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1. Introduction

Reliability of complex hardware and software systems became increasingly impor-
tant over the last decades. Most parts of our infrastructure, e.g. traffic systems
or telecommunication, make use of highly integrated and connected software com-
ponents. A single error in the source code and an associated malfunction of the
system can cause high costs and might even endanger the health of people. There-
fore, verification of software has been a central problem of computer science for
many years.

There are several different techniques for software verification, such as type sys-
tems, programming logics, formal semantics, static analysis and model checking.
They differ in their complexity to use and in what they are able to prove. Model
checking [18] is a powerful verification method, which can be applied in a full
automatic manner. Nonetheless, user intervention is typically required in two
places. First, model checking can only be applied to finite models. But in gen-
eral, software can have an infinite state space. Hence, the user is responsible to
provide an abstracted model that is fine enough to capture the important details.
To automatize the process of model extraction from source code, much research
[4, 13, 19, 21, 22, 29, 31, 39, 40, 41, 49, 61] has been done. Second, a property
must be given for which the model is verified. We distinguish between two classes
of verification properties: either the property is directly given by the user or the
model of the source code is verified for properties which must always hold, e.g. null
pointer dereferencing, array bounds or the correct use of an API. A user defined
specification can be a formula in a temporal logic, an automaton or just a line of
code, which is not allowed to be reached on all execution paths of the program.

In this thesis, we present the tool DDVerify for full automatic verification of
Linux device drivers. Device drivers are part of the Linux kernel and are respon-
sible for the communication between hardware and other parts of the kernel and
user software, respectively. We have chosen device drivers because of the following
reasons:

• They are the biggest part of the Linux kernel. Driver code accounts for about
70% of the code size of the Linux kernel 2.4.1 [17].

• Bugs in device driver code are the main reason for errors in operating systems,
also relative to the size of code, as reported in [6, 17].

• A bug in a device driver can crash the whole system because it runs in kernel
mode with exclusive access to the hardware, memory and cpu. Hence it is
hard to detect and fix a bug in driver code.

7



1. Introduction

For the verification process, we make use of the model checking tool SatAbs
[66]. SatAbs can be used to verify ANSI-C programs for both user-defined spec-
ifications and general properties, like buffer overflows, pointer safety and division
by zero, which must hold in all programs. Because it is based on the CEGAR-
framework [19], the user does not need to provide an abstraction. SatAbs creates
an abstraction of the model, which is as simple as possible but precise enough to
capture all details that are necessary for the verification of the given property.

DDVerify checks Linux device drivers for correct usage of the Linux kernel API.
The kernel API provides a large set of concepts for writing device drivers. It does
not have a well defined semantics, but is described by means of natural language
in several places [9, 51, 28] instead.

1.1. Related Work

The first attempt to formalize a programming language using a process logic is
done by Milner in [56]. He uses a simple concurrent programming language, which
is very similar to C, to demonstrate how to reason about programs using the Cal-
culus of Communicating System (CCS). [67] makes use of a real-time extension
of CCS, called RtCCS [68], in order to define a formal semantics for a real-time
object-oriented programming language. Similar but more general, [62] introduces
a framework for defining semantics of arbitrary concurrent object-based languages.
In contrast to these works, [16] does not deal with an exemplary language but for-
malizes a subset of Java. This work is very similar to our formalization part. It
defines a translation for a restricted Java program to a set of CCS processes. The
main focus is on the concurrent behaviour of Java-threads.

Cleaveland et al. [24] use CCS, extended with priorities for the transitions, to
model and verify distributed systems. As an example, a safety-critical part of a
network used in the British Rail’s Solid State Interlocking, a system which controls
railways signals and points, is translated to CCS and verified using the NCSU
Concurrency Workbench [25].

The most closely related work to the practical part of this thesis is the Mi-
crosoft SLAM project [4, 5, 6]. SLAM’s analysis engine is a tool for checking safety
properties of sequential C programs. It is based on predicate abstraction and the
CEGAR-framework. The SDV (Static Driver Verifier) tool uses SLAM’s analysis
engine to check Windows device drivers for correct usage of the kernel API. The
API usage rules are encoded in the C-like language SLIC (Specification Language
for Interface Checking) [3]. This make is possible to extend the set of rules without
changing the source code of the tool. In contrast to our work, SDV has several
restrictions: variables are modeled using unbounded integer numbers, bit-wise op-
erations are not supported, pointer arithmetic is ignored and casting operations are
not checked.

YASM [39] is a model checker for C programs based on the CEGAR frame-
work. Hence, it is very similar to SLAM and our approach. Its main advantage is
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that YASM is not restricted to safety properties but can verify arbitrary proper-
ties, which can be expressed as CTL formulas. Therefore, also liveness properties
(something will eventually happen) and non-blocking properties (something may
always happen) can be expressed.

SATURN (SATisfiability-bases failURe aNalysis) [72, 73] is a framework for static
bug detection. It is based on the translation of C code to SAT formulas. A SAT
solver is used to check a property, given in the form of a SAT query. The framework
has several restrictions. It does not support unions, arrays, pointer arithmetic and
function pointers. Furthermore, it is unsound in its analysis of loops because it is
not able to construct a finite boolean formula representing a fully unrolled loop.
Instead, SATURN has been shown to be applicable on large source code. Using
this framework, a Linux lock checker is built [72] to find locking-related bugs. It is
applied to the source code of the whole Linux kernel, version 2.6.5. As a result of
the analysis, 179 previously unknown bugs were found.

The model checker BLAST (Berkeley Lazy Abstraction Software verification
Tool) [42, 43, 58] is used to find errors in the Linux kernel related to memory
safety and incorrect locking behaviour. To build a model from C source code,
BLAST uses an abstraction algorithm, called “lazy abstraction” [44]. The model
checking algorithm checks if a label in the source code is reachable. This label is
either introduced by the user or it is the result of an automatic translation of a
temporal safety property. An error is found if the model checker is able to find a
path such that the label can be reached. The major limitation of BLAST is the
absence of support for function pointers, which are widely used in device driver
code. The case study [58] shows that BLAST is able to find locking-related bugs,
but had problems with checking for memory-safety. In [43], BLAST is used to
present the idea of extreme verification, in dependence on extreme programming,
a widely used method in software engineering. Instead of verifying the final result
of the programming process, the model checking algorithm is used to determine if
a change in the source code affects the proof of a property in the previous version.
This technique is demonstrated on a Windows device driver.

The static analyzer MOPS [69] is used to check six security related properties
on the entire Red Hat Linux 9 distribution, containing around 60 million lines of
code. MOPS is not sound because it does not analyze function pointers and signals.
Nevertheless, MOPS was able to find 108 real exploitable software bugs. It also
reported 2225 false positives. More than 150 man-hours were spent to check the
error reports.

The CMC model checker [60] follows a different approach. Instead of trying to
extract a model from given source code, it executes the program within the model
checker. This way, CMC is responsible for scheduling and executing the program
in such a fashion to explore as many states as possible. Due to the possibly infinite
state space of a program, CMC cannot exhaustively explore it. Nevertheless, CMC
has been shown to be applicable in practice. In [59], CMC is used to check the Linux
kernel implementation of TCP/IP. It was able to detect four new bugs within it.
In [33], this case study is analysed and compared to static analysis of source code.
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1. Introduction

SPIN [46] is one of the first verification tools based on model checking, which is
being applied widely in research and industry. It is not only restricted to software
verification but can also be used to verify generic finite models that are specified
in PROMELA, the specification language of SPIN. It was used to verify software
written in C [48, 49, 37, 36], C++ [13] and Java [31, 41]. Further approaches to
verify real source code can be found in the VeriSoft project [38, 15] and the Bandera
tool set [29, 40].

Most model checkers for C code are not able to deal with device drivers because
driver functions make use of large data structures, which must be initialized appro-
priately. Our approach defines an operating system model for Linux that creates
these data structures and passes them to the driver functions. In [63], a general
approach is presented to construct data environments by initializing all pointers
without an operating system model.

Besides model checking, there also are other approaches of static code analysis.
UNO [74] is a tool for static analysis of ANSI-C code. It checks a program for using
uninitialized variables, NULL pointer dereferencing and out-of-bound array index-
ing. Furthermore, UNO can check for user defined properties, which are written in
ANSI-C. In [47], UNO is used to check parts of the Linux kernel 2.3.9 for correct
locking usage. PREfix [12] is a static analyzer for C and C++ source code, based on
a simulation technique finding specific error-causing conditions. Due to its mem-
ory model, PREfix is also able to find memory related errors. In [30], the partial
program verification tool ESP is presented. To verify a temporal safety property,
ESP restricts the path-sensitive analysis to paths which are relevant for this prop-
erty. Since the runtime of the algorithm is polynomial in time and space, it is also
applicable to large software.

In [34], a static code analyser is presented which is able to extract programmer’s
belief from the source code. The only user inputs are templates of the form “does
lock l protect variable v?”. The analyser conducts a statistical analysis of the source
code and instantiates the templates. Contradictions to the instantiated templates
are reported to be errors in the code. This approach was applied on the Linux
kernel 2.4 and was able to find 14 errors.

1.2. Outline

Chapter 2 describes the basic concepts of Linux device drivers. We introduce all
parts of the Linux kernel API, for which we give a formalization later and which are
supported by our tool DDVerify. We then show the general structure of the source
code of device drivers and explain the most common bugs appearing in them. In
Chapter 3, we introduce the theoretical concepts we use for the formalization. We
give a brief introduction to the Calculus of Communicating Systems (CCS), which
also gets extended with priorities, and the Linear-time Temporal Logic (LTL). The
Linux kernel API is formalized in Chapter 4. Here, we give an operational semantics
for a subset of C and extend this semantics to the commands provided by the kernel
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API. In Chapter 5, we introduce model checking with the CEGAR-framework,
which is the verification technology SatAbs is based on. In Chapter 6, DDVerify
is introduced. We explain the way it is implemented and how it collaborates with
SatAbs to verify device drivers. That chapter concludes with an overview over the
results of the case studies we made with DDVerify about the device drivers of the
Linux kernel 2.6.19. Finally, we summarize and discuss the results of this thesis.
We also discuss ideas for future works.
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2. Device Drivers

In this chapter, we give a brief introduction to device drivers. More information
can be found in: [28, 9, 51].

The Linux kernel API provides numerous concepts and functions for Linux device
driver programming. We have chosen a subset of this API, which is formalized in
the next chapter and which is supported by DDVerify. This subset contains the
most important concepts, which are widely used in device drivers and most critical
with respect to bug occurrence. After a general introduction to device drivers,
Section 2.2 presents these parts of the Linux kernel API. In Section 2.3, the general
structure of device drivers’ source code is explained. The chapter concludes with
an overview of the most common bugs in device driver code.

2.1. Introduction

Device drivers are the parts of the Linux kernel which are responsible for the inter-
communication between hardware, e.g. the devices, and software (see Figure 2.1).
They can be seen as a “black box” that makes a device respond to a well-defined
internal programming interface. The details of how the device works are completely
hidden. If a software wants to perform something on the device, it can make use
of standardized function calls that are independent of the specific driver. Then,
mapping those calls to device-specific operations that work on real hardware is the
very role of the device driver.

Device drivers do not only interact with user space programs, but also with the
other parts of the kernel. Although the distinction between the different subsystems
of the kernel cannot always be clearly made, the kernel can be split into the following
components:

• Process management: The process is one of the fundamental abstractions
in Linux. A process is a program in execution together with a set of re-
sources such as open files, signals, internal kernel data and global variables.
The kernel’s process management allows to create and destroy processes and
communication among different processes. In addition, the scheduler, which
controls how processes share the CPU, is part of process management.

• Memory management: Similar to user applications, programs running in
kernel space require a possibility to allocate memory. The memory man-
agement subsystem provides a rich set of methods, ranging from the simple
kmalloc/kfree pair to much more complex functionalities.

13
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Application Application Application

System Call Interface

Kernel Subsystem

Device Drivers

user space

kernel space

hardware

Figure 2.1.: A split view of the kernel

• Virtual filesystem: This subsystem of the kernel implements the filesystem-
related interfaces provided to user space programs. In Linux, almost every-
thing can be treated as a file.

• Networking: It is responsible for collecting, identifying, and dispatching in-
coming packets. It is in charge of delivering data packets across programs and
network interfaces. Additionally, all routing and address resolution issues are
implemented within the kernel.

We have used the terms kernel space and user space before. Both are different
modes of execution. Device drivers always run in kernel space. That means they
have a protected memory space and full access to the hardware. Conversely, user
applications are executed in user space. They see a subset of the machine’s available
resources and are unable to call certain system functions, access hardware directly,
or misbehave in other ways.

2.1.1. Types of Devices Drivers

Linux distinguishes between three types of devices: character devices (or char de-
vices for short), block devices and network devices. For each of these device classes,
Linux provides a different driver programming interface. A character device is ac-
cessed as a stream of sequential data (like a file). Examples are keyboards, mice
and the serial port. A driver for a character device usually implements at least the

14



2.2. Linux Kernel API

open, close, read and write system calls. If a device is not accessed sequentially
but rather randomly, it is called a block device. The most common block devices
are hard disks, floppies, CD-ROMs and flash memories. Internally, a block device
driver works with blocks of data, usually having a size of 4096 bytes. But in contrast
to most Unix systems, Linux allows user software to perform I/O operations on an
arbitrary number of bytes. Hence, block and character devices differ only in the way
their data is managed internally in the kernel. Network device drivers implement
the functionality of sending and receiving data packets of network interfaces. The
most important difference between the previous device drivers and network drivers
is that network drivers receive packets asynchronously from the outside, whereas
the others operate only on requests from the kernel.

This is not the only way how devices and device drivers could be classified. One
could also imagine to distinguish between USB devices, SCSI devices, PCI devices,
and so on. In such a classification, a hard disk connected over USB would be
classified as a USB device. In contrast to this, a device driver for a USB hard disk
drive is implemented in Linux as a block device that works with the USB subsystem.

2.2. Linux Kernel API

In this section we give an introduction to the parts of the Linux kernel API which
are formalized in Section 4.3 and which are supported by DDVerify. We explicitly
mention what is modeled and which parts or which behaviour we do not care about.
All supported API functions and their correct types are listed in Appendix A.

2.2.1. Mutual Exclusion

When writing device drivers, it must be considered that the code runs in parallel
to itself most of the time. This may have two reasons: some parts of the code, like
timers, tasklets or interrupt handlers are concurrently executed to the “main code”
of the device driver. Second, more than one user space program can make use of a
device. But not every part of the code should be executed by two threads at the
same time. Consider the following example, which is taken from [28]:

if (!data[pos]) {
data[pos] = kmalloc(...);
if (!data[pos]) {

goto out;
}

}

This piece of code checks whether the required data is allocated or not. In the letter
case, the memory will be allocated using kmalloc. Suppose that two processes A
and B are independently attempting to write to the same position within the device.
Each process reaches the if test in the first line of the fragment above at the same
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2. Device Drivers

time. If the pointer in question is NULL, each process will decide to allocate memory,
and each will assign the resulting pointer to data[pos]. Since both processes are
assigning to the same location, clearly only one of the assignments will prevail.
What will happen, is that the process that completes the assignment second will
“win”. If process A assigns first, its assignment will be overwritten by process B.
At that point, the device driver forgets entirely about the memory that A allocated.
The memory is dropped and never returned to the system.

