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Abstract

The formal analysis of multi-threaded programs is among the grand chal-

lenges of software verification research. In this dissertation, we consider

non-recursive multi-threaded Boolean programs, the principal ingredient

in predicate abstraction. We introduced a exact and complete solution for

thread-state reachability analysis of concurrent Boolean programs with

unbounded thread creation. We present a novel implementation of the

Karp-Miller procedure for vector addition systems with states, and eval-

uate its performance using a substantial set of Boolean program bench-

marks. We then use our technique to prove that the benchmark programs

have surprisingly small reachability cutoffs. We conclude that verifying a

program for the fixed cutoff-number of threads tends to be cheaper than

the Karp-Miller procedure. Our results mark a first step towards truly

efficient strategies for analyzing multi-threaded programs.
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Chapter 1

Introduction

Modern programming has been successfully applied to various fields in the society,

attempting to obtain full or semi automatic solutions for particular problems in a

specific domain, these applications range from programs for a vending machine to

the flight control systems. People write programs for device drivers, safety-critical

and embedded systems. The reliability of these systems is tending to be affecting

everyone’s life today especially in the safety-critical and economically vital applica-

tions. Diverging methods are available to achieve system reliability and satisfaction

of requirements, such as testing, simulation and formal verification.

At the same time, concurrent software is gaining tremendous importance due to

insatiable demands for computing power but the limited power of sole computing core

and the widely use of distributed system architecture. Complex problems are man-

aged to be divided into pieces and delegated to a set of computing entities which are

performing in parallel. Such as a web server will employ multiple threads to handle

the high load of serving, and multiple cores cooperate to process the same huge set

of data at the same time. These can lead to a dramatic increase in efficiency. The

most prominent and flexible model of communication between these parallel threads

is the use of variables that are fully shared among the threads. This computational

model is supported by a broad range of well-known programming APIs, e.g., by the

POSIX pthread model and Windows’ WIN32 API. However, the supports of com-

munications between threads also complicates the behaviors of the systems, bugs in

such a programming environment tend to be subtle and difficult to detect by means

of testing [39], such as race condition, deadlock and etc.. To guarantee such com-
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plex systems work properly would be a daunting challenge, thus strongly motivating

efficient formal analysis techniques for such programs.

One of the most prominent techniques to guarantee the correctness of software

and analyse the behaviours of software is Model Checking which verifies all reachable

states from the system to see if some particular property holds, by performing a

sophisticated search through the state space to provide full coverage. However, to

apply such model check on concurrent software [27, 45, 16, 5] is extremely challenging

since to search through the entire state space is the major obstacle that model checking

concurrent software faces in practice: the state explosion problem, the number of

reachable states will grow exponentially with the number of concurrent threads. The

formal model that is needed in order to systematically explore the system is often

much larger than the original system description. As a result, straightforward use

of model checking on concurrent software can result unacceptable time and memory

usage.

In this dissertation, we consider the case in which no a-priori bound on the num-

ber n of concurrent threads is known. This is the scenario most relevant in practice;

Google would be a typical instance, instead of using sole thread to serve all the time,

they spawn additional worker threads (can be many) to handle the huge loads of

requests in parallel and simultaneously. The verification problem for such software is

undecidable in general [44, 1], due to the infinite state space issued by these parallel

programs. We focus on the special case of replicated finite-state programs: the pro-

gram itself only allows finitely many different configurations, but is executed by an

unknown number of threads, thus generating an unbounded state space. An impor-

tant practical instance of this scenario is given by non-recursive concurrent Boolean

programs, where the threads communicate via shared program variables and have

local storage. Boolean program verification is the bottleneck in the widely-used pred-

icate abstraction-refinement framework.

The verification problem considered in this dissertation is that of thread-state

reachability. A thread state comprises the local state of one thread, plus a valuation

of the shared program variables. Thread states can be used to encode many common

safety properties of systems, even if they involve several threads, such as mutually

exclusive resource access.
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The aim of this dissertation is therefore to develop efficient decision procedures

for the thread-state reachability analysis for concurrent Boolean programs with un-

bounded replications.

