that will
be defined in specializations of this class.
It is intended to strengthen the state of
this with respect to the guard that ap-
plies when the program transitions from
the location from l to the successor loca-
tion to l. Generally these guards vary de-
pending on the location type (i.e. if it is a
conditional, assignment or declaration lo-
cation).

exprt:get guard

(from, to)

returns the guard expression of a condi-
tional location from (in the control flow of
the corresponding goto program) jumping
to to.

exprt:get return lhs

(to)

if to is a location after a function call, re-
turns the right hand side of the expression
that assigns the returned values to the cor-
responding variables of the caller.

Member Functions

The base class static analysis baset

The class static analysist and its base static analysis baset are used
to perform the static analysis with the appropriate abstract domain.

Type definition Description

locationt a location is an instruction list of a goto
program.

statet as already mentioned above, a location is
an iterator pointing to an instruction of an
instruction list of a goto program.

working sett set of locations that still have to be vis-
ited by the visit member function during
the calculation of the fixed point (by the
fixed point member function).

Type Definitions

Attribute Description

namespacet:ns namespace that is to be considered during
the analysis of the corresponding goto pro-
gram.

bool:initialized specifies if for each location of the goto pro-
gram a state has been generated (see the
generate states member function of the
static analysis baset class).

79

Attributes

Member function Description

initialize

(&goto program)

for each location of the goto program this
member function generates an associated
state (see generate state below) and sets
the attribute initialized to true.

initialize

(&goto function)

for each location of each function in
goto functions this member func-
tion generates an associated state (see
generate state below) and sets the
attribute initialized to true.

locationt:

successor(l)

returns the successor location of l in the
control flow graph (CFG).

bool:visit(l,

&working set,

goto program,

&goto functions)

marks the state associated to the location
l as visited, then crawls through the suc-
cessor locations of l and, for each pair con-
sisting of the location l and one of its suc-
cessor, merges their corresponding states
(abstract domain baset element). If the
state of l has been changed or its successor
location has not yet been seen, then it puts
this successor location in the working set.
Returns true if the state of l has been
changed. See the definition of merge for
more details.

statet: get state(l) pure member function defined in special-
izations of this class (see the interface of
the specialization static analysist be-
low.

generate states

(&goto program)

for each location of the goto program this
member function sets the corresponding
state to the infinmum ⊥ of the abstract
domain Da (see the member function
generate state of the static analysist

class below).
generate states

(&goto functions)

for each location of each function in
goto functions this member function sets
the corresponding state to the infinmum ⊥
of the abstract domain Da.

insert(l) generates the state, that is an element of
the abstract domain, at location l (see
generate state below).

Member Functions

The class static analysist

This class performs the static analysis with the abstract domain specified
through its parameter T. The latter should be an instantiatable class inher-

80

iting from abstract domain baset.

Type definition Description

state mapt A state map is a location associated
with its abstract domain element i.e. an
instance of the abstract domain baset

class (through some specialization/subtyp-
ing of type T).

Type Definitions

Attribute Description

state mapt: state map Maps an abstract domain element to a lo-
cation of a goto program (see the type def-
inition above).

Attributes

Member function Description

statet: get state

(locationt l)
searches for the location l in the
state map and returns the associated
state (which is an element of the
abstract domain baset class).

T:operator[]

(locationt l)

searches for the location l in the state map

like get state does, but returns the asso-
ciated state which is now of type T.

bool:

has location(locationt

l)

returns true if the location l is found in
the state map.

clear() this member function clears the state map

and sets the attribute initialized to
false.

statet*:

make temporary state

(statet &s)

casts and duplicates the state s to
a state of type T (specialization of
abstract domain baset).

bool: merge(statet

&a, statet &b)

modifies the state a so to be the least upper
bound of both states a and b i.e. ⊔{a, b}
where {a, b} ⊆ Da. It is needed to obtain
the new state after a join in the control flow
of a goto program for instance. The return
value is true if a has been modified.

generate state

(locationt l)

sets the state associated to the location
l to the infinmum of the abstract do-
main (concrete class of type T which
is a specialization of the abstract class
abstract domain baset).

81

Member function Description

fixedpoint

(goto programt

goto program,

goto functionst

goto functions)

computes the least fixed point of the sys-
tem of equations defined by the constraints
on each state of each location of the goto
program goto program.

Member Functions

B.3.3 Examples

Before running a static analysis, one has to specify the abstract domain Da

which will approximate a concrete domain Dc. To do so, we need to refine
the abstract domain baset class with some specialization. This instanti-
atable class will be passed via the parameter T of the static analysist

class. In the following sections we will show what has to be done in order
to implement the simple following example borrowed from [3].

Sign Analysis. The goal of sign analysis is to track the sign of each
expression in a program. To do so, we define the lattice {⊥,+, 0,−,⊤} where
each element stands for subsets of the concrete domain of signed integers.
+ represents the set of strictly positive, - the set of strictly negative values
whereas 0 represents the singleton set {0} containing only zero. ⊤ denotes
any value (i.e. the expression is known to have a varying sign) and ⊥ denotes
no value (i.e. the expression has an unknown value). Since we want to track
the sign of each expression at a program location the full lattice is give by
the map lattice V ars 7→ {⊥,+, 0,−,⊤}. Hence, at each program location l

we assign a table that associates a sign to each variable.