This sequence of events is a demonstration of a race condition. Race conditions
are a result of uncontrolled access to shared data. When the wrong access pattern
happens, something probably undesirable results. In the example above, the result
is a memory leak. The parts of the code which manipulate shared data and therefore
can be responsible for race conditions are called critical sections.

The usual technique for access management to shared resources is called locking or
mutual exclusion, which ensures that only one process can have access to shared data
at any time. The Linux kernel API provides several methods to do so, for example
the so called semaphores, spinlocks and mutexes1. For the sake of simplicity, we
can think of a semaphore to be a variable with only two values locked and unlocked.
If a process wants to enter a critical section, a corresponding semaphore must be
acquired for this purpose. If the semaphore is locked at this moment, the process
must wait until the semaphore is unlocked by the process that owns it. Using
semaphores, the source code of the previous example would look as follows:

lock(sem);
if (!data[pos]) {

data[pos] = kmalloc(...);
if (!data[pos]) {

goto out;
}

}
unlock(sem);

Mutexes [57] were introduced in the Linux kernel 2.6.17. From the point of use,
they are equal to semaphores. In contrast to them, the mutex subsystem is faster,
has a smaller data structure, has a smaller size of system code, and it provides an
advanced debugging system. There are no special read/writer mutexes, which are
provided by the semaphore subsystem.

Spinlocks are very similar to semaphores. They differ in how the waiting is done
when a process must wait to enter a critical section. If a critical section is guarded
with a semaphore, the process can go to sleep. That means, that another process
will be executed and the scheduler will choose the waiting process in the future.
In contrast to this, spinlocks are implemented with busy waiting. A process, when
waiting for a spinlock, will not lose control of the execution.

1“Mutex” is also used as a general concept name for mutual exclusion methods. In the Linux
kernel 2.6.17, mutexes are introduced as a self-contained subsystem.
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We formalize both, semaphores and spinlocks. We omit the formalization of mu-
texes, because it would not differ from the former. DDVerify supports semaphores,
spinlocks and mutexes. Device drivers can make use of arbitrary many locks. They
may be initialized either statically or at runtime. Interruptible and noninterrupt-
ible sleep is possible. Furthermore, the functions down trylock, spin trylock and
mutex trylock are supported. We do not support the reader/writer semaphores
and reader/writer spinlocks. Disabling interrupts is also not supported by DDVer-
ify. Therefore, the following functions are supported but have no influence on the
behaviour of interrupts: spin lock irqsave, spin lock irq, spin lock bh and
the corresponding unlocking functions.

2.2.2. Wait Queues

Putting a process to sleep is an important technique in device driver programming.
Assume a scenario where there is a process that wants to read data from a device,
but there is no data present at this time. The process can go to sleep. This means,
it is removed from the scheduler’s run queue and will be woken up from another
process when something of interest happens. For example, a writer process can
awake the reader process to notify it that new data was written to the device and
is now available to be read.

Wait queues are one of the available concepts for sleeping. A wait queue is a
simple list of processes waiting for an event to occur. It is represented by a data
structure of type wait queue head t. After the initialization of a wait queue vari-
able, a process can go to sleep on this wait queue by invoking one of the wait event*
macros. The following two macros are formalized and supported by DDVerify:

wait_event(queue, condition)
wait_event_interruptible(queue, condition)

In both cases, queue is the wait queue data structure to use. The condition is an
arbitrary boolean expression. A process goes to sleep only if this expression evalu-
ates to true. In this case, the process deletes itself from the run queue of the sched-
uler and calls schedule. When using wait event, the process is put into an unin-
terruptible sleep. In contrast to this, the sleeping of wait event interruptible
can be interrupted by signals. If the waiting was interrupted, this function returns
a nonzero integer.

Processes waiting for an event are awaken using one of the following functions:

wake_up(queue)
wake_up_interruptible(queue)

If a process is put to sleep with wait event, it can be only awaken with the function
wake up. Correspondingly, if the function wait event interruptible is used to
wait for an event, the function wake up interruptible must be used to wake up
the process. When one of these functions is called, the waiting condition is checked
again. If it is false, the process is put to sleep again. Nevertheless, an awakened
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process cannot make any assumption about this condition. After it has successfully
been awakened, another process could be scheduled which changes the condition.
Therefore in most cases, putting a process to sleep is implemented as a while loop.
Whenever the process is awakened and the condition does not hold, it is put to
sleep again.

2.2.3. Tasklets and Work Queues

There are many situations where a process needs to defer work to happen later.
Interrupt handlers, which are explained in the next section, must terminate very
fast. Therefore, they only do the important work. Most of the data management
operations are delayed to a later time. The Linux kernel API provides several
concepts for deferred work: kernel timers, softirqs, tasklets and work queues. The
latter two are used in most situations. Therefore, we formalize them and they are
supported by DDVerify. Softirqs are used in very special situations only, such
as, when the scheduling has to be very fast. In contrast to the other mechanisms,
kernel timers allow to schedule a task until at least a specific time span has elapsed.

Tasklets, which have nothing to do with tasks, are represented by the data struc-
ture tasklet struct. A variable of this type is initialized together with a so
called handler function of the tasklet. To schedule the tasklet, tasklet schedule
is used. The tasklet’s handler function may be executed immediately if the system
is not under heavy load, but never later than the next timer tick. A tasklet can
be executed in parallel with other tasklets, but is strictly serialized with respect
to itself. DDVerify also supports the possibility to disable and enable tasklets,
but it does not care about the higher prioritized tasklets, which are scheduled with
tasklet hi schedule.

Work queues are very similar to tasklets. The major difference is that tasklets
run in interrupt context, with the result that tasklet code is not allowed to sleep.
Instead, work queue functions run in context of a special kernel process. There-
fore, they are more flexible. In particular, work queue functions can sleep and
have access to user space memory. A work queue is represented by the structure
workqueue struct. It is possible to declare and initialize arbitrary many work
queues. A work, i.e. a variable of type work struct saving a pointer to a handler
function, can be added to a work queue. Alternatively, there is a shared work queue
provided by the kernel. Since most device drivers in the Linux kernel just use the
shared work queue, we formalize and support only this one. A work can be added
to the shared work queue using the function schedule work(work), where the work
variable must be initialized using either INIT WORK or PREPARE WORK before.

2.2.4. Interrupts

In general, an interrupt is a signal that is sent by either a software function or a
hardware device. In what follows, we only deal with hardware interrupts. They
are sent by devices to notify the corresponding device drivers that something has
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happened. For that reason, the device driver must register an interrupt handler
function, which receives interrupt signals on a given interrupt line number. The
number of available interrupt lines is very restricted. On the x86 architecture, there
are only 16 of them, which are shared by all the hardware inside the computer and
the external devices connected to it. Therefore, one interrupt line can be requested
by more than one device. It is possible to request a non-shared interrupt line,
but in most cases this is not a good idea due to the very restricted resources. We
only formalize shared interrupts, but it is not hard to extend the formalization to
exclusive interrupt line requesting. Because DDVerify can only check one device
driver at the time, there is no difference between shared and non-shared interrupt
requests for it.

An interrupt line is requested using the function request irq with the following
parameters:

• irq: number of the requested interrupt line. In general, it can be a hard task
to find out which interrupt line is free and can be used by the device driver.
More information about the possible techniques can be found in [28].

• function: the handler function. If an interrupt request arrives on the re-
quested interrupt line, this function will be called.

• flags: a set of flags to indicate a “fast” interrupt handler, a shared or an
exclusive interrupt request, and several other things. Because we do not make
a difference between fast and slow interrupt handlers, and we only allow shared
interrupt requests, we do not care about these flags in the following.

• dev name: a string used for the information output in /proc/interrupts.
All owners of the interrupt lines are shown in this file.

• dev id: a unique identifier used to identify the corresponding device driver of
an interrupt request. When an interrupt request arrives on a shared interrupt
line, this identifier is used by the device driver to find out whether the inter-
rupt request was generated by the appropriate hardware device or by some
others.

The value returned by the requesting function is either 0 to indicate success or a
negative error code. A correct requested interrupt line can be released using the
function free irq.

Interrupt handler functions must have a fixed type:

irqreturn_t handler(int irq, void *dev_id, struct pt_regs *regs)

The second argument is used to identify whether the interrupt request was sent
by the hardware corresponding to the device driver or not. In the first case, the
function must return the value IRQ HANDLED to indicate that this interrupt request is
handled by this handler function. Otherwise, the value IRQ NONE must be returned.
Interrupt handlers are not executed in the context of a process. Therefore, they have
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several restrictions. An interrupt handler function cannot transfer data to or from
user space, it cannot do anything that could cause the execution to go to sleep, such
as calling wait event, allocating memory with anything other than GFP ATOMIC, or
locking a semaphore. Finally, interrupt handlers may not call schedule. Therefore,
interrupt handlers are usually restricted to doing the most important work, such as
saving new data. Most of the work is done by a deferred function. This splitting
of work is known as the top and bottom halves of interrupt handlers. The top half
is the handler function that actually responds to the interrupt and the bottom half
is a function that is scheduled by the top half to be executed later, at a safer time.
Those functions are usually realized using work queues or tasklets, which we have
presented before.

Requesting and releasing shared interrupt lines are the only methods which are
formalized and supported by DDVerify. We do not distinguish between fast and
slow interrupt handlers. Exclusive interrupt line requesting, as well as enabling and
disabling interrupts, are not supported.

2.2.5. I/O Ports and I/O Memory

Most devices have registers that are used to control the device or to read its status.
The registers are mapped to I/O addresses, which are usually called I/O ports. In
the x86 architecture the I/O address space provides up to 65,536 8-bit I/O ports.
Before a device driver may access an I/O port, it has to allocate it first. This
is done with the function request region. If the requesting succeeds, the device
driver has exclusive access to those ports. To release a chunk of ports, the function
release region is used. A rich set of functions to read and write to I/O ports is
provided by the Linux kernel API. The complete list can be found in Appendix A.
DDVerify supports all of these functions.

I/O memory is another concept to make memory on a device available to device
drivers. I/O ports are only used if several bytes must be read or written from a
control or status register. In contrast to this, I/O memory is mostly used to handle
larger data sets, like video data or ethernet packets. I/O memory regions must
be allocated prior to use. This is done with the function request mem region.
Correspondingly, release mem region is used to free memory regions. After a
memory region has been requested, it must be made available to the kernel before
use. The function ioremap takes the physical address of I/O memory and the size
of the requested region and returns a pointer. This pointer is not allowed to be
dereferenced directly. The I/O memory, to which the pointer points to, can be
used with a set of functions provided for that purpose. DDVerify supports all
functions for I/O memory usage.

The Linux kernel API provides the possibility to map I/O ports to I/O memory.
This is done with this function:

void *ioport_map(unsigned long port, unsigned int count)

It remaps count I/O ports, starting from port port, and makes them appear to be
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I/O memory. The mapping can be canceled using the function ioport unmap. I/O
port mapping is also supported by DDVerify.

2.2.6. Memory Usage

In user space programs, the functions malloc and free are used to allocate and
to free memory. Correspondingly, kmalloc and kfree are used for kernel space
memory, but they have to be used more carefully. The behaviour of the memory al-
location process can be controlled using flags, which are provided to kmalloc as the
second argument. The most commonly used flags are GFP KERNEL and GFP ATOMIC.
The first one means that the allocation is done by executing a system call function
on behalf of a process. Consequently, kmalloc can put the current process to sleep,
waiting for free memory. When a function uses the flag GFP KERNEL to allocate
memory, it must be reentrant and may not be running in atomic context.

Whenever the current process is not allowed to sleep, the flag GFP ATOMIC must
be used to allocate memory. This is the case, for instance, in interrupt handlers,
tasklets, kernel timers or when a lock is held.

DDVerify supports allocating memory using kmalloc, and freeing it with kfree.
It is checked that the flag GFP KERNEL is not used in interrupt context where sleep-
ing is not allowed. All other flags are ignored. Other methods of allocating memory
are not supported.

2.3. General Structure of a Device Driver’s Source Code

The general structure of device drivers’ code is similar most of the time: Each
device driver has an initialization function which is called when the device driver
is loaded into memory. One of its duties is to inform the kernel which functions
are provided to user space applications by the device driver. When unloaded from
the system, the device driver’s exit function is invoked, which does all the cleanup
work. The macros module init and module exit are used in the source code of
a device driver to notify the initialization and the exit function. In the following,
we give a short overview over the general structure of character and block device
drivers.

2.3.1. Character Device Drivers

At first, a character device driver has to register a set of device numbers. A device
number is split into a major number and a minor number. Major numbers are used
to identify the registered drivers. Minor numbers exactly determine which device is
being referred to. Device numbers are represented by the data type dev t. There
are two different ways for a device driver to obtain one or more device numbers.
Either a given set of device numbers is statically registered, or the allocation is
done dynamically. Static allocation only succeeds if all the device numbers are free.
Otherwise, the registration fails. Hence, in most cases, dynamic allocation of device
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#include <...>

dev_t number;

struct cdev cdev;

int mydev_open(...)

{

return 0;

}

int mydev_release(...)

{

return 0;

}

ssize_t mydev_read(...)

{

return 0;

}

struct file_operations fops = {

.owner = THIS_MODULE,

.open = mydev_open,

.read = mydev_read,

.release = mydev_release,

};

int driver_init()

{

int err;

err = alloc_chrdev_region(

&number, 0, 1, "mydev");

if (err < 0) {

return err;

}

err = cdev_add(&cdev, number, 1);

if (err) {

return err;

}

return 0;

}

void driver_exit()

{

unregister_chrdev_region(&number, 0);

cdev_del(&cdev);

}

module_init(driver_init);

module_exit(driver_exit);

Figure 2.2.: Exemplary code of a character driver

numbers is the better choice. The functions for static and dynamic allocation of
device numbers are register chrdev region and alloc chrdev region.

Once the device driver has successfully obtained the required device numbers, it
may register the devices. A character device is represented by a structure of type
struct cdev. A valid cdev structure is allocated using the function cdev alloc.
One of the most important fields of the cdev structure is ops, a structure of type
struct file operations. It is a collection of function pointers and defines the
provided functionality of the device driver. If the cdev structure is statically de-
fined, the function cdev init is used to initialize it along with a file operations
structure. The last thing to do is to inform the kernel about the device by using the
function cdev add. After calling cdev add, the device is registered in the system
and can immediately be used by user space programs. To remove a char device
from the system, the function cdev del is used.

2.3.2. Block Device Drivers

Similar to character device drivers, block device drivers must use a registration
interface to make their devices available to the kernel. The concepts are similar,
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but the details of block device registration are different.
The first step is to execute the function register blkdev in order to register the

driver to the kernel and to obtain a major number for the driver. The corresponding
function for canceling a block device driver registration is unregister blkdev.
After the registration, the kernel is informed about the driver but there are no
devices alive. Block devices, which are also called disk devices, are represented in
the kernel by the structure struct gendisk. A structure of this type is dynamically
allocated using the function alloc disk. The function takes one argument, which
should be the number of minor numbers of the disk device. After allocating a
gendisk, several fields of this structure must be initialized. The most important
ones are fops and queue. The first one is a pointer to a structure of type struct
block device operations. Like the file operations structure in character device
drivers, this structure is a collection of function pointers defining the implemented
functionalities of the device driver. The queue field is a pointer to a request queue.