Even the replicated finite-state programs with unknown number of threads will

generate unbounded state space, the thread-state reachability problem for them can

be shown to be decidable, by a reduction to the coverability problem for vector addition

systems with states (VASS). This problem in turn is known to be decidable, due

to early works by Karp and Miller [36] for decidable result on coverability of VAS

and Hopcroft and Pansiot [33] for simulation of VASS with VAS. In principle, this

reduction can be used as the starting point for an algorithm to decide the thread-

state reachability problem. In attempting to do so, however, we face two practical

obstacles:

1. concurrent Boolean programs are not VASSs: while the former can be converted

to the latter using thread counters, doing so naively results in addition systems

of prohibitively large dimension;

2. the worst-case complexity of known coverability of VAS decision procedures is

intractably high, even with later improvements due to Rackoff [43].

The conversion of replicated finite-state programs into vector addition systems can

be accomplished using a form of counter abstraction: we keep an (unbounded) counter

per local state that records the number of threads in that local state. The problem

with this conversion is that the number of counters thus introduced is exponential

in the number of local variables per thread; in practice, this can amount to millions

of counters. This problem has been identified in earlier work as the local state space

explosion problem [5]. The same work presents a solution for the case of bounded

replication.

In this dissertation, we extend this solution to programs with unbounded dynamic

thread creation, which allows us to overcome the first of the two obstacles mentioned

above. We then demonstrate, using substantial experimentation, that our Karp-

Miller procedure for Boolean programs performs much better in practice than its

worst-case complexity seems to suggest. Our benchmark harness is drawn from a

large and diverse set of benchmark Boolean programs generated from Linux and
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Windows kernel components. Our solution is, to our knowledge, the first practically

useful and exact thread-state reachability implementation for realistic concurrent

Boolean programs with arbitrarily many threads.

We compare this solution with an alternative approach to the thread-state reach-

ability problem. For every finite-state program P, there is a number n0 such that any

thread state reachable given some (arbitrarily large) number of threads can in fact

be reached given n0 threads. We call the smallest such number the reachability cutoff

of P. If this cutoff is known, the thread-state reachability problem can be solved

without the Karp-Miller procedure.

Unfortunately, determining the precise cutoff is in general as expensive as the

reachability problem itself. Moreover, there is no universal cutoff bound: it can in

general be arbitrarily large. Using our implementation of the Karp-Miller procedure

for concurrent Boolean programs, however, we can demonstrate empirically that, for

a large benchmark collection, the cutoffs are almost universally very small, in the

range of around 2 or 3. This observation has two consequences. First, assuming

the cutoff is known, we demonstrate that thread-state reachability analysis via the

cutoff method is much cheaper than via the Karp-Miller method. Even incomplete

methods that can find tight cutoffs for many Boolean programs are therefore likely to

be of high practical value. Second, if the cutoff is not known, an incomplete method

that analyzes a finite-state program for an a-priori chosen fixed and small number of

threads is likely to find all reachable thread states, and thus bugs, for many programs.

Contribution. In summary, this dissertation accomplishes the following.

1. We optimized Karp-Miller’s algorithm for the coverability problem of VASS,

making it efficient enough in practices, and thus, an efficient decision proce-

dure for the thread-state reachability of replicated finite-state systems with

unbounded number of threads.

2. We present a practical and exact method that: given a Boolean program, the

algorithm computes the set of thread states reachable given an arbitrary number

of parallel threads, whether instantiated up front or created dynamically. A
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completed solution is also provided by implementing the above algorithms in a

tool called Star (”Scalable Thread-state reachability AnalyzeR ”)1.

3. We use this method to show that the reachability cutoffs of a large and repre-

sentative set of concurrent Boolean programs are very small, giving rise to a

cheap testing method with high coverage, that is at the same time cheaper than

Karp-Miller based techniques.