Refining the abstract domain baset class

Class interface A derivation of the base class abstract domain baset

implementing our sign analysis should have a data structure representing
the sign lattice and the full map lattice we defined above. Furthermore it
should define the following pure virtual member functions from the base
class:

� transform(namespacet &ns, locationt from l, locationt to l)

and,

� initialize(namespacet &ns, locationt l),

which purposes are described above. Since the merge member function
of the static analysist class will call a merge member function of our
abstract domain baset class, we also have to define such a merge function
with the following interface:

� bool:merge(statet &other): as one can guess from the interface
description above, after a call to this member function the receiver
this becomes the least upper bound of the abstract domaint element
other and the receiver this.

One possible implementation of such a derivation from the base class is
showed in the following listing:

82

#ifndef SIGN MAP H
#define SIGN MAP H

#include "expr.h"

#include "irep.h"

#include "static_analysis.h"

#include "goto_functions.h"

#include <map>

class sign mapt: public abstract domain baset 10

{
public:

typedef enum signt
{

ZERO,
PLUS,
MINUS,
TOP,
BOTTOM

} sign; 20

typedef std::map<irep idt, signt> sign latticet;

// an abstract domain element maps a sign to a given set
// of expressions (typically those handling integers at a
// given location}
sign latticet sign lattice;

virtual void initialize(const namespacet &ns, locationt l);
30

virtual void transform(const namespacet &ns, locationt from l, locationt to l);

bool merge(sign mapt &other);

};

#endif /*SIGN MAP H */

Defining the merge member function

bool sign mapt::merge(sign mapt &other)
{

// boolean tracking the changes to the state of “this”
bool any changes=false;
typedef std::map<irep idt, signt>::const iterator map itt;

for(map itt map it= other.sign lattice.begin(); map it!=other.sign lattice.end(); ++map it)
{ //if the lattice map also has an entry for the term/vairable

if(&sign lattice[map it−>first]!= NULL)
{ 10

switch(map it−>second)
// select the corresponding lattice element (least upper bound
// of the pair {“this”, “other”}. Report any change
{

case BOTTOM:
{ sign lattice[map it−>first] = other.sign lattice[map it−>first];

any changes=true;
}
break;

20

83

case TOP:
// do nothing

break;

case PLUS:
if(sign lattice[map it−>first]==MINUS)
{

sign lattice[map it−>first]=TOP;
any changes=true;

} 30

else if(sign lattice[map it−>first]==TOP)
{

sign lattice[map it−>first]=TOP;
any changes=true;

}

case MINUS:
if(sign lattice[map it−>first]==PLUS)
{

sign lattice[map it−>first]=TOP; 40

any changes=true;
}
// other cases:do nothing

}
}
// if the lattice map has no such entry, then simply add it
else

{
sign lattice[map it−>first]= other.sign lattice[map it−>first];

} 50

}
return any changes;

}

Defining the initialize member function

void sign mapt::initialize(const namespacet &ns, locationt l)
{

typedef std::set<irep idt>::const iterator irep itt;

// for each local variable at location l add an entry (variable, BOTTOM)
// in the sign map (we initialize to the infimum of the lattice)
for(irep itt irep it=l−>local variables.begin(); irep it!=l−>local variables.end(); ++irep it)
{

sign lattice[*irep it] = BOTTOM;
} 10

}

B.3.4 Using the parametrized static analysist class

Once the abstract domain Da has been implemented through the special-
ization sign mapt, we apply it by refining the parametrized class
static analysist<sign mapt>.

B.4 Propositional Logic

84

Bibliography

[1] C. Blank, H. Eveking, J. Levihn, and G. Ritter. Symbolic simulation
techniques — state-of-the-art and applications. In International Work-
shop on High-Level Design, Validation, and Test, pages 45–50. IEEE,
2001.

[2] David W. Currie, Alan J. Hu, and Sreeranga Rajan. Automatic formal
verification of dsp software. In Proceedings of the 37th Design Automa-
tion Conference (DAC 2000), pages 130–135. ACM Press, 2000.

[3] Kiyoharu Hamaguchi. Symbolic simulation heuristics for high-level de-
sign descriptions with uninterpreted functions. In International Work-
shop on High-Level Design, Validation, and Test, pages 25–30. IEEE,
2001.

[4] Carl Pixley. Guest Editor’s Introduction: Formal Verification of Com-
mercial Integrated Circuits. IEEE Design & Test of Computers, 18(4):4–
5, 2001.

[5] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool
(CVT)- automatic verification of a compilation process. Int. Journal
of Software Tools for Technology Transfer (STTT), 2(2):192–201, 1998.

[6] http://www.systemc.org.

[7] Luc Séméria, Andrew Seawright, Renu Mehra, Daniel Ng, Arjuna
Ekanayake, and Barry Pangrle. RTL C-based methodology for designing
and verifying a multi-threaded processor. In Proc. of the 39th Design
Automation Conference, pages 123–128. ACM Press, 2002.

85