The core of every block device driver is the request queue, represented by a vari-
able of type struct request queue, and its request function. The request queue
stores all block read and write requests, which are then performed by the request
function. A request queue variable is allocated using the function blk init queue,
which takes two arguments: a pointer to the driver’s request function and an ini-
tialized spinlock. This spinlock is used to restrict concurrent calls of the request
function.

After allocating a gendisk structure and initializing its fields, the device can
be registered to the kernel. This is done using add disk. From this point, the
device is registered and can immediately be used by user programs. In the driver’s
cleanup function, del gendisk should be called to release the disk devices. It is
also necessary to release the driver’s request queue using blk cleanup queue.

2.4. Bugs in Device Drivers

In software development, most of the bugs follow a small set of patterns, e.g. out-of-
bounds while accessing an array or use of non initialized variables. In this section,
we present the most typical bugs that appear in device drivers.

In [17], different versions of the Linux kernel are checked with twelve different
checkers in order to prepare a study about bugs in operating systems. Figure 2.3
shows the proportional distribution of device driver bugs, which were found with
eight of these checkers in the Linux kernel 2.4.1. The block-checker checks that
blocking functions are not called while interrupts are disabled or a spinlock is held.
These errors may cause a deadlock of the whole system. An exemplary bug [11]
can be found in the driver sound/isa/sb/sb16 csp.c of the Linux kernel 2.6.3:

spin_lock_irqsave(&p->chip->reg_lock, flags);
...
unsigned char *kbuf, *_kbuf;
_kbuf = kbuf = kmalloc(size, GFP_KERNEL);
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Range
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Figure 2.3.: Statistics about errors in Linux device drivers

First, a spinlock is acquired. Several lines later, kmalloc is called with the param-
eter GFP KERNEL. Hence, it is allowed to go to sleep (see Section 2.2.6), possibly
causing a deadlock.

The free-checker checks that freed memory is not used any more. An example
[58] for a use-after-free error is shown in the following snippet of the device driver
drivers/message/i2o/pci.c of the Linux kernel 2.6.13:

static int i2o_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)

{
struct i2o_controller *c;
...
c = i2o_iop_alloc();
...
i2o_iop_free(c);
put_device(c->device.parent);
...

}

The function i2o iop alloc allocates memory for an i2o controller structure us-
ing kmalloc. At the end of the listing, this memory is freed through i2o iop free.
The bug in this piece of code arises from the call of put device, since its parameter
c->device.parent causes an already freed pointer to be dereferenced.

The Inull-checker checks if inconsistent assumptions are made about whether
a pointer is NULL. The following part of the source code of the device driver
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drivers/isdn/avmb1/capidrv.c, taken from Linux kernel 2.4.1, is an example
for this kind of errors [34]:

if (card == NULL) {
printk(KERN_ERR "capidrv-%d: ... %d!\n", card->contrnr, id);

}

The printk function is only executed if card is a NULL-pointer. But this pointer is
dereferenced by providing card->contrnr as a parameter to printk.

The Intr-checker checks that disabled interrupts are restored. The Lock-checker
checks whether acquired locks are released and that acquired locks are not acquired
again. An exemplary locking related bug, which we have found in the current Linux
kernel 2.6.19 using DDVerify, is presented in Section 6.3. The Range-checker
checks for bounds of array indices and loop bounds derived from user data. The
Null-checker is used to find bugs related to dereferencing NULL-pointers. Finally,
the Var-checker checks that large stack variables (> 1 KByte) are not allocated on
the fixed-size kernel stack.
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In this chapter, we introduce the theoretical concepts which are used for the for-
malization of the Linux kernel API in the next chapter. The first section gives an
introduction to the Calculus of Communicating Systems. It is used to define con-
current systems formally. In Section 3.2, we give a brief introduction to the LTL,
a temporal logic used to specify properties.

3.1. Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) [55, 56] is a process algebra devel-
oped for the analytical modeling of concurrent and distributed systems. We present
an extended version of CCS with priorities and the value passing extension. The
formal notation used in this introduction is based on [56, 24].

The main concepts of CCS are processes1 and channel communication. A con-
current system is described by a set of CCS processes. Their communication over
channels corresponds to the system’s behaviour. For example, consider a simple
vending machine that sells tea and coffee. A person may throw one coin into the
vending machine and gets a cup of tea after pushing a button. For another coin,
the person gets a cup of coffee. The vending machine can be described with one
CCS process:

V ending
def= coin.(button.tea.V ending + coin.button.coffee.V ending)

Here, coin, button, tea and coffee are channel labels. Channels are used for the
communication between processes. An action can have the name of either the
label of a channel or its co-label, like tea. The former are defined to be input
actions over channels, whereas the co-labels define an output action. The V ending
process makes an input transition over the channel coin and results in a sum of
two processes. The first summand proceeds with an input transition over button,
an output transition over tea and restores the process of the vending machine. The
second summand is similar, but requires another input transition over coin.

A person handling the vending machine can be defined by the following CCS
process:

Person
def= coin.(button.tea.Person+ coin.button.coffee.Person)

The person’s process definition is very similar to the process of the vending
machine, just the labels are changed by the corresponding co-labels, and vice versa.

1In several publications, processes are also called agents.
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This is quite natural, because the person outputs on the channels coin and button
and expects an output of the vending machine on the channels tea and coffee,
which are inputs from the persons’s point of view.

Both processes can be composed into one process describing a system of a vending
machine and a person using it:

Sys
def= (V ending | Person) \ {coin, button, tea, coffee}

The system’s process definition is a parallel composition of the processes V ending
and Person. This composition is restricted to all four channels. Intuitively this
means that these channels are not available for other processes outside of Sys.
The corresponding actions are invisible, because they happen inside of the system’s
process. Furthermore, the vending machine’s process and the person’s process
are allowed to perform handshake communications over the restricted channels
only. That means, if an action in one process and a corresponding co-action in the
other process is possible, both continue simultaneously with an invisible handshake-
communication over the channel.

3.1.1. CCS with Priorities

After the previous informal introduction, we now define CCS with priorities in
a formal way. Let {Λk | k ∈ N} denote a family of pairwise-disjoint, countably
infinite sets of labels. Λk contains the channels with priority k that processes may
synchronize over. The set of co-labels with priority k is defined by Λk = {α | α ∈
Λk}. We then define the set of all labels by L =

⋃
{Λk | k ∈ N}. For better

readability we write αk if α ∈ Λk. We use αk, βk, γk, . . . to range over labels, and
αk, βk, γk, . . . to range over co-labels. The handshake communication with priority
k over channel α is denoted with τα

k . The set of actions with priority k is defined
by Actk = Λk ∪ Λk ∪ {τα

k | α ∈ Λk}. Accordingly, the set Act =
⋃
{Actk | k ∈ N}

contains all actions.
The syntax of CCS with priorities is defined by the following Backus-Naur-form:

P ::= nil | αk.P |
∑
i∈I

Pi | P | Q |

P B Q | P \ L | P [f ] | C
def= P

where Pi, P and Q range over the set of processes, L ⊆ L, and I is a possibly
infinite indexing set. f : L 7→ L is a relabeling function for labels. The intuitive
definitions of the processes are as follows:

• nil represents the process which cannot perform any action.

• αk.P denotes a process which can perform an action α ∈ Act with priority k
and then behaves like process P .
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Ik(αl.E) =

{
{al} if l = k

∅ otherwise

Ik(
∑
i∈I

Pi) =
⋃
i∈I

Ik(Pi)

Ik(P \ L) = Ik(P ) \ (L ∪ L)
Ik(P [f ]) = {f(αk) | αk ∈ Ik(P )}
Ik(P | Q) = Ik(P ) ∪ Ik(Q) ∪ {τα

k | αk ∈ Ik(P ) ∩ Ik(Q)}
Ik(P B Q) = Ik(P ) ∪ Ik(Q)

Ik(C) = Ik(P ) where C def= P

I<k(P ) =
⋃
{Il(P ) | 0 ≤ l < k}

Figure 3.1.: Initial action sets

•
∑

i∈I Pi is the summation of processes over an indexing set I. This process
continues as one of the processes Pi. The choice is done nondeterministically,
but can be restricted by the priorities of handshake actions. For the binary
summation we also write P +Q for two processes P and Q.

• P | Q is the parallel composition of the processes P and Q.

• P B Q behaves like P and is capable of disabling P by engaging in Q.

• P \ L restricts the actions contained in L to be handshake actions in the
process P . For processes outside of P \ L, the channels defined in L are not
available to communicate with P .

• P [f ] behaves like P but with the action relabeled by function f .

• C
def= P defines an abbreviation C for a process P .

The operational semantics is given by a labeled transition system 〈P,A,→〉,
where P is the set of processes, A is the set of actions and →⊆ P ×A× P is the
transition relation. We write P αk−→ P ′ instead of 〈P, αk, P

′〉 ∈→.
The definition for the operational rules of the transition systems requires the con-

cept of initial action sets which are inductively defined on the syntax of processes,
as shown in Figure 3.1. Ik(P ) denotes the set of all initial actions of a process P
with the priority k. I<k(P ) is the set of all initial action with a higher priority than
k. We write α ∈ I<k(P ) if there exists an l such that αl ∈ Il(P ) and l < k.

The only axiom Act and the rules for the transition relation → are shown in
Figure 3.2. Note that the rules Sum1 and Sum2 for the binary summation are
only a specialization of the general summation rule Sumj. Both are explicitly given
because the binary summation is used very often in what follows.
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Act
αk.P

αk−→ P

Sumj

Pj
αk−→ P ′

j∑
i∈I Pi

αk−→ P ′
j

∀i ∈ I.i 6= j =⇒ τβ /∈ I<k(Pi)

Sum1
P1

αk−→ P ′
1

P1 + P2
αk−→ P ′

1

τβ /∈ I<k(P2) Sum2
P2

αk−→ P ′
2

P1 + P2
αk−→ P ′

2

τβ /∈ I<k(P1)

Com1
P

αk−→ P ′

P | Q αk−→ P ′ | Q
τβ /∈ I<k(P | Q)

Com2
Q

αk−→ Q′

P | Q αk−→ P | Q′
τβ /∈ I<k(P | Q)

Com3
P

αk−→ P ′ Q
αk−→ Q′

P | Q
τα
k−→ P ′ | Q′

τβ /∈ I<k(P | Q)

Dis1
P

αk−→ P ′

P B Q
αk−→ P ′ B Q

τβ /∈ I<k(Q) Dis2
Q

αk−→ Q′

P B Q
αk−→ Q′

τβ /∈ I<k(P )

Res
P

αk−→ P ′

P \ L αk−→ P ′ \ L
αk /∈ (L ∪ L) Con

P
αk−→ P ′

C
αk−→ P ′

C
def= P

Rel
P

αk−→ P ′

P [f ]
βk−→ P ′[f ]

f(α) = β

Figure 3.2.: Operational semantics for CCS with priorities

The question may arise whether the extension of the classical CCS with priorities
is really necessary or if it is syntactic sugar. We show an example, taken from [23],
to illustrate the necessity of priorities in process algebras in general. Consider the
following system:

C
def= up.C1 + i.nil

Cn+1 def= up.Cn+2 + down.Cn + i.nil

Irp
def= shutDown.i.nil

Sys
def= (C | Irp) \ {i}

The process C acts as an infinite counter, while Irp is designed to halt C when
the environment issues a shutDown request. After the arrival of a signal on this
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L(nil.P ) = ∅
L(αk.P ) = {α} ∪ L(P )
L(αk.P ) = {α} ∪ L(P )
L(τα

k .P ) = L(P )

L(
∑

i

Pi) =
⋃
i

L(Pi)

L(P | Q) = L(P ) ∪ L(Q)
L(P B Q) = L(P ) ∪ L(Q)

L(P \ L) = L(P )− (L ∪ L)
L(P [f ]) = {f(l) | l ∈ L(P )}

Figure 3.3.: Definition of sort L(P ) of a process expression P

channel, the internal handshake communication over channel i would be available.
After this, the counter would end up in a deadlock process. But nothing forces
the counter process to do the handshake. It may also continue with either up or
down. The system cannot be described correctly using CCS only. When priorities
are added to the formalization, we can achieve the expected behaviour. To do so,
we have to assign a higher priority to the action i than to the actions up and down.
If the handshake communication over i is available, the counter process must do
this and will be stopped afterwards. This kind of interrupting systems is the basis
of several concepts in operating systems. Therefore, we have added the concept of
priorities to our formalization.

3.1.2. Sorts

A sort L is a set of labels. We say that a process P has sort L, and write P : L,
if all the actions which P may perform at any time in the future have labels in L.
Clearly, if L is a sort of P , and L ⊆ L′, then L′ is a sort of P , too. Normally, we
are interested in the smallest sort L of P such that P : L. The definition of a sort
for a process expression E is shown in Figure 3.3.

In the following, we will define so called access sorts for CCS process definitions.
An access sort for a CCS process P defines the labels by which other processes may
communicate with P . We denote access sorts with ACC.

3.1.3. Value Passing Extension

The value passing extension of CCS allows to define processes which can send and
receive values over channels. We define the values to be natural numbers, but in
general every countably infinite domain may be chosen.
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JnilK 7→ nil

Jαk(x).P K 7→
∑
v∈V

αv
k.JP{x := v}K

Jαk(e).P K 7→ αe
k.JP K

J
∑
i∈I

PiK 7→
∑
i∈I

JPiK

JP | QK 7→ JP K | JQK
JP B QK 7→ JP K B JQK
JP \ LK 7→ JP K \ {αv | α ∈ L, v ∈ V }
JP [f ]K 7→ JP K[f ′] where f ′(lv) = f(l)v

Jif b then P else QK 7→

{
JP K if b = true

JQK otherwise

JC〈e1, . . . , en〉K 7→ Ce1,...,en

Figure 3.4.: Definition of the translation function J·K from the value passing CCS
to the classical calculus

The set of CCS processes is extended in the following way:

V P ::= αk(x).P | αk(e).P |

C(x1, . . . , xn) def= P | C〈e1, . . . , en〉 |
if b then P else Q

Where x, x1, . . . , xn are variables, e, e1, . . . , en are value expressions, i.e. represent-
ing natural numbers, and b is a boolean expression. The value passing extension
also allows the parametrized definition and instantiation of processes, and the con-
ditional branching between two processes.

Milner shows in [56] that this extension of CCS is syntactic sugar only. Therefore,
it is possible to give a translation function from process definitions denoted in the
value passing calculus to the classical one. The fundamental idea of this translation
function J·K from V P to P is, to consider a channel αk together with its actual
content v, as a new channel name αv

k. Therefore, for each data value there is a
separate channel name. The translating equations for the function JK are shown in
Figure 3.4. Furthermore, a single defining process equation C(~x) def= P is translated
into the indexed set of defining process equations

{C~v
def= JP{~x := ~v}K | ~v ∈ V n}

where n is given by ~x = x1, . . . , xn.
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3.2. LTL

In the previous section, we defined the Calculus of Communicating Systems in order
to describe concurrent systems in a formal way. A temporal logic is then used to
provide specifications (also called properties) for those systems and to prove them.
Linear-time temporal logic [50, 18], or LTL for short, is a temporal logic to reason
about states on future paths. An LTL formula φ is satisfied in a state s, if all paths
starting in that state satisfy φ. Thus, LTL implicitly quantifies universally over
paths.