These contributions have been submitted to The Eleventh International Confer-

ence on Verification, Model Checking, and Abstract Interpretation (VMCAI 2010)

under the title “Analyzing Multi-Threaded Programs With Unbounded Replication”

1The executable binary and the source are available in http://www.mrzhao.com
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Chapter 2

Preliminaries

2.1 Computational Model

A replicated finite-state system is a tuple D = (S, L,∆, c0), where S is a finite set of

shared states and L is a finite set of local states. ∆ is a relation containing thread

transitions of the form (s, l) → (s′, l′) and (s, l) → (s′, l′, l′′). System D gives rise

to a Kripke structure M as follows. The state set of M is S × L+; in particular,

c0 is the initial global state. Whenever (s, l) → (s′, l′) ∈ ∆, we have a transition

(s, l1, . . . , ln) → (s′, l′1, . . . , l
′
n) in M where lk = l and l′k = l′ for some k, and lj = l′j

for all j 6= k. Similarly, whenever (s, l) → (s′, l′, l′′) ∈ ∆, we have a transition

(s, l1, . . . , ln) → (s′, l′1, . . . , l
′
n, l
′′) where lk = l and l′k = l′ for some k, and lj = l′j for

all j 6= k. The second type of transition models the dynamic creation of a thread.

Thread termination can be simulated by forcing a thread into a self-loop.

In practice, replicated finite-state systems are given in the form of a single program

P that permits only finitely many configurations but is executed by some number

(possible infinite) of parallel threads. In particular, P’s variables are of finite range.

Further, if the language in which P is written supports function calls, the call graph of

P is acyclic. An instance of this scenario is given by non-recursive Boolean programs,

which are obtained from C programs using predicate abstraction, and we refer the

reader to [16] for a conservative way of dealing with recursion. We note that the

reachability problem for concurrent programs with recursive procedures is undecidable

[44].
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To make P amenable to parallel execution, its variables are declared to be either

shared or local. When P is executed by several threads, there is one copy of all shared

variables of P. Further, there is one copy per thread of all local variables of P. We

here adopt some terminology from [16].

Definition 1 . A shared state is a valuation of the shared variables. A local state

is a valuation of (one copy of) the local variables. A thread state is a pair (s, l) such

that s is a shared state and l is local state. A system state comprises a valuation of

shared variables, plus tuples of valuations of local variables for every thread.

A thread state completely describes the information accessible to a single thread,

namely, the shared variables and its copy of the local variables. Contrast this with

more restricted ways of sharing variables, such as locks [35, 34]. A thread has neither

read nor write access to any other local variables.

Definition 2 Thread-state reachability problem asks: for a given thread state s

and template program P, whether the given thread state s is reachable by the executing

the program P with some number n (possibly infinite) threads in parallel.

We remark that our model of replicated finite-state systems cover both classical

parameterized systems, where the number of threads running is fixed up-front but

unknown, and dynamic systems, where the number of threads can change at runtime.

It is quite easy to show that the two types have equivalent expressive power, as each

one can simulate the other. We here also assume a standard asynchronous execution

model. That is, exactly one of the threads executes a step of P at a time.

2.2 Predicate Abstraction and Concurrent Bool-

ean Program

Abstraction is one of the main techniques the model checkers rely on to verify systems

with large or infinite state space, which maps the concrete and large set of states to

a smaller set of states in a way that preserves the property of interest. Predicate
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for ( i =0; i < a p t h r p e r c h i l d ; i++) {
int s t a t u s = ap scoreboard image −> s e r v e r s [ c h i l d a r g n o

] [ i ] . s t a t u s ;
i f ( s t a t u s != SRV GRACEFUL && st a t u s != SRV DEAD)

continue ;
(b ) a p r s t a t u s t rv = a p r t h r e a d c r e a t e (&threads [ i ] ) ,

th r ead at t r , worker thread , my info , p c h i l e ) ;
i f ( rv != APR SUCCESS) {

a p l o g e r r o r (APLOG MARK, APLOG ALERT, rv ,
ap s e rv e r co n f , ” a p t h r c r e a t e : e r r o r ” ) ;

c l e a n c h i l d e x i t (CHILDSICK) ;
}
t h r e a d s c r e a t e d++;

}

main ( ) begin
dec l i l t a p t h r p e r c h i l d , status eq SRV GRACEFUL ,

status eq SRV DEAD , rv eq APR SUCCESS ;
L1 : goto L2 , L5 ;
L2 : assume i l t a p t h r p e r c h i l d ;

status eq SRV GRACEFUL , status eq SRV DEAD := ∗ ,∗ ;
goto L3 , L4 ;

(b) L3 : assume ( ! status eq SRV GRACEFUL ) && ( !
status eq SRV DEAD ) ;

i l t a p t h r p e r c h i l d := ∗ ; goto L1 ;
L4 : rv eq APR SUCCESS := true ;

sk ip ;
i l t a p t h r p e r c h i l d := ∗ ; goto L1 ;

L5 : assume ! i l t a p t h r p e r c h i l d ;
end

Figure 2.1: possible translation from a C program segment (a) to a Boolean program
(b); adopted from [5]

8



Abstraction is one of the most popular and widely applied method for systematic

state-space reduction of programs [28], and promoted by the success of the Slam

project [3, 4].

In the Predicate Abstraction, a concrete model M is mapped to an abstract model

M̂ according to a given set of predicates. Data is abstracted by keeping track of certain

predicated over the data. Each predicate is represented by a Boolean variable in

the abstract program, while the original data variables are eliminated. The resulting

Boolean program is an over-approximation of the original program. Data is abstracted

by keeping track of certain predicates over the data. The data variable in the original

program will be eliminated and replaced by a Boolean variable according to the

predicates, the resulting abstract program is an over-approximation of the original

program. One starts with a coarse abstraction, and if it is found that an error-trace

reported by the model checker is not realistic, the error trace is used to rene the

abstract program, and the process proceeds until no spurious error traces can be

found[13]. The actual steps of the loop follow the abstract-verify-rene paradigm [37].

Concurrent Boolean programs [3] are obtained from C programs using Predicate

Abstraction [28, 38, 14], Figure 2.1 shows an instance for these abstractions. In this

type of programs, all variables are in type of Boolean and are declared to be either

shared or local where shared variables can be fully accessed by all threads executing

the same program while local variables are visible to (accessible by) one thread only.

[16] provides an asynchronous semantics of concurrent Boolean programs. Refer to

figure 2.2 for the syntax of concurrent Boolean programs.

2.3 VASS and Karp-Miller Tree

Some notations. We denote by S,Zm,Nm respectively the set of states, the set of

m-tuple of integers and the set of m-tuple of non-negative integers.

Vector Addition System with States (VASS) is an variant of the Vector Additon

System (VAS), which was introduced by [33] and proved can be simulated by VAS

in the same work. A m-dimensional VASS is a finite-state machine whose (directed)

edges are labelled with some v ∈ Zm, it is denoted by W = (d, δ) where d ∈ S × Nm

is the initial configuration and δ : S → S × Zm is the transition mapping function.
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Syntax Description

prog ::= decl∗ proc∗ A program is a list of shared vari-
able declarations followed by a
list of predure definitions

decl ::= decl id+ ; Declaration of variables
id ::= [a-zA-Z ][a-zA-Z0-9 ]∗ An identifier is a regular C-style

identifier
proc ::= main() begin decl∗ sseq end Procedure definition, and local

variable declaration
sseq ::= lstmt+ Sequence of statements

lstmt ::= stmt
| id:+ stmt Labeled statement

stmt ::= skip ;
| goto id+ ; Nondeterministic goto
| return id∗ ;
| id+ := expr+ constrain expr ; Parallel assignment
| if ( expr ) then sseq else sseq fi Conditional statement
| assert ( expr ) ; Assert statement
| assume ( expr ) ; Assume statement
| start thread id ; Thread creation
| end thread ; Thread termination
| atomic begin ; Beginning of atomic section
| atomic end ; Ending of atomic section

expr ::= expr binop expr
| ! expr Negation
| ( expr )
| const
| id Variable

binop ::= ’|’ | ’&’ | ’∧’ | ’=’ | ’!=’ | ’ =⇒ ’ Logical connectives
const ::= 0 / 1 False / True

Figure 2.2: Syntax of concurrent Boolean Programs (adapted from [3] and extended
to SatAbs’ syntax).
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There is a transition (q, x) −→ (q′, x′) if (q′, v) ∈ δ(q) and x′ = x+v, where + denotes

pointwise addition. A Configuration (q, x) is reachable if there exists a sequence of

transitions start at d and ending at (q, x). Figure 2.3 shows an example of VASS.

(2, !1, 0)
p q

(1, 0, 0)

(!1, 1, 0)

(!1, 0, 1)

(2, 0, !1)

Figure 2.3: Example of VASS

Definition 3 VASS Coverability problem asks, for a given q and x, whether a

configuration (q, x′) is reachable s.t. x′ ≥ x.