LTL has the following syntax given in Backus-Naur-form:

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ |X φ | F φ |G φ | φ U φ | φ R φ

where p is any proposition atom from some set A. Thus, the symbols > and ⊥ are
LTL formulas, as are all atoms from A, and ¬φ is an LTL formula if φ is one, etc.
The connectives X, F, G, U and R are called temporal connectives. X means “neXt
state”, F means “some Feature state”, and G means “Globally”, i.e. all feature
states. The connectives U and R are called “Until” and “Release” respectively.
Usually, A defines a set of atomic formulas denoting atomic facts which may hold
in a system. Because we want to reason about systems defined by CCS processes,
we define A to be Act, i.e. the set of all actions, in the following. An atomic formula
p ∈ A is then true in a state s, if the action p can be executed in this state. This
brings us to the semantics of LTL.

A model for an LTL formula is defined by a transition system M = (S,→, L),
where S is a set of states, →⊆ S × S is a binary relation on S, and L : S 7→ P(A)
is a labelling function for states. The latter one defines the atomic formulas which
are true in the states. To reason about the future of a state s ∈ S, we need the
definition of a path in a transition system M: A path is an infinite sequence of
states s1,s2,s3, . . . in S such that, for each i ≥ 1, si → si+1 holds. We write paths
as π = s1 → s2 → . . . . The suffix of a path π, starting at state si, is denoted by πi.
Whether a path π = s1 → . . . of a transition system M satisfies an LTL formula
is defined by the satisfaction relation |= as follows:

1. π |= >

2. π 6|= ⊥

3. π |= p iff p ∈ L(s1)

4. π |= ¬φ iff π 6|= φ

5. π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

6. π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

7. π |= φ1 → φ2 iff π |= φ2 whenever π |= φ1

8. π |=X φ iff π2 |= φ
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9. π |=G φ iff ∀i ≥ 1.πi |= φ

10. π |= F φ iff ∃i ≥ 1.πi |= φ

11. π |= φ U ψ iff ∃i ≥ 1.(πi |= ψ ∧ ∀j.1 ≤ j < i→ πj |= φ)

12. π |= φ R ψ iff ∃i ≥ 1.(πi |= φ ∧ ∀j.1 ≤ j ≤ i→ πj |= ψ) ∨ ∀k ≥ 1.πk |= ψ

For a given transition systemM = (S,→, L), a state s ∈ S fulfills an LTL formula
φ if and only if φ is satisfied by every path π in M starting at s. We then write
M, s |= φ.

L(nil) = ∅
L(αk.P ) = {α} ∪ L(P )

L(
∑
i∈I

Pi) =
⋃
i∈I

L(Pi)

L(P | Q) = L(P ) ∪ L(Q)
L(P . Q) = L(P ) ∪ L(Q)
L(P \ L) = L(P )
L(P [f ]) = {f(a) | a ∈ L(P )}

L(C) = L(P ) if C def= P

Figure 3.5.: Labeling function for CCS processes

The operational semantics of CCS is also defined by a transition system that
can be used to specify LTL formulas for it. It does not matter that this transition
system is labeled. The labeling function L for CCS processes is defined in Figure
3.5.
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In this chapter we give an operational semantics for concurrent C programs. We
consider a subset of C, called C0. This restriction comes without loss of generality,
since it can easily be shown that every C program can be translated into C0. For
this language, we give an semantics using CCS. This approach makes it more easier
to reason about concurrency. Furthermore, we given the semantics of several parts
of the Linux kernel API. This makes it possible to reason about C0 programs
which makes use of them. Because the operational semantics of CCS is given by
a labeled transition system, it is not trivial to implement a corresponding model
in C. Therefore, in the last step we give an operational semantics for concurrent C
programs and the Linux kernel API in a way, which is closer to C.

The approach to define the semantics of a parallel imperative programming lan-
guage in CCS roots back to Milner’s book [56], where an operational semantics for
the concurrent programming language M was defined. In [67], CCS was used to
define an operational semantics for a real-time object-oriented programming lan-
guage. Our semantics for C0 is based on Milner’s approach, but is simplified in
many ways to make the concepts more clearer without loosing in details. To our
best knowledge, there are no other approaches to formalize parts of the Linux API
with a process algebra.

4.1. The Programming Language C0

The programming language C is very expressive. In the following, we only consider
a very restricted subset of C, named C0. While-loops are the only supported loop
constructs. Furthermore, recursion is not allowed. Both are no real restriction,
because while-programs are Turing complete [35]. Hence, all other constructions
can be simulated using while-loops only. In theory, it is possible to translate a C
program into C0.

On the syntactical level, we distinguish between two different function calls: func-
tion calls to functions defined in the C0 program, and function calls to external
functions, e.g. functions of the Linux kernel API. The first ones are restricted in
that neither parameters nor return values are allowed. Calls to external function
may have arbitrary many parameters, but they are required to return an integer
value. In C0, only global variables may be declared. It is allowed to declare variables
of arbitrary type, but only integer variables are directly supported by C0. As soon
as the model of the Linux kernel API is presented, we introduce further types of
variables. Expressions over integers are also very restricted, only the binary sum of
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4. Operational Semantics

〈Statement〉 ::= 〈VarName〉 = 〈IntExpr〉
| 〈Statement〉;〈Statement〉
| if 〈IntExpr〉 { 〈Statement〉 }
| if 〈IntExpr〉 { 〈Statement〉 } else { 〈Statement〉 }
| while 〈IntExpr〉 { 〈Statement〉 }
| void 〈FuncName〉()
| 〈FuncCall〉
| 〈VarName〉 = 〈FuncCall〉

IntExpr ::= 〈IntNumber〉
| 〈VarName〉
| 〈VarName〉 + 〈IntNumber〉
| 〈VarName〉 == 〈IntNumber〉

FuncDecl ::= void 〈FuncName〉() { 〈Statement〉 }
| 〈FuncDecl〉;〈FuncDecl〉

VarDecl ::= 〈VarType〉 〈VarName〉
| int 〈VarName〉
| int 〈VarName〉 = 〈IntNumber〉
| 〈VarDecl〉;〈VarDecl〉

Prog ::= 〈VarDecl〉〈FuncDecl〉

Figure 4.1.: Syntax of C0

a variable and a constant, and the comparison of two variables are allowed. Mul-
tiplication and division can be implemented using this basic operations and loops.
The syntax of C0 is given by its Backus-Naur-form in Figure 4.1. 〈VarName〉 and
〈FuncName〉 represent the syntax of correct variable and functions names in C. A
syntactically correct function call, i.e. the function name and a set of parameters,
is defined by 〈FuncCall〉. C0 supports the instantiation of arbitrary variable types.
The syntax of a correct type name in C is defined by 〈TypeName〉.
C0 is a strict sequential programming language. Concurrency is introduced when

we present the formalization of the Linux kernel API. We use the parallel compo-
sition of CCS to run several processes, like tasklet functions or interrupt handlers,
in parallel to the main program execution. For sake of simplicity, we do not allow
concurrent calls to one function. That means that a function, which is declared
in a C0 program, cannot be executed by two processes at the same time. In this
case, one of these processes must wait until the other has left the function’s body.
In [56], a general approach to the formalization of program functions is presented,
which also allows parallel and recursive function calls.
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4.2. Operational Semantics of C0

In this section we give an operation semantics for the programming language C0.
The semantics is based on CCS with priorities and value passing. To simplify the
following notations, we define the standard priority of transitions to be 2. This
means that whenever a priority is not given explicitly, we assume the transition to
have this standard priority.

4.2.1. Sequential Composition

There is no basic notion of sequential composition of processes in CCS. To define
a combinator Before for sequential composition, we assume that processes must
indicate their termination by a done transition. The combinator is then defined as
follows:

P Before Q
def= (P [b/done] | b.Q) \ {b}

Done
def= done.nil

where b is a new label.

4.2.2. Variables

C0 provides basic support for integer variables. An integer variable i is represented
by a CCS process which stores the value of the variable and provides two channels
for reading and writing this value:

Inti(V al) def= writei(x).Intix〉+ read
i(val).Inti〈val〉

The read transition is used to read the value of the variable, and via the write
transition a new value is set to the variable. There are two possibilities how a
variable can obtain a new value: either through the evaluation of an assignment
or through the result of an external function call. Both expressions are translated
to CCS processes, which must terminate with a res(x) transition providing their
result as parameter x. In order to write this result to the variable, we define the
following combinator:

P Into(x)Q def= (P | res(x).Q) \ {res}

where Q is a process expression with a free variable x and no further res transi-
tions. This combinator is then used with a process P , which evaluates an integer
expression or an external function call and returns the value as an output transition
over res, and a process Q, which takes the results and writes it to a variable.

Once we introduce the semantics of the Linux kernel API, more types of variables
are possible. For a variable type τ and an instance χ of τ , we define an access sort
ACC(τ, χ). This set contains all labels that can be used to interact with the CCS
process of the variable τ . For an integer variable i, the access sort is defined by:

ACC(int, i) = {readi, writei}
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4.2.3. Commands and Expressions

The function J·K translates a C0 program into a set of CCS processes. It is defined
over the inductive structure of C0. Using the auxiliary combinators Before and
Into(x), the translation of statements is pretty straightforward:

JX = EK = JEK Into(x) (writeX(x).Done)
JS ; S′K = JSKBefore JS′K

Jif E { S }K = JEK Into(x) (if x = 1 then JSK else Done)
Jif E { S } else { S′ }K = JEK Into(x) (if x = 1 then JSK else JS’K)

Jwhile E { S }K = W , where W def= JEK Into(x)
(if x = 1 then JSKBefore W else Done)

Jvoid G()K = call
G
.returnG.Done

JX = F K = JF K Into(x) (writeX(x).Done)

Where S and S′ are statements, X is an integer variable, E is an integer expression,
G is a function name and F is an external function call. For external function
calls, the translation must be defined explicitly for each function. Note the main
difference between both kinds of function calls: while an internal function call must
terminate with a done transition, external function calls must return an integer
value. Therefore, they terminate with a res transition to provide the return result.
The translation of function declarations is defined as follows:

Jvoid G() { S }K = WG, where

WG
def= callG.JSKBefore returnG

.WG

JD ; D′K = JDK | JD′K

Where D and D′ are function declarations. A declaration of a function G is trans-
lated into a process that is activated by a handshake communication over the chan-
nel callG. The process which calls this function, must then wait until it receives a
signal on the channel returnG. The translation of integer expressions is defined in
the following way:

JCK = res(C)

JXK = readX(x).res(x)

JX + CK = readX(x).res(x+ C)

JX == CK = readX(x).(if x = C then res(1) else res(0))

Here, C is an integer constant. The comparison of a variable and a constant is
translated to a function that returns 1 if both values are equal and 0 otherwise.
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Next, we define the translation of variable declarations:

Jint XK = IntX〈0〉
Jint X = CK = IntX〈C〉

JD ; D′K = JDK | JD′K

Where D and D′ are arbitrary variable declarations. Due to the ANSI-C standard,
an uninitialized global integer variable has the value 0.

4.2.4. Translating C0 Programs

Finally, we define the translation of a whole C0 program. Assume that a C0 program
P consists of a nonempty sequence PD of variable declarations and a nonempty
sequence PF of function declarations. We write 〈τ, χ〉 ∈ PD, if variable χ of type τ
is defined in PD. Furthermore, we write ffoo ∈ PF , if foo is the name of a function
declaration in PF .

Let a C0 program be given. PD consists of m variable declarations, and PF
consists of n function declarations. Furthermore, fmain ∈ PF , which is the entry
point of the program. The translation of P is then defined as follows:

JPK = (JPDK | JPFK | callmain
.nil) \∆

with

∆ =
⋃

1≤i≤m

ACC(τi, χi) ∪ {callfi , returnfi | 1 ≤ i ≤ n}

The label restriction set ∆ restricts all variable access labels and all function call
and return labels to be internal handshake actions.

4.3. CCS based Semantics of the Linux Kernel API

In this section, we introduce a semantics, based on CCS, for a subset of the Linux
kernel API. This subset is explained in Section 2.2. The parts of the API which
are concurrency related, are of major interest. Here, we omit the formalization
of memory management and I/O communication. A semantics of these parts is
presented in the next section, where we introduce an operational semantics for all
supported parts of the Linux kernel API.

For each supported subsystem of the Linux kernel API, we define a translation
function. This function translates the C-commands of the API to CCS process def-
initions. Furthermore, we specify LTL formulas defining the behaviour of programs
that make correct use of the Linux kernel API. If one of these formulas is not true
for a transition, then the corresponding program has a bug.
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4.3.1. Semaphores and Spinlocks

The way semaphores can be modeled as a CCS process is very simple. For a
semaphore x, we define a process Semx as follows:

Semx def= downx.upx.Semx

Assume that there are two CCS processes P and Q that run in parallel to the
semaphore process Semx. If P wants to lock the semaphore x it must perform the
transition downx. This results in a handshake communication with the semaphore
process. If the process Q now tries to acquire the same semaphore, it cannot
continue because there is no counterpart for the locking transition. Only when P
unlocks the semaphore using the transition lock

x, the semaphore process will be
restored and Q may continue with locking the semaphore.

The translations of functions for initializing, locking and unlocking semaphores
are defined as follows:

Jstruct semaphore semK = initsem.Semsem

JDECLARE MUTEX(sem)K = Semsem

Jinit MUTEX(&sem)K = init
sem
.Done

Jdown(&sem)K = down
sem
.Done

Jdown interruptible(&sem)K = (downsem.res(0) + res(−1)).Done

Jdown trylock(&sem)K = (downsem.res(0) + τ3.res(−1)).Done
Jup(&sem)K = upsem.Done

If a semaphore variable is not declared with the macro DECLARE MUTEX, it must
be initialized with the function init MUTEX before use. Therefore, the correspond-
ing semaphore process is guarded with an init transition. The locking function
down interruptible may fail when waiting for the semaphore. down trylock
tries to lock the semaphore and fails immediately if it is not available. This is mod-
eled using a τ3 transition with a lower priority than the transition for locking the
semaphore has. If a handshake communication over the channel downx is possible,
the process has to perform this one. In this case, it returns 0 to indicate the suc-
cessful locking of the semaphore. Otherwise, the process performs the τ3 transition
and returns -1, because the semaphore has been locked by another process.

The main difference between semaphores and spinlocks is the way how the waiting
is done if the semaphore or spinlock is not available. Because we do not formalize
the difference between sleeping or busy waiting, semaphores and spinlocks are quite
similar in their formalization. The CCS process for a spinlock x is defined in the
same way like semaphores are defined:

Spinx def= downx.upx.Spinx
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The translations of spinlock related functions are also quite similar:

Jspinlock t lockK = initlock.Spinlock

Jspinlock t lock = SPIN LOCK UNLOCKEDK = Spinlock

Jspin lock init(&lock)K = init
lock

.Done

Jspin lock(&lock))K = down
lock

.Done

Jspin unlock(&lock))K = uplock.Done

The access sorts for semaphores and spinlocks are defined by:

ACC(struct semaphore, x) = ACC(spinlock t, x) = {initx, downx, upx}

We define three specifications of correct semaphore and spinlock usage:

• A semaphore or a spinlock, respectively, always has to be initialized before it
is used. This is expressed by the following formula:

G ¬(initx ∧ downx)

If an output transition on channel downx is available, there is a process trying
to acquire the lock x. If, at the same time, the input transition initx is
available, then the lock x has not been initialized. Therefore, both transitions
are not allowed to occur simultaneously.

• Unlocking a locked semaphore or spinlock is not allowed:

G ¬(downx ∧ upx)

If both, downx and upx are available at the same time, there is a process
which wants to unlock a lock x, which has not been locked before (otherwise
the input transition downx would not be available).

• A process it not allowed to lock a semaphore or spinlock if it has already been
locked by the same process. For a general formula defining this property,
we would need to store the information about which process has locked the
semaphore or spinlock, respectively. If we restrict the situation to the case of
only one execution process (hence there is no concurrency), we can define the
following formula:

G ¬(upx ∧ downx)

If the transition upx is available, we know that the lock x is locked in this
state. If there is only one process running and it makes an output transition
on channel downx, then we know that this process tries to lock x, which has
been locked before by the same process.
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StartWakeupx | wakeupQueuex
0
.P | wakeupQueuex

0
.Q | startWakeup

x

.R

WakeupQueuex | wakeupQueuex
0
.P | wakeupQueuex

0
.Q | R

WakeupQueuex | P | wakeupQueuex
0
.Q | R

WakeupQueuex | P | Q | R

StartWakeupx | P | Q | R

τ
startWakeupx

2

τ
wakeupQueuex

0

τ
wakeupQueuex

0

τ1

Figure 4.2.: Transitions of awaking processes from a wait queue

4.3.2. Wait Queues

A process may use a wait queue to sleep on until a condition holds. Another process
must then request the wait queue to awake all waiting processes. We model the
waiting on a wait queue x with a special transition wakeupQueuex. If a process
wants to sleep on the wait queue x, it just needs to wait for the complementary
transition. The input transition over this channel is sent by a wake up process.
When this process is started, it sends the wakeupQueuex transition as many times
as there are processes waiting on the wait queue x. This way, the waiting processes
perform a handshake communication over this channel and may continue. The
wake-up method for a wait queue x consists of the following two processes:

WakeupQueuex
def= wakeupQueue

x

0.WakeupQueuex + τ1.StartWakeupx

StartWakeupx
def= startWakeupx.WakeupQueuex

In order to start waking up on a wait queue x, a process has to perform the transition
startWakeup

x. After this, the process WakeupQueuex is started. It implements a
loop, creating wakeupQueuex0 transitions until there is no further complementary
transition. This wakes up all waiting processes. If there are no more waiting
processes, WakeupQueuex is forced to make a τ1 transition. This way, the process
StartWakeupx is restored. An exemplary transition for two waiting processes is
shown in Figure 4.2.

When defining the translation function for wait queues, we make the assumption
that the waiting condition only consists of an integer variable. If this variable
evaluates to 1, the condition is fulfilled. We use this assumption to simplify the
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formalization of wait queues. This simplification does not reduce the applicability
of wait queues, since the full condition can be evaluated before the wake up function
is called. The result is then stored in a temporary variable, which is the only waiting
condition of the wait queue. The translation function for the supported wait queue
functions is then defined as follows:

Jwait queue head t queueK = initqueue.StartWakeupqueue

JDECLARE WAIT QUEUE HEAD(queue)K = StartWakeupqueue

Jinit waitqueue head(&queue)K = init
queue

.Done

Jwait event(queue, var)K = W ′

Jwait event interruptible(queue, var)K = W ′′

Jwake up(&queue)K = startWakeup
queue

.Done

Jwake up interruptible(&queue)K = startWakeup
queue

.Done

where W ′ and W ′′ are new process names and defined in the following way:

W ′ def= readvar(x)(if x = 1 then Done else wakeupQueuequeue0 .W ′)

W ′′ def= readvar(x)(if x = 1 then res(0) else wakeupQueuequeue0 .W ′′ + res(−1))

A wait queue variable, which is not declared with the DECLARE WAIT QUEUE HEAD
macro, must be initialized with the function init waitqueue head before use.
Therefore, the corresponding wait queue process is guarded with an init transition.
After a handshake communication over this channel, the process StartWakeupqueue

is available. Whenever a process wants to go to sleep, the condition is checked first.
If the condition evaluates to true, nothing will happen. Otherwise, the process
waits for the wake up transition wakeupQueue. When this transition is available,
the condition is checked again. The function wait event interruptible might
also fail. In this case, the process does not wait and returns the value -1 to indicate
the failure. The access sort for wait queues is defined as follows:

ACC(wait queue head t, x) = {initx, wakeupQueuex, startWakeupx}

We define through an LTL formula, that a wait queue x is never allowed to be
used if it has not been initialized correctly before:

G ¬(initx ∧ (wakeupQueuex ∨ startWakeup
x))

This formula expresses that in a correct state, it is not allowed to have both the
initialization transition initx, denoting that wait queue x is not initialized, and
other transitions available on the same wait queue.
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4.3.3. Tasklets

The tasklet subsystem is a method for deferring work to happen later. When
starting a tasklet, its handler function is scheduled to be called in the near future.
A feature of tasklets is that they can be disabled and re-enabled. A tasklet won’t
be executed until it is enabled as many times as it has been disabled. Furthermore,
a tasklet can reschedule itself.

For better readability, the formalization of tasklets is split into several CCS pro-
cesses. Tasklett is the main process for a tasklet variable t:

Tasklett
def= setFunct(x).Tasklett〈x〉

Tasklett(f) def= TaskletFunct〈f〉 | TaskletCountt〈0〉 | TaskletWaitt

Before a tasklet can be used, it has to be initialized with a handler function. In
the formalization, this is done via the setFunc transition. If a handler function is
set to the process Tasklett, it continues as the parallel composition of the three
processes TaskletFunct, TaskletCountt and TaskletWaitt:

TaskletFunct(f) def= setFunct(x).Tasklett〈x〉+ getFunc
t(f).Tasklett〈f〉

TaskletCountt(c) def= incCountt.TaskletCountt〈c′〉+

decCountt.(if c = 0 then TaskletCountt〈0〉

else TaskletCountt〈c′′〉)

with c′ = c+ 1 and c′′ = c− 1

TaskletWaitt
def= scheduleTasklett.TaskletSchedulet

The first process saves the name of the tasklet’s handler function. Using the chan-
nels setFunc and getFunc, it is possible to read the function name or to set a
new one. TaskletCount is used to store the number of times the tasklet has been
disabled. Whenever the process can make a handshake over the channel incCount,
the number is increased. When decreasing the number over the channel decCount,
it must first be checked if the number is not zero. If this is the case, the decrease
is ignored. TaskletWait waits for an input signal on the channel scheduleTasklet
in order to start the process TaskletSchedule:

TaskletSchedulet
def= getCountt(x).(if x = 0 then TaskletExect

else TaskletSchedulet)

TaskletExect
def= getFunct(f).callf .returnf .TaskletWaitt

TaskletSchedule checks if the tasklet has been enabled as many times as it has
been disabled. If this is the case, the handler function of the tasklet is executed
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within process TaskletExec. Otherwise, TaskletSchedule waits until the counter
is down to zero to start the tasklet’s handler function.

The translation function for the supported tasklet functions is defined in the
following way:

Jstruct tasklet struct taskletK = Tasklettasklet

JDECLARE TASKLET(tasklet, func, data)K = Tasklettasklet〈func〉

Jtasklet init(&tasklet, func, data)K = setFunc
tasklet(func).Done

Jtasklet schedule(&tasklet)K = scheduleTasklet
tasklet

.Done

Jtasklet enable(&tasklet)K = decCount
tasklet

.Done

Jtasklet disable(&tasklet)K = incCount
tasklet

.Done

The access sort for tasklets is defined as follows:

ACC(struct tasklet struct, x) = {setFuncx, getFuncx, incCountx,
decCountx, scheduleTaskletx}

We define through an LTL formula, that a tasklet structure x is never allowed to
be used if it has not already been initialized correctly:

G ¬(scheduleTaskletx ∧ ¬∃f.getFuncx(f))

If an output transition on channel scheduleTaskletx is available, then there is a
process using the tasklet x. If, at this time, there is no transition available on the
channel getFuncx, then tasklet x has not been initialized. For an initialized tasklet,
it is always possible to read its handler function.

4.3.4. Work Queues

We only model the shared work queue, which is provided by the Linux kernel API.
In general, a device driver may create a private work queue, but this is used in very
few device drivers only.

There is no explicit CCS process definition for the shared work queue. Instead, we
directly model the work structures, which are waiting for the signal scheduleWork
to execute their handler function. For a work structure w, the following processes
are defined:

Workw(f) def= setFuncw(x).Workw〈x〉+
scheduleWorkw.WorkExecw〈f〉

WorkExecw(f) def= (callf .returnf .exitCatch
w
1 .Workw〈f〉) |

WorkCatchCallsw

WorkCatchCallsw def= scheduleWorkw.CatchWorkCallsw +
exitCatchw

1 .nil
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The main process Work makes it possible to set a new handler function via the
setFunc channel or to schedule it via scheduleWork. In the latter case, the work
process continues as process WorkExec. It executes the handler function and, in
parallel, catches and ignores all further scheduling requests of the work structure.
This is due to the semantics of the Linux kernel API. It defines that whenever
a work structure is scheduled but running at the moment, the scheduling request
terminates immediately without causing any effect.

The translation function for the supported work queue functions is defined in the
following way:

Jstruct work struct workK = setFunc(x)work.Workwork〈x〉
JDECLARE WORK(work, func, data)K = Workwork〈func〉

JINIT WORK(&work, func, data)K = setFuncwork(func).Done
JPREPARE WORK(&work, func, data)K = setFuncwork(func).Done

Jschedule work(&work)K = (scheduleWork
work

.res(1) + res(0)).
Done

Similar to tasklets, the macro DECLARE WORK can be used to initialize a work data
structure together with the work handler function. The handler function can be
changed with the macros INIT WORK and PREPARE WORK. schedule work is used to
schedule the handler function of a work structure. In contrast to tasklets, this
function may fail. Therefore, it has an integer return value. The access sort for
work queues is defined as follows:

ACC(struct work struct, x) = {setFuncx, scheduleWorkx, exitCatchx}

Similar to tasklets, we define an LTL formula denoting that a work structure x
is never allowed to be used if it has not been initialized correctly before:

G ¬(scheduleWork
x ∧ ¬scheduleWorkx)

The only situation when both scheduleWork
x and schedukeWorkx are available,

is when a work structure x is used without having been initialized before. Note
that whenever a work structure x has been scheduled, there is the CCS process
WorkCatchCalls, providing the scheduleWorkx transition.

4.3.5. Interrupts

The formalization of the interrupt handling process can be simplified if two assump-
tions are made: first, we formalize only one device driver at a time. Therefore, we
do not care about the concurrent behaviour of different device drivers. Second, we
assume that a device driver may register at most one interrupt handler function for
each interrupt line. The Linux kernel API does not prohibit to install more than
one interrupt handler for one interrupt line, but from our point of view, this would
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not make much sense. With these simplifications, it is clear that we do not need to
care about the difference between shared and private interrupt lines.

In this scenario, requesting an interrupt line can be reduced to providing a func-
tion handler to a special process using the transition requestIrqHandler:

RequestIrqi def= requestIrqHandleri(f).IrqHandleri〈f〉

IrqHandleri(f) def= startIrqi
0.call

f
.returnf .finishedIrq

i
.IrqHandleri〈f〉+

releaseIrqHandleri.RequestIrqi

After requesting the interrupt line, the process IrqHandler is available. It waits
for an input transition on channel startIrqi in order to start the interrupt function
handler of the i-th interrupt line. The transitions over this channel have the highest
priority 0 to indicate that every other computations are interrupted when an inter-
rupt request is generated. If IrqHandler receives the signal releaseIrqHandler, it
continues as process RequestIrq. Hence, the interrupt line is freed.

The startIrq transitions, which start the execution of the corresponding interrupt
handler function, are generated by an interrupt generating process:

IrqGeneratori def= startIrq
i
0.finishedIrq

i.IrqGeneratori

This process reflects the intuition that interrupts are generated by some hardware.
Now we can combine all the interrupt related processes into one general interrupt
control process:

IrqHandling
def= RequestIrq0 | · · · | RequestIrq15 |

IrqGenerator0 | · · · | IrqGenerator15

There are only two functions in the Linux kernel API for which we need to
define a translation: request irq for requesting an interrupt line, and free irq
for releasing it. Both translations are quite simple and results in sending a transition
over the corresponding channel. Note that requesting an interrupt line may also
fail:

Jrequest irq(irq, handler, ...)K = requestIrqHandler
irq(handler).res(0) +

res(−1)

Jfree irq(irq, devid)K = releaseIrqHandler
irq
.Done

The access sort for the interrupt handling processes is defined as follows:

ACCirq = {requestIrqHandleri, releaseIrqHandleri,

startIrqi, finishedIrqi | 0 ≤ i ≤ 15}
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4.3.6. Translating Device Drivers

In Section 4.2.4, the translation of C0 programs is shown. This translation function
cannot be used directly on device driver’s code because of the following reasons:

• Device drivers do not have a main function like stand-alone C programs.
Instead, they provide an initialization function and a cleanup function.

• The translation of C0 programs restricts the function calls to the program
where the functions are defined. But device drives are written to provide a
set of functions to other programs.

• The main interrupt handling process must run in parallel to the translation
result of a device driver.

Therefore, we redefine the translation function J·K for device drivers written in C0.
A device driver C0 program P consists of a possibly empty sequence PD of variable

declarations and a nonempty sequence PF of function declarations. Assume that the
number of variable declarations in PD is m, and the number of function declarations
in PF is n. The translation of P is then defined as follows:

JPK = (JPDK | JPFK | IrqHandling) \∆

with
∆ =

⋃
1≤i≤m

ACC(τi, χi) ∪ACCirq

In contrast to the definition of J·K for general C0 programs, the labels are only
restricted to the variable and interrupt access labels. The function call and return
transitions are available to processes outside of JPK.

4.3.7. Execution Models for Device Drivers

The translation definition for device drivers is not complete in terms of no execution
model having been defined for it yet. An execution model simulates a user space
program using a device driver. In this section, we introduce two different execu-
tion models for the device driver translation. The first execution model allows a
restricted concurrency, whereas the second execution model is strictly sequential.

Concurrent Model

A full concurrent model, where the interleaving between all functions executed in
parallel is allowed, would be closest to the reality. But it would have the disad-
vantage that, because of the state explosion in model checking, it would not be
applicable for further reasoning. Therefore, we restrict the possibility of process
interleaving in the following way: All provided driver functions are executed in se-
quential order. This simulates a scenario where just one user space program makes
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use of the device driver. The driver’s functions can run in parallel to tasklet, work
queues, and interrupt handler functions.