Theorem 4 ([36]) The coverability problem for VASS is decidable.

The algorithm by Karp and Miller [36] builds a rooted tree (we call it the Karp-

Miller Tree) T (W ) with only finite number of nodes (i.e. guarantee termination) that

compactly represents the set of covered configurations of a vector addition system.

We here extend this classic algorithm to fit the VASSs naturally as followings:

1. For any two nodes ξ and η in the tree, if there is a path from ξ to η, we say

ξ ≺ η; if there is an edge from ξ to η, then η is a successor of ξ. A node without

successors is called an end .

2. Each node η in the tree is labelled with l(η) = (q, x) where q ∈ S and x is

an m-dimensition vector whose coordinates are elements of N ∪ {ω}. For label

l(ξ) = (p, y) of any distinct node ξ, we say l(η) covers l(ξ) if p = q and for

each ith coordinates of vectors x and y, xi ≥ yi.;

3. The root of the tree is labelled d;

4. For some node η and l(η) = (q, x):

11



a. if, for some node ξ ≺ η, l(ξ) = l(η), then η is an end;

b. otherwise, the successors of η are in one-to-one correspondence with the

elements (q′, v) ∈ δ(q) s.t. 0 ≤ x+ v. Let the successor of η corresponding

to (q′, v) be denoted by η(q′,v). For each label l(η(q′,v)) = (p, x′), p = q′ and

for each ith coordinates of the vector x′ is determined as followings (We

call it the ω procedure):

i. if there exist ξ ≺ η and l(ξ) = (s, y) s.t. η covers ξ and yi < (x + v)i

then x′i = ω. ω is a symbol s.t., for z ∈ Z, ω > z and ω + z = ω;

ii. if no such ξ exists, then x′i = (x+ v)i;

These rules are recursively applied to any vertice with a new label. This procedure

eventually reaches a fixpoint, as the set of labels that can be generated this way is

finite [36]. A configuration (q, x) is then covered by the VASS exactly if there exists

a label (q, v) in the tree whose vector component v satisfies x ≤ v, with the obvious

extension of ≤ to ω. Let’s consider the example shown in Figure 2.3 , i.e. a VASS

W = (d, δ) where

d = [p, (1, 0, 0)]

δ(p) = { [q, (-1, 1, 0)], [q, (-1, 0, 1)] }

δ(q) = { [p, (2, 0, -1)], [p, (2, -1, 0)] }

Then we have a rooted tree T (W ) as shown in Figure 2.4 by Karp-Miller’s algo-

rithm. The tree has only finite number of nodes, as shown, even W has an infinite

state space.

                                                                                            [q, (ω, 1, 0)]          [p, (ω, 0, 0)] 

                              [q, (0, 1, 0)]          [p, (ω, 0, 0)]          [q, (ω, 0, 1)]          [p, (ω, 0, 0)] 

[p, (1, 0, 0)]  

                              [q, (0, 0, 1)]          [p, (ω, 0, 0)]          [q, (ω, 0, 1)]          [p, (ω, 0, 0)] 

                                                                                            [q, (ω, 1, 0)]          [p, (ω, 0, 0)] 

Figure 2.4: Karp-Miller Tree for VASS
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2.4 Replicated Finite-state Systems as VASS

Using the components of a vector to count the number of threads in each of the

possible local states, a VASS can simulate a replicated finite-state system: a thread

transition (s, l) → (s′, l′) is represented by a VASS edge s
v−→ s′ such that the l-th

component of v is −1, the l′-th component is 1, and all others are 0. Dynamic thread

creation (s, l) → (s′, l′, l′′) is modeled by a VASS edge s
v−→ s′ such that the l-th

component of v is −1, the l′-th and the l′′-th components are 1, and all others are

0. This reduction was used by German and Sistla in a related setting [27]. Similar

reductions have been presented for models of C [2] and Java [18] as well as for other

rewriting models [7]. A thread state (s, l) of the given program is reachable in the

program’s concurrent execution exactly if there is a reachable VASS configuration

(s, x) such that the l-th component of x is at least 1. By definition, this is the

case exactly if the VASS configuration (s, x0) is covered, where x0 is all-zero except

position l equals 1. The latter problem is decidable by Theorem 4. We obtain:

Corollary 5 The thread-state reachability problem for replicated finite-state programs

is decidable.

The original Karp-Miller algorithm is of non-primitive recursive space complexity.

Rackoff [43] later improved the algorithm to operate in exponential space, which is

close to optimal. While daunting, these complexity measures are not terminal for our

approach: vector addition systems that encode concurrent Boolean programs are of

very simple structure, with most integer vectors having all-but-two zero entries.
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Chapter 3

Karp-Miller Tree For Thread-state
Reachability

In this section, we present some of the main contributions of this dissertation: 1. a

complete solution to encode the concurrent Boolean programs for thread-state reach-

ability using Karp-Miller Tree; 2. an optimized algorithm for coverability problem of

VASS; 3. and therefore an efficient decision procedure for the thread-state reachabil-

ity of concurrent Boolean programs with unbounded replications through a reduction

to the coverability of VASS and some novel ideas for resolving the local state space

explosion problem inspired by the works in [5].

3.1 Concurrent Boolean Programs to VASSs

We convert the concurrent Boolean programs into VASSs using a form of counter ab-

straction [41] : instead of storing the system state of the concurrent Boolean program

as a tuple of a shared state and a vector of local states that each thread residing in,

we introduce a counter per local state, which records the number of threads currently

in that particular local state. A thread transition from local state l1 to local state l2 is

presented by a decrement of the counter for l1 together with an increment of that for

l2. The state space which is originally exponential in the number of threads has been

turned into the one polynomial in the number of threads. This abstraction is very

useful in the context of the targeted programs, since the number of the local states
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is always bounded while there are possiblly infinite many threads executing the the

programs, and thus, compatible to the vectors inside VASS configurations.

Boolean programs are not VASSs, we generally need some intermediate transfor-

mations to make these programs compatible with the VASSs. Thread-state transition

diagram (TTD) would be one instance, a simple extension of the local-state transition

diagram [47, 20, 31]. In such diagrams, the behavior of a thread (a component of the

vector) is given in terms of thread state changes. For example, refer to the TTD in

Figure 3.1 (b), one of the transitions 0 0 → 0 1 represents the change from thread

state (0,0) to (0,1). With this diagram, we can build up the addition set of VASS nat-

urally, then finally the Boolean program can be encoded into VASS for thread-state

reachability analysis. To illustrate how these conversion works, we take the examples

shown in Figure 3.1 for a complete routine:

(a)

decl s := 0
main() begin
0: goto 1
1: s := 1
2: s := 0
3: end

(b)

init: 0 0

0 0 → 0 1
0 2 → 0 3
0 1 → 1 2
1 0 → 1 1
1 1 → 1 2
1 2 → 0 3

(0,−1,1,0)

(0,0,−1,1)

(0,−1,1,0)

(−1,1,0,0)

(0,0,−1,1)

(−1,1,0,0)s=0 s=1
(1,0,0,0)

(c)

Figure 3.1: (a) Boolean program (b) TTD (c) VASS

Suppose we have a Boolean program as Figure 3.1 (a) shows, there is one shared

variable s and program counter PC ranges from {0 - 3}, then we should have a set of

transitions among (22∗24) thread states at most, and (0, 0) would be the initial thread

state and presenting the valuation of ( s == 0 and PC == 0). After the execution

of the first line of the main code “0: goto 1”, we have transitions from (PC == 0)
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to (PC == 1) regardless of the valuations of other variables (i.e. the shared variable

s in this example). Then we add transitions (0,0) to (0,1) and (1,0) to (1,1) to the

resulting TTD. After the execution of the second line of the main code “1: s := 1”,

we have transitions from valuation (PC == 1) regardless of the valuation of other

variables to the valuation of (s == 1 and PC == 2), i.e. we have two new transitions

(1, 1) to (1, 2) and (0, 1) to (1, 2). Similarly, after the executions of all lines of the

main code, we will have a complete thread-state transitions diagram as Figure 3.1

(b) shows, i.e. a replicated finite-state system. Then, as described in section 2.4, this

replicated finite-state system can be simulated by a VASS likes Figure 3.1 (c).