The concurrent model consists of five processes. The initialization process Init
calls the init function of the device driver and starts the function execution process
Exec. This process calls the process Func arbitrary times. Func chooses one of
the available driver’s functions, executes it and waits until the function terminates.
Afterwards, the Exit process is called, which just executes the cleanup function of
the device driver. Finally, Model is the parallel composition of all of these processes:

Init
def= call

finit .returnfinit .startExec.nil

Exec
def= startExec.(callFunc.Exec+ exit.nil)

Func
def= callFunc.(

call
f3
.returnf3 .startExec.Func+

...

call
fi .returnfi .startExec.Func)

Exit
def= exit.call

fexit .returnfexit .nil

Model
def= (Init | Exec | Func | Exit) \ {startExec, callFunc, exit}

Without loss of generality, we assume that finit = f1 and fexit = f2 holds. Then, we
finally combine the translation of a device driver P and the concurrent execution
model process Model to one CCS process:

ConcurrentDriverExec
def= (JPK |Model) \∆

with

∆ = {callfi , returnfi | 1 ≤ i ≤ n}

Sequential Model

In the sequential model, we need a way to forbid the concurrent execution of driver’s
functions and the handler functions of tasklets, wait queues and interrupts. In order
to accomplish this, we introduce a global lock that must be held by a process to
execute one of these functions:

Lock
def= downLock.upLock.Lock

The process definitions of the sequential model are changed correspondingly. Before
a function of the device driver may be called, the global lock has to be requested
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successfully:

Init
def= downLock.call

finit .returnfinit .upLock.startExec.nil

Exec
def= startExec.(callFunc.Exec+ exit.nil)

Func
def= callFunc.(

downLock.call
f3
.returnf3 .upLock.startExec.Func+

...

downLock.call
fi .returnfi .upLock.startExec.Func)

Exit
def= exit.downLock.call

fexit .returnfexit .upLock.nil

Model
def= (Init | Exec | Func | Exit) \ {startExec, callFunc, exit}

Correspondingly, the main CCS processes for tasklets, work queues and interrupt
handlers must be redefined in the following way:

TaskletExect
def= getFunct(f).downLock.callf .returnf .upLock.TaskletWaitf

WorkExecw(f) def= (downLock.callf .returnf .exitCatch
w

1.upLock.Workw〈f〉) |

WorkCatchCallst

IrqHandleri(f) def= (startIrqi
0.downLock.call

f
.returnf .finishedIrq

i
.upLock.

IrqHandleri〈f〉) +

releaseIrqHandleri.RequestIrqi

Finally, we combine the translation of a device driver P and the sequential execution
model process Model to one CCS process:

SequentialDriverExec
def= (JPK |Model) \∆

with
∆ = {callfi , returnfi | 1 ≤ i ≤ n} ∪ {downLock, upLock}

4.3.8. Example

In this section, we show an example of translating a device driver’s code to a set
of CCS processes. Showing the translation on a real device driver’s source code
would not be possible, because the translation of a program written in C to a
C0 program would produce a result which would be far too large to be translated
manually. Therefore, we only consider an exemplary skeleton of a device driver
here. Its C0 source code is shown in Figure 4.3. This device driver provides a small
set of functions, which real device drivers usually implement, too. The function
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int result1 = -1;

int result2 = -1;

int open = 0;

int readdata = 0;

int choice = 0;

spinlock_t lock = SPIN_LOCK_UNLOCKED;

DECLARE_WAIT_QUEUE_HEAD(queue);

void devopen() {

if (result2 == 0) {

spin_lock(&lock);

open();

open = 1;

spin_unlock(&lock);

}

}

void devclose() {

if (open == 1) {

spin_lock(&lock);

close();

open = 0;

spin_unlock(&lock);

}

}

void devread() {

if (open == 1) {

wait_event(queue, readdata);

read();

readdata = 0;

}

}

void devwrite() {

if (open == 1)

write();

}

void irqhandler() {

getdata();

readdata = 1;

wake_up(&queue);

}

void init() {

result1 = register_dev();

if (result1 == 0) {

result2 = request_irq(7,

irqhandler, FLAG, NAME, 0);

if (result2 == -1)

cleanup();

}

}

void cleanup() {

if (result1 == 0) {

unregister_dev();

if (result2 == 0)

free_irq(7, 0);

}

}

Figure 4.3.: C0 program of a simple device driver

init registers the device driver and requests interrupt line 7. If result1 is 0, the
interrupt line has been requested successfully and can be used by the device driver.
Removing the device driver from the system and releasing the interrupt line is done
through function cleanup. The functions devopen and devclose make use of a
spinlock to guard the opening and closing functions of the device. The presented
device driver allows processes to read and write on the device. If a process starts
the reading function devread, it is possible that there is no data to read at that
time. This is the case if readdata is zero. A wait queue is used to wait as long as
there is no new data available. The interrupt handler is executed as soon as new
data arrives. Its only job is to receive the data and to wake up all processes waiting
to read data.

The translation of the driver’s source code and a corresponding concurrent execu-
tion model are shown in Appendix B. To make the results more legible, we assume
that the function register dev returns either 0 or -1. In general, if the function
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fails, there are several negative return values possible. The functions open, close,
read and write are not further specified and therefore translated to an atomic in-
struction. The device driver declares eight variables. Their translation is as follows:

V ar
def= Intresult1〈−1〉 | Intresult2〈−1〉 | Intopen〈0〉 |

Intreaddata〈0〉 | Intchoice〈0〉 |

Spinlock |WakeupQueuequeue | StartWakeupqueue

4.4. Operational Model for the Linux Kernel API

In this section, we define a sequential operational model for the Linux kernel API.
In the following, let B = {⊥,>} be the boolean set, where ⊥ corresponds to false
and > corresponds to true. Furthermore, let Sem, Spin, Wait, Tasklet, Work
and Irq denote the values of semaphores, spinlocks, wait queues, tasklets, work
queues and interrupts. By convention, we assume p ∈ Sem, l ∈ Spin, q ∈ Wait,
{t, t1, t2, . . . } ⊂ Tasklet, and {w,w1, w2, . . . } ⊂ Work. They are defined in the
following way:

Sem = B × B with (init, lock) ∈ Sem

Spin = B × B with (init, lock) ∈ Spin

Wait = B with (init) ∈Wait

Tasklet = N× N× B with (pc, cnt, sched) ∈ Tasklet

Work = N× B with (pc, sched) ∈Work

Irq = N× B with (pc, req) ∈ Irq

The set of variables of a specific type X is denoted with VX . The set of states is
defined by:

Σ = (VZ 7→ Z)× (VSem 7→ Sem)× (VSpin 7→ Spin)×
(VWait 7→Wait)× (VTasklet 7→ Tasklet)× (VWork 7→Work)×
(N 7→ Irq)× (N× N)× N× (N 7→ N)× {proc, irp}

with

(σZ, σsem, σspin, σwait, σtasklet, σwork, irq, ioport, pc, reg, context) ∈ Σ

σZ is a mapping from integer variables to their values. irq maps an interrupt line
number to its value. This function is only defined for the values 0 to 15. ioport is a
pair of numbers representing the requested I/O ports. pc is the program counter of
the next instruction. In the following, we use the function PC for defining for each
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sJstruct semaphore pKcmds〈p.init,⊥ | p.lock,⊥〉
(sem-decl-1)

sJDECLARE MUTEX(p)Kcmds〈p.init,> | p.lock,⊥〉
(sem-decl-2)

s |= p.init = ⊥
sJinit MUTEX(&p)Kcmds〈p.init,>〉

(sem-init)

s |= p.init = ⊥ ∧ p.lock = ⊥ ∧ context = proc

sJdown(&p)Kcmds〈p.lock,>〉
(sem-down)

s |= p.init = ⊥ ∧ p.lock = ⊥ ∧ context = proc

sJi := down interruptible(&p)Kcmds〈p.lock,> | i, 0〉
(sem-down-irp-1)

s |= p.init = ⊥ ∧ p.lock = ⊥ ∧ context = proc

sJi := down interruptible(&p)Kcmds〈i,−1〉
(sem-down-irp-2)

s |= p.lock = >
sJup(&p)Kcmds〈p.lock,⊥〉

(sem-up)

Figure 4.4.: The operational semantics for semaphores

function name its corresponding program counter. reg is a set of further registers.
They can be used to store other global settings, like a return program counter when
a function is called. In what follows, we omit the usage of the registers to make
the definitions more legible. context denotes the context of the current execution.
This can either be the context of a process or the interrupt context.

In the notation of the rules, we make use of the symbols JKX and JKcmd. Symbol
JKX denotes a function from states and expressions to values of type X. Symbol
JKcmd denotes a function from states and expressions to states. Both are formally
defined as follows:

JKX : (XExpression× Σ) 7→ X

JKcmd : (Command× Σ) 7→ Σ

We use s〈a, x〉 to denote the state equal to s except for variable a having value
x. If a has a field named b, then s〈a.b, x〉 denotes the state that is equal to s except
for a.b being x.

4.4.1. Semaphores and Spinlocks

We model semaphores and spinlocks, respectively, as pairs of boolean variables.
The first element denotes whether the data structure is initialized. The second
element models the lock. If that element is true, then the semaphore or spinlock
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is locked. Before a semaphore or spinlock can be locked, it must be checked if it
is initialized and not already locked. Furthermore, semaphores are only allowed to
be used in the context of a process. The operational semantics for semaphores is
shown in Figure 4.4. Spinlocks are defined in the same way.

4.4.2. Wait Queues

As explained in Section 4.3.7, in a sequential model, we cannot make use of wait
queues. To be able to reason about device drivers that make use of them, we assume
that the wake-up condition holds the moment the process should go to sleep on the
queue. For this case, the Linux kernel API defines that the wait command does not
have any effects. In the C implementation of the operational model, we make use
of the possibility of the model checker SatAbs to ignore all execution paths which
lead to wait commands but where the condition does not hold. The operational
semantics of the supported wait queue commands is shown in Figure 4.5. The
possibilities for declaring and initializing wait queues are not mentioned because
they are trivial. The static declaration of a wait queue sets the init field to false.
If the wait queue is declared using the macro DECLARE WAIT QUEUE HEAD, or the
function init waitqueue head is used, then the init field is set to true.

s |= q.init = > ∧ v = 1
sJwait event(q, v)Kcmds

(wq-wait)

s |= q.init = > ∧ v = 1
sJi := wait event interruptible(q, v)Kcmds〈i, 0〉

(wq-wait-irp-1)

s |= q.init = >
sJi := wait event interruptible(q, v)Kcmds〈i,−1〉

(wq-wait-irp-2)

s |= q.init = >
sJwake up(q)Kcmds

(wq-wakeup)

s |= q.init = >
sJwake up interruptible(q)Kcmds

(wq-wakeup-irp)

Figure 4.5.: The operational semantics for wait queues

4.4.3. Tasklets

Tasklets are modeled by a triple (pc, cnt, sched). pc is the program counter of the
tasklet handler function. If the handler function of the tasklet is not given, pc is
zero. cnt counts the number of “open” disables. Hence, each disabling of the tasklet
increases this number, while each enabling decreases it. A tasklet is only executed
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if the counter is zero. Finally, sched denotes if the tasklet should be scheduled.
The operations semantics for tasklets is shown in Figure 4.6. Here, we also omit
the declaration and initialization functions. The static declaration sets the fields
pc and cnt to zero, and sched to false. If the tasklet is declared using the macro
DECLARE TASKLET, then pc is set to the program counter of the handler function.

In Figure 4.7, the program ExecTaskletFunction is shown. If it is called, it
searches for a registered tasklet which was scheduled before and which disabling
counter is zero. If there exists such a tasklet, the execution context is set to the
interrupt context and the tasklet’s handler function is executed. Note that the rules
allow a tasklet handler function to schedule itself.

s |= t.pc 6= 0
sJtasklet schedule(&t)Kcmds〈t.sched,>〉

(tsk-sched)

sJtasklet disable(&t)Kcmds〈t.cnt, t.cnt+ 1〉
(tsk-disable)

s |= t.cnt > 0
sJtasklet enable(&t)Kcmds〈t.cnt, t.cnt− 1〉

(tsk-enable)

Figure 4.6.: The operational semantics for tasklets

1: procedure ExecTaskletFunction
2: if ∃i : ti.pc 6= 0 ∧ ti.cnt = 0 ∧ ti.sched = > then
3: ti.sched = ⊥;
4: context := irp;
5: call ti.pc;
6: context := proc;

Figure 4.7.: The program ExecTaskletFunction

4.4.4. Work Queues

Because we do not model work queues in general, but only the shared work queue,
we may omit the queue formalization and just model the work elements themselves.
A work is modeled, similar to tasklets but without the disabling counter, as a tuple
of a program counter and a scheduling flag. The operational semantics for the
shared work queue is shown in Figure 4.8. If a work structure is statically declared,
its program counter is set to zero and its field sched to false. When using the
macro DECLARE WORK, the program counter is set to the entry point of the handler
function.

Furthermore, we also define a program ExecWorkQueueFunction, similar to the
tasklet executing program shown in Figure 4.7. The only differences between them
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are that the work queue program does not need to care about a disabling counter
and that it is run in the context of a process.

s |= w.sched = ⊥
sJINIT WORK(&w, f, d)Kcmds〈w.pc, PC(f)〉

(work-init)

s |= w.sched = ⊥
sJPREPARE WORK(&w, f, d)Kcmds〈w.pc, PC(f)〉

(work-prepare)

s |= w.pc 6= 0
sJschedule(&w)Kcmds〈w.sched,>〉

(work-sched)

Figure 4.8.: The operational semantics for work queues

4.4.5. Interrupts

Interrupts are modeled as a function irp, which maps integers to interrupt values.
Because the x86 architecture has a fixed number of 16 interrupts, irp is only defined
for the values 0 to 15. An interrupt value is a tuple of a program counter and a
boolean value which denotes whether the interrupt has been requested correctly
before. The operational semantics for requesting and releasing interrupts is shown
in Figure 4.9. Calling one of the requested interrupt handler functions is done by
the program ExecInterruptFunction. It is shown in Figure 4.10.

s |= irq(n).req = ⊥
sJrequest irq(n, f, ...)Kcmds〈irq(n).req,> | irq(n).pc, PC(f)〉

(irq-req)

s |= irq(n).req = >
sJfree irq(n, ...)Kcmds〈irq(n).req,⊥ | irq(n).pc, 0〉

(irq-free)

Figure 4.9.: The operational semantics for interrupts

1: procedure ExecInterruptFunction
2: if ∃i : 0 ≤ i ≤ 15 ∧ irq(i).req = > then
3: context := irp;
4: call irq(i).pc;
5: context := proc;

Figure 4.10.: The program ExecInterruptFunction
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4.4.6. I/O Ports and Memory Usage

The requested I/O ports are represented by the pair ioport = (N×N) of two natural
numbers. The first element denotes the first requested I/O port, and the second el-
ements denotes the number of requested I/O ports. The functions request region
and release region, for requesting and releasing I/O ports, are the only functions
that change the value of ioport. In the operational model, all API functions which
access I/O ports, have the short precondition that the port must be within the
requested region.

The rules of the operational model for the memory usage functions do not change
the state. Instead, there is the only precondition that the memory function is called
in the correct context.

4.4.7. Sequential Execution Model

Finally, we present the program SequentialDriverExec, as shown in Figure 4.11.
This program corresponds to the sequential execution model presented in Section
4.3.7. First, it properly initializes the interrupt values and calls the init function
finit of the device driver. The main loop executes either one of the driver’s functions,
a tasklet handler function, a work handler function or an interrupt handler function
arbitrary times and in arbitrary order. Note that the function nondet int() returns
an arbitrary integer value. Eventually, the driver’s cleanup function fexit is called.

1: procedure SequentialDriverExec
2: irq = λx.(0,⊥);
3: call finit;
4: do {
5: r := nondet int();
6: switch (r) {
7: case 1: call fi with fi 6= finit and fi 6= fexit;
8: case 2: call ExecTaskletFunction();
9: case 3: call ExecWorkQueueFunction();

10: case 3: call ExecInterruptHandler();
11: }
12: } while(r);
13: call fexit;

Figure 4.11.: The program SequentialDriverExec

4.5. Proof of Over-Approximation

In the previous sections, we have introduced both a CCS based semantics of the
Linux kernel API and an operational model of it. The operational model is defined
in a way that it is an over-approximation of the CCS based semantics. Informally,
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P

Q1 Q2 Q3

α∗

β∗
γ∗
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s1 s2 s3

cmdα
cmdβ

cmdγ

LTS: State space:

⇒

J·KG

Figure 4.12.: General idea to prove the over-approximation

this means that the operational model defines more behaviour than the CCS based
semantics. This makes the verification process more efficient. On the other hand,
it can cause false negatives. Note that because of the over-approximation, we do
not have false positives, i.e. the verifier never incorrectly reports that a program is
correct.

In this section, we give the general idea of how it can be proven that the oper-
ational model is an over-approximation of the CCS based semantics. We do not
want to give the proof in full detail, because this would be very technical. The
general idea of the proof is shown in Figure 4.12. We assume that both models
can be defined as graphs. This is trivial for the CCS based semantics because of
the operational semantics of CCS. This defines a labeled transition system that can
directly be translated to a cyclic graph. For the operational model, we can define
a graph in the following way. Each state of the operational model corresponds to a
node in its graph representation. Two graph states s and s′ are connected if there
is a rule cmd in the operational model, such that s fulfils the preconditions of cmd
and the resulting state of executing cmd in s is s′. The edge between s and s′ is
then labeled with the name of rule cmd.

Let the graph of the CCS based semantics be denoted with G1 and the graph
of the operational model be denoted with G2. To relate the graphs G1 and G2, we
have to define a function J·KG : G1 7→ G2, mapping states defined by CCS processes
to states in the state space of the operational model. This mapping function is
inductively defined over the structure of the set of CCS processes that are the
result of translating a device driver, as defined in Section 4.3. We omit the whole
definition of J·KG and instead just explain the general idea with the example of
semaphores. When a semaphore variable x is translated to CCS, the general result
is the following process definition:

Semx def= downx.upx.Semx

where the translation can be guarded by an initx transition if the variable is not
initialized. Therefore, the partial definition of J·KG for semaphores is defined in the
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following way:

Jinitx.SemxKG = {σ | σ ∈ Σ ∧ σsem(x) = (⊥,⊥)}
Jdownx.upx.SemxKG = {σ | σ ∈ Σ ∧ σsem(x) = (>,⊥)}

Jupx.SemxKG = {σ | σ ∈ Σ ∧ σsem(x) = (>,>)}

Let J·KG be defined for all parts of the Linux kernel API. Furthermore, let P =
{p1, . . . , pn}, a set of CCS processes, be given, resulting from the translation of a
device driver. For P , the function J·KG is then defined by:

JP KG =
⋂

1≤i≤n

JpiKG

Using the definition of J·KG , we can relate states in the CCS based semantics to
states of the operational model. Now we have to prove that the operational model
captures at least the behaviour of the CCS based semantics. This is defined by the
following formula:

Q
α∗
−→ Q′ ∧ JQKG = s⇒ ∃s′.(s cmdα∗−→ s′ ∧ JQ′KG = s′)

where Q and Q′ are CCS processes and Q′ is derived from Q on a transition path
α∗ : Q α1−→ · · · αn−→ Q′. If this is the case and Q corresponds to the state s in the
operational model, then we have to prove that there exists a corresponding rule
cmdα∗ such that it can be executed in state s and its resulting state s′ corresponds
to Q′. Therefore, each behaviour of the CCS based semantics is captured by the
operational model, but not vice versa. Note that we have to reason about paths
in the CCS based semantics, because in the general case, more than one CCS
transition may correspond to a command of the Linux kernel API. Because all the
subsystems of the Linux kernel API are translated to different CCS processes that
do not influence each other, it is quite straightforward, but very technical, to give
the proof in full detail, which is why we refrained from providing it in the first
place.
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Model checking [18] is a formal verification technique for finding bugs in complex
system descriptions. In particular, these systems include hardware, protocols and
software. A model checker answers the question whether a given model M fulfills
a property φ, i.e. the model checker checks whether M |= φ holds. In model
checking, the models are usually given as transition systems, for example as Kripke
structures. The properties are encoded in temporal logics, like CTL, LTL or the
very general µ-calculus [7, 18, 50]. If the model fulfills the property, the model
checker answers ’yes’ and ’no’ otherwise. In the latter case, most model checkers
also produce a counterexample given as a trace of system behaviour which causes
the failure.

The very first approaches of model checking directly checked the property on the
state space of the model. This causes the problem of state explosion. In verification
of integrated circuits, for example, the number of states is quite often exponentially
related to the size of the circuit [54]. The use of OBDDs (ordered binary decision
diagrams) in model checking results in a significant breakthrough in verification,
because they allow systems with a much larger state space to be verified. Model
checking using OBDDs is called symbolic model checking.

Even when using symbolic model checking, state explosion is still a serious prob-
lem for the verification of large systems, especially of software. Software tends to be
less structured than hardware, its state space may be infinite and it is usually asyn-
chronous. Many successful techniques for dealing with the state explosion problem
in software verification are based on the partial order reduction. These techniques
exploit the independence of concurrently executed events. Two events are indepen-
dent of each other when executing them in either order results in the same global
state. More information about partial order reduction and a good overview of other
approaches to the state explosion problem can be found in [18].

When research on software verification has been changed from dealing with toy
examples to dealing with real world programs, it emerges that the mentioned tech-
niques to the state explosion problem are still not sufficient. In the following section,
we describe how SatAbs handles this problem. Section 5.2 introduces some prac-
tical aspects of SatAbs that are necessary to understand the implementation of
DDVerify.

5.1. CEGAR-Framework

Another method for reducing the state space of models of software systems in the
verification process is abstraction. Abstraction techniques reduce the program state
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space by mapping the set of states of the actual system to a smaller abstract set of
states in a way that preserves the relevant behaviours of the system. The drawback
of abstractions is that they have to be done manually. That needs the knowledge
of an expert and a huge amount of time. Therefore, it is not applicable for building
full automatic model checking tools.

Predicate abstraction [22] is one of the most popular and widely applied methods
for dealing with the state explosion problem in software model checking. It abstracts
a program by only keeping track of certain predicates on the data. Each predicate
is represented by a boolean variable in the abstract program, while the original
data variables are eliminated. Verification of a software system with predicate
abstraction consists of constructing and evaluating a finite-state system that is an
abstraction of the original system with respect to a set of predicates.

In practice, a conservative over-approximation is used when abstracting the orig-
inal program. This makes, in contrast to an exact abstraction, the verification
process feasible because of the larger reduction of the state space. Instead, model
checking the abstracted program may cause a false negative produced by a coun-
terexample that cannot be simulated in the original program. This is usually called
a spurious counterexample. Spurious counterexamples can be eliminated by chang-
ing the set of predicates that was used for the last abstraction process. This step
is called predicate refinement.

The predicate abstraction process has been automated by the counterexample
guided abstraction refinement framework, or CEGAR for short [14, 20, 22, 66]. This
framework is shown in Figure 5.1. The steps in CEGAR based model checking are
the following:

1. Program abstraction: The abstraction of the program is generated with re-
spect to a given set of predicates.

2. Verification: The model checking algorithm is run in order to check if a
property φ holds in the abstracted model. If the model checker succeeds, the
CEGAR loop terminates. Otherwise, the resulting counterexample is used in
the next step.

3. Counterexample validation: The counterexample is simulated on the original
program in order to determine whether it is spurious. If it is not the case,
the counterexample corresponds to an execution path of the original program
such that φ is violated. The CEGAR loop terminates. Otherwise, it proceeds
to the next step.

4. Predicate refinement: The set of predicates is changed in order to eliminate
the detected spurious counterexample. The CEGAR loop proceeds to the first
step with the updated set of predicates.

SatAbs generates boolean programs as the result of the program abstraction.
Boolean programs [1, 2, 22] are programs with the usual control-flow constructs but
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Spurious?

C Program
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Figure 5.1.: The counterexample guided abstraction refinement framework

in which all variables are of type boolean. Boolean programs are useful for model
checking because they have a finite state space, and reachability and termination are
decidable (which is not the case for imperative programming languages in general).
Either the model checker Cadence SMV [53] or Boppo [27] is then used to model
check the boolean programs.

In SatAbs, there is no possibility to define a property as a temporal logic formula.
Instead of this, assertions can be introduced into the source code that are then
checked to be true on all execution paths of the program. The use of assertions is
explained in more detail in Section 5.2.

5.1.1. Example

To make the idea behind the CEGAR-framework clearer, we present an example,
which is taken from [1]. Consider program P in Figure 5.2. In this program,
T denotes the boolean value true and F denotes false. We want to check if the
statement assert(F) at line 15 is reachable. We start with a boolean program that
coarsely abstracts P and refines it incrementally, driven by the goal of answering
the reachability query:

• Step 1: P is abstracted to a boolean program B1 that only retains the con-
trolflow structure of P . Every variable declaration of P has been removed,
every assignment statement has been replaced by skip (denoted by “. . . ” for
readability), and every boolean expression has been replaced by “?”. The
latter one is the non-deterministic boolean choice.

• Step 2: It is checked, whether the assertion is reachable. The answer is
positive because there exists a path in B1 which leads to line 15, if the non-
deterministic choices in lines 13 and 14 evaluate to true.
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P B1 B2 B3

1: numUnits: int; nU0: bool; nU0: bool;

2: level: int;

3: void getUnit() { void getUnit() { void getUnit() { void getUnit() {
4: canEnter: bool := F; ...; ...; cE: bool := F;

5: if (numUnits = 0) { if (?) { if (nU0) { if (nU0) {
6: if (level > 10) { if (?) { if (?) { if (?) {
7: NewUnit(); ...; ...; ...;

8: numUnits := 1; ...; nU0 := F; nU0 := F;

9: canEnter := T; ...; ...; cE := T;

10: } } } }
11: } else } else } else } else

12: canEnter := T; ...; ...; cE := T;

13: if (canEnter) if (?) if (?) if (cE)

14: if (numUnits = 0) if (?) if (nU0) if (nU0)

15: assert(F); ...; ...; ...;

16: else else else else

17: gotUnit(); ...; ...; ...;

18: } } } }

Figure 5.2.: Example program P and three boolean programs (B1, B2 and B3) that
abstract P

• Step 3: This counterexample is spurious because it cannot be simulated in P .
The variable numUnits is constrained to be both equal to 0 (because of the
evaluation of “?” in line 14) and not 0 (because of the lines 5 - 11 in P ).

• Step 4: To refine the abstracted program B1, the predicate numUnits = 0 is
added.

• Step 1: P is abstracted to a boolean program B2 with the only predicate
numUnits = 0. A new boolean variable nU0 is added to keep track of the
information if the variable numUnits is equal to 0 or not.

• Step 2: It is checked once more if line 15 is reachable in B2. This is already the
case, due to the following path: we assume nU0 to be true at the beginning,
“?” in line 6 evaluates to false and “?” in line 13 evaluates to true.

• Step 3: This counterexample is also spurious. In P , the variable canEnter is
initially set to false and not updated up to line 13, where it is assumed to be
true. This is a contradiction.

• Step 4: To eliminate this spurious counterexample, a boolean variable is added
to model the canEnter condition, namely cE.

• Step 1: The boolean program B3 is the result of abstracting the source pro-
gram P with the predicates numUnits = 0 and canEnter.

• Step 2: Line 15 is not reachable in B3, so it is not reachable in P . Note that
B3 contains no mention of the variable level, as its value does not impact
the reachability of line 15.
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5.2. Using SATABS

In this section, we describe how SatAbs handles verification properties and how
it deals with functions without bodies. Both are important in order to understand
the implementation of DDVerify. A complete introduction for using SatAbs can
be found in [66].

SatAbs does not allow to define verification properties in a temporal logic or
other formal description languages. In contrast, assertions can be introduced in the
code that should be verified. An assertion is an arbitrary predicate that is defined
by a C boolean expression, e.g. assert(i < MAX) or assert(cnt == 10 || err =
-1). SatAbs then checks that the assertions are fulfilled on all possible execution
paths of the program. Furthermore, SatAbs allows the verification of the following
properties:

• Buffer overflows: For each array, SatAbs checks whether the upper or lower
bounds are violated whenever the array is accessed.

• Pointer safety: SatAbs searches for null-pointer dereferences.

• Division by zero: SatAbs checks whether there is a path in the program that
executes a division by zero.

All the properties described above are reachability properties. They are of the
form “Is there a path such that property . . . is violated?”. Liveness properties
(something will eventually happen) are not supported by SatAbs.

SatAbs handles functions without bodies in the following way. It simply assumes
that such a function returns an arbitrary value, but that no other locations than
the one on the left hand side of the assignment are changed. We make use of
this assumption in the following ways: First, if a kernel function does not change
anything in our model, we do not need to implement a body for it. This is especially
the case in most of the memory related functions, because we do not model the
memory state. Second, we can easily define functions to get nondeterministic values
of a special type. Assume that we need a function that returns an arbitrary integer
value. We just have to define the following function in a global header file:

int nondet_int();

Because we do not define a body for this function, it will always return an arbitrary
integer value during the verification process. Nondeterministic functions are defined
for most data types in DDVerify.
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In this chapter, we present our tool DDVerify. The first section gives an intro-
duction to the implementation of DDVerify. In the second section, we show how
DDVerify can be used to verify Linux device drivers. And finally, we present the
results of the case studies.

6.1. Implementation

DDVerify is a tool written in C. Its general structure is shown in Figure 6.1.
A major part of DDVerify is the reimplementation of the Linux kernel source
tree. Each source and header file of the kernel is replaced by its implementation of
the operational model. When DDVerify is used on a device driver, it takes the
driver’s source code, the implementation of the operational model and further user
input and collaborates with SatAbs to verify the device driver.

Operational Model User Input Device Driver

DDVerify

SatAbs

Figure 6.1.: Overview of DDVerify

At first, DDVerify extracts some information from the driver’s source code.
Several awk scripts [32] are used to parse the main source file of the device driver in
order to find out the type of the driver (char, block or net), the used interfaces (e.g.
PCI) and the driver’s initialization and cleanup function. After this, DDVerify
creates a new C source file named main.c:

#include <ddverify/ddverify.h>
#include "dd.c"
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int main()
{

_ddv_module_init = dd_init;
_ddv_module_exit = dd_exit;
call_ddv();

return 0;
}

Here, dd.c is the main source file of the device driver which should be verified with
DDVerify. dd init and dd exit are the driver’s initialization and its cleanup
function. Both are stored in function pointers. The function call ddv starts the
execution model. In the standard configuration, DDVerify executes the device
driver function with an sequential execution model. But it is also possible to verify
a device driver with a concurrent execution model, which is still experimental.

A major work of the initialization function is to register the provided functions
of the device driver to the kernel (see Section 2.3). The registration functions for
character and block device drivers are also rewritten in the reimplementation of the
kernel sources. In this way, DDVerify is able to extract the information about the
available functions of a device driver and to use them when running the execution
model.

By default, all verification checks are disabled. Therefore, the user has to provide
the information which properties should be verified, e.g. spinlock or context related
properties. In the implementation of the operational model, the assertions are
guarded by a preprocessor macro in the following way:

#ifdef DDV_ASSERT_SPINLOCK
__CPROVER_assert(lock->init, "Spinlock is initialized");
__CPROVER_assert(!lock->locked, "Spinlock is not locked");

#endif

In this example, the precondition check for locking a spinlock is guarded with the
preprocessor macro DDV ASSERT SPINLOCK. If the user wants to verify the spinlock
usage, he has to provide the parameter --check-spinlock to DDVerify. Then,
the corresponding preprocessor macro is enabled when running SatAbs.

6.2. Usage

To use DDVerify on a device driver, the user has to provide the source files of the
driver and some further parameters. All possible parameters are shown in Figure
6.2. The most important ones are the --check-parameters, which define the prop-
erties that should be checked. The parameters --module-init, --module-exit
and --driver-type are used if DDVerify is not able to find out either the ini-
tialization function, the cleanup function or the type of the driver automatically.
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-D macro
--16, --32, --64
--modelchecker #
--iterations #
--ddv-path #
--module-init #
--module-exit #
--driver-type #
--model #
--prepare-only
--check-bounds

--check-pointer
--check-spinlock
--check-semaphore
--check-mutex
--check-io
--check-wait-queue
--check-tasklet
--check-work-queue
--check-timer
--check-context

Figure 6.2.: Parameters of DDVerify

Using the parameter --model, the execution model can be chosen. In the current
version of DDVerify, one can choose between seq for the sequential model and
con for the concurrent model.

After starting DDVerify on a device driver, SatAbs is called to prove all related
claims. Each claim is proven by its own. For example, here is the output for proving
that the device driver char/efirtc.c makes correct use of spinlocks:

$ ddverify efirtc.c --check-spinlock
Module initialization function: efi_rtc_init
Module cleanup function: efi_rtc_exit
Device driver type: char
PCI interface: no
Run satabs ...
Parse satabs output ...
12 Claims
Prove claim 1: + Time: 2.91 sec
Prove claim 2: + Time: 2.794 sec
Prove claim 3: + Time: 0 sec
Prove claim 4: + Time: 2.802 sec
Prove claim 5: + Time: 2.803 sec
Prove claim 6: + Time: 0 sec
Prove claim 7: + Time: 2.8 sec
Prove claim 8: + Time: 2.789 sec
Prove claim 9: + Time: 0 sec
Prove claim 10: + Time: 2.772 sec
Prove claim 11: + Time: 2.79 sec
Prove claim 12: + Time: 0 sec
Time to prove all positive claims: 22.459999

For each claim, a plus symbol indicates that the claim has been proven successfully.
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Number Time Failure sec/claim Prove Rate
Spinlock 513 1258.1 43 2.68 91.62%
Semaphore 4 28.89 2 14.45 50.00%
Mutex 7 0 7 0 0.00%
I/O 836 8164.41 69 10.64 91.75%
Wait Queue 44 2012.01 6 52.95 86.36%
Tasklet 1 0 1 0 0.00%
Work Queue 3 0 2 0 33.33%
Timer 41 5374.56 4 145.26 90.24 %
Context 193 0 0 0 100.00%
All 1642 16837.97 134 11.17 91.84%

Figure 6.3.: Statistics of the case studies

Furthermore, the time spent to prove the claim is reported. This number does not
include the time for parsing and preparing the input files. The output of SatAbs
for the nth claim is stored in the file .claim out nth.

6.3. Case Studies

We have used DDVerify to check 31 device drivers from Linux kernel 2.6.19.1

SatAbs was used to verify a total of 27,926 lines of code. The smallest device
driver verified had 148 LOC, the largest one 4,587 LOC, and the average was 901
LOC per device driver. All case studies were made on a Pentium-IV computer with
2.54 GHz and 1 GB RAM. As for the operating system, Debian 3.1 Linux was used.

Figure 6.3 shows the statistics of the case studies. Most of the claims are related
to either spinlocks or I/O communication. The context check verifies that certain
functions, like semaphores or everything that may access user space, are not al-
lowed to be executed in interrupt context. Altogether, 1,642 claims were checked.
91.84% of them were proven successfully. SatAbs had problems with two device
drivers, which by chance contained all of the mutex and tasklet claims. Thus, all
corresponding checks failed. Consequently, all of these proofs failed. All context
related checks could be proven by SatAbs’s reachability analysis which is executed
before the model checker is run. Hence, the time to prove the claims is zero.

The time to prove a claim highly depends upon the number of functions that
are involved in its verification. Most of the spinlock claims are related to correct
locking and unlocking behaviour. Because we make use of the sequential execution
model, we have no interleaving between functions. In most cases, a function locks a
spinlock at the beginning and releases it at the end. There are no inter-procedural
checks required. In contrast to this, most of the timer checks involve at least two

1taken from http://www.kernel.org
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different functions. A timer check verifies that a timer has always been initialized
before it is used the first time. The initialization of a timer is typically done in the
initialization function of the device driver, whereas the timer itself is used later in
other functions of the driver. Therefore, SatAbs has to prove that on all possible
execution paths, whenever the initialization function of the driver succeeds, every
used timer is initialized correctly. This makes these proofs much more time intensive
than spinlock checks.

134 claims failed the verification. Two of these failures are bugs in the device
drivers. 57 proofs did not terminate within 20 iterations of the CEGAR-loop. Sa-
tAbs ends up with an internal error during 58 proofs. For the remaining 14 proofs,
SatAbs reports a counterexample that is a false negative. Two of these counterex-
amples are related to a bug in SatAbs. The remaining 12 counterexamples are
caused by the over-approximation of the operational model. The I/O model saves
just one requested I/O port region, but it is possible to request arbitrary many
I/O port regions in general. If a driver requests two I/O port regions, the model
overwrites the first request. Hence, it reports an error if the driver reads or writes
to a port of the I/O region which has been requested first. We have also defined and
implemented an alternative I/O model that is more correct, but using it, the time
to prove the I/O related claims rose by a factor ranging from 20 to 30. Therefore,
we have omitted it from this presentation. More effort has to be invested in order
to define an I/O model that is both correct with respect to multiple I/O port region
requests and fast enough in practice.

1: int ds1286 open(struct inode *inode, struct file *file)
2: {
3: spin lock irq(&ds1286 lock);
4: if (ds1286 status & RTC IS OPEN)
5: goto out busy;
6: ds1286 status |= RTC IS OPEN;
7: spin unlock irq(&ds1286 lock);
8: return 0;
9: out busy:

10: spin lock irq(&ds1286 lock);
11: return -EBUSY;
12: }

Figure 6.4.: Spinlock bug in device driver char/ds1286.c

DDVerify has found two bugs in two of the 31 device drivers. The first bug ap-
pears in the device opening function of the device driver char/ds1286.c. Its source
code is shown in Figure 6.4. The device driver uses the variable ds1286 status
to ensure that only one device is opened at a time. To avoid racing conditions on
this variable, the check is guarded with the spinlock ds1286 lock. In line 3, this
spinlock is locked. If the device is already open, the function jumps to the label
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out busy in line 9. But instead of unlocking the spinlock, it is locked again. This
violates the rule that a locked spinlock is not allowed to be locked again by the
same process. The second bug appears in the initialization function of the device
driver char/watchdog/machzwd.c. The relevant part of its source code is shown in
Figure 6.5. In lines 4 and 5, the device driver accesses the ports 0x218 and 0x21A,
respectively. But these ports has not been requested at this point in the execution
of the code. Instead, the request function is called in line 7.

1: static int zf init(void)
2: {
3: int ret;
4: outb(0x02, 0x218);
5: ret = inw(0x21A);
6: ...
7: request region(0x218, 3, ‘‘...’’);
8: ...
9: }

Figure 6.5.: I/O port bug in device driver char/watchdog/machzwd.c
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In this thesis, we have shown that formal methods and formal verification techniques
can indeed be applied to real world software. We have chosen Linux device drivers
because they are responsible for most errors in operating systems and because it is
hard to find and remove them with conventional methods like testing. In Section
4, we gave a semantics for the Linux kernel API. To our best knowledge, this is
the first approach to formally define the Linux kernel API. We have only defined a
semantics for a small subset of the API, but it shows a good way of defining such
semantics, which can easily be applied to the rest of the API, too. Although we do
not belief that it is necessary or meaningful for defining the whole API in CCS. This
process algebra is very suitable to define the behaviour of concurrent processes, but
it is not easy and not very legible to define highly data dependent behaviour in it.

In Section 6, DDVerify was introduced. This tool is based on the previous
formalization. It consists of several independent elements: the implementation of
the operational model, two execution models and a central controlling part, which is
responsible of managing all these elements altogether, in order to run the verification
process with SatAbs. In the cases studies, which are presented in Section 6.3, we
have shown that DDVerify is able to verify real world device drivers. We have
verified 31 device drivers from the Linux kernel 2.6.19. DDVerify is now able to
verify char and lock device drivers with a code size of up to 3,000 lines of code. We
believe that the supported size of the drivers can be improved easily by extending
the set of supported API functions.

7.1. Future Work

Both parts of this thesis, the theoretical and the practical one, can be extended
in multiple ways. The formalization can be extended to support more parts of the
Linux kernel API. It would be interesting to examine if other formal description
methods are more suitable for this purpose. The use of CCS has the disadvantage
in that it is hard to define highly data dependent behaviour.

We have also started some work on checking the CCS definitions with “The
Concurrency Workbench of the New Century” [25, 26]. Using this program, systems
can be defined with CCS, also potentially extended with priorities, and checked
for properties defined in the µ-calculus. This work is not finished yet, but it is
worthwhile to continue it. In this way, the definitions can be verified to be consistent
with themselves.

SatAbs is able to verify safety properties only. It is shown in [39], that it
is possible to extend the specifications for model checking based on the CEGAR
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framework to the full power of CTL. If we could extend SatAbs in the same way,
we would be able to verify liveness properties, e.g. termination, too. Other methods
are known to either approximate liveness properties by safety properties [71] or to
translate liveness properties into equivalent safety properties [8].

The concurrent execution model of DDVerify is still experimental due to the
verification time of concurrent software in SatAbs. More research in this direction
should be done in order to be able to deal with a potentially restricted number of
threads in a manageable time. In [70], an approach is presented to combine se-
quential assignments into parallel assignment blocks. When this technique is used
in model checking based on the CEGAR-framework, the assignment combination
procedure can lead to significant speed-ups. This was also shown in several case
studies, among other things for a set of windows device drivers. In [64], a method
is presented to translate a concurrent program into a sequential program that sim-
ulates the execution of a large subset of the behaviours of the concurrent program.
This technique has been implemented in SLAM [6] and has been used to verify
concurrent windows device drivers. We believe that this technique can be directly
adapted to work with SatAbs, because its technical background is quite similar to
SLAM’s.

In the current version, DDVerify runs SatAbs to verify each claim on its own.
We have implemented it this way to make debugging SatAbs and DDVerify
easier. But this has the disadvantage that SatAbs has to parse all the files for
each claim. It takes more time than the run of the model checker, especially in
smaller device drivers. For a final version, changing SatAbs to verify all claims in
one stage would improve the overall verification time by a factor quite noteworthy.
In order to deal with a huge number of claims, SatAbs could be changed to deal not
only with either one claim or all claims, but with a given set of claims. DDVerify
would then be used to split the set of all claims into smaller partitions and to
forward them to SatAbs.
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74



7.2. Acknowledgments

possibility to apply all the theory in a practical project. Nicolas Blanc had part in
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Wdevopen
def= calldevopen.(

(readresult2(x).(if x = 0 then res(1) else res(0))) Into(x)

(if x = 1 then

down
lock

.Done Before

Done Before

(res(1) Into(x) (writeopen(x).Done))Before

(uplock.Done)

else Done)

)Before returndevopen.Wdevopen

Wdevclose
def= calldevclose.(

(readopen(x).(if x = 1 then res(1) else res(0))) Into(x)

(if x = 1 then

down
lock

.Done Before

Done Before

(res(0) Into(x) (writeopen(x).Done))Before

uplock.Done

else Done)

)Before returndevclose.Wdevclose

Wdevread
def= calldevread.(

(readopen(x).(if x = 1 then res(1) else res(0))) Into(x)

(if x = 1 then

W ′ Before

Done Before

res(0) Into(x) (writereaddata(x).Done)

81



B. Result of the Translation

else Done)

)Before returndevread.Wdevread

W ′ def= readreaddata(x).(if x = 1 then Done else wakeupQueuequeue0 .W ′)

Wdevwrite
def= calldevwrite.(

(readopen(x).(if x = 1 then res(1) else res(0))) Into(x)

(if x = 1 then

Done

else Done)

)Before returndevwrite.Wdevwrite

Wirqhandler
def= callirqhandler.(

Done Before startWakeup
queue

.Done

)Before returnirqhandler.Wirqhandler

Winit
def= callinit.(

(res(0) + res(−1)) Into(x) (writeresult1(x).Done)Before

(readresult1(x).(if x = 0 then res(1) else res(0))) Into(x)

(if x = 1 then

((requestIrqHandler7(irqhandler).res(0) + res(−1))

Into(x) (writeresult2(x).Done))Before

(readresult2(x).(if x = −1 then res(1) else res(0))) Into(x)

(if x = 1 then

call
cleanup

.returncleanup.Done

else Done)

else Done)

)Before returninit.Winit

Wcleanup
def= callcleanup.(

(readresult1(x).(if x = 0 then res(1) else res(0))) Into(x)

(if x = 1 then

Done Before

82



(readresult2(x).(if x = 0 then res(1) else res(0))) Into(x)

(if x = 1 then

releaseIrqHandler
7
.Done

else Done)

else Done)

)Before returncleanup.Wcleanup

Init
def= call

init
.returninit.startExec.nil

Exec
def= startExec.(callFunc.Exec+ exit.nil)

Func
def= callFunc.(

call
devopen

.returndevopen.startExec.Func+

call
devclose

.returndevclose.startExec.Func+

call
devread

.returndevread.startExec.Func+

call
devwrite

.returndevwrite.startExec.Func)

Exit
def= exit.call

cleanup
.returncleanup.nil

Model
def= (Init | Exec | Func | Exit) \ {startExec, callFunc, exit}
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