However, this approach is inefficient: a static conversion from Boolean program

to thread-state transition diagram invariably incurs a large blowup: the number of

transitions generated for each statement in the Boolean program is exponential on

the number of variables (both shared and local). For every transition between states,

we have to enumerate items in this highly blowup data structure, i.e. the addition

set in VASS, which leads to the inefficiency in searching.

Moreover, an naive implementation is problematic: i.e. the local state explosion

problem, which was identified earlier by [5]: in concurrent Boolean programs, the

number of local states is exponential in the program text size and unmanageably too

large in general. Take the Boolean program segment in Figure 2.1 for instance, it has 4

local variables with Program Counter in range {1..12}, then there will be 24∗12 = 192

local states, and hence a 192-dimensions vector for echo configuration in the VASS.

The state space of the VASS is of size doubly-exponential in the number v of local

variables, namely Ω(n2v
). In realistic applications, concurrent Boolean program can

have thousands of program lines, and dozens of variables.

To tackle the above problems, we extend the solution proposed for bounded

counter program (the amount of the counters is bounded) by [5] to our unbounded

context:

1. Instead of translating the Boolean programs into VASS through thread-state

transition diagrams statically, we interleave the translation of individual pro-

gram statements with the state space exploration phase, i.e. execute the pro-

gram statements and update the system states on the fly. This has the ad-

vantage that our algorithm is context-aware: the local-state context in which
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Figure 3.2: Numbers of Local States in Total and Occupied Local States in Average

the statement is executed is known; the context determines which local-state

counters need to be updated.

2. In the system states, instead of manipulate counter values for all local states, we

keep counters only for those local states that at least one thread resides in. In

a bounded context, like [5], the number of ”occupied” local states is obviously

bounded by the number of threads in existence. Even in our unbounded context,

from our empirical results shown in Figure 3.2 (we will explain how these results

are obtained in section 3.4), this number remains tending to be a tiny fraction of

all local states. The number of ”occupied” local states goes only 21 in average

and 94 at most even some of the programs can has 1 ∗ 1014 local states in total.

This illustrates drastically the difference to a method that keeps counters for

all local states.

As a result, our implementation can be seen as a version of the Karp-Miller pro-

cedure that operates directly on a Boolean program, as opposed to on a VASS. We

therefore completely avoid the blowup that an intermediate conversion to any type

of addition systems (such as a counter program or a VASS) invariably entails.
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3.2 Implementing The Karp-Miller Tree Construc-

tion

The Karp-Miller Tree Construction procedure is implemented in C++ combined with

intensive uses of the Standard Template Library (STL) for high level of efficiency.

For the ease of extending supports for new front-ends (e.g. Boolean programs and

Thread-state Transitions Diagram), a set of techniques have been applied in this

development, such as C++ template, polymorphism, design patterns and so on to

make the construction procedure as generic as possible.

Combining the ideas presented in section 3.1 and the rules described in section 2.3,

we could develop an explicit-state algorithm (algorithm 1) for thread-state reachabil-

ity analysis of replicated finite-state system D, with on-the-fly symmetry reduction

on system state space implemented via the Karp-Miller Tree Construction. The algo-

rithm takes a template program P as input and computes, in the variables Reach, the

set of configuration (i.e. the symmetry-reduced system state space) reachable from a

given initial configuration, then extract and output the the set of reached thread-state

from Reached. Note, all rules mentioned in this section are from the Karp-Miller’s

coverability tree construction algorithm described in section 2.3.

Configurations are stored by the algorithm in form of a tuple

c := (s, L, f : L −→ N ∪ {ω}) (3.1)

(see line 4). Variable s is a valuation of the shared variables, L is a set of local states,

and f is a function as declared in (3.1). Intuitively, given c = (s, L, f), only local

states mentioned in L occur in the system states of D represented by c. For such

local states l, function f specifies the number of threads residing in l; observing that

the range of f does not include 0. As a result, the system states represented by c

form a symmetry equivalence class. Conversely, every such equivalence class can be

represented in the form (3.1), making this representation sound and complete.

For the flexibility of the Karp-Miller Tree construction procedure, we have im-

plemented two versions of the algorithm, one is based on depth-first search (DFS)

order while the other is based on breath-first search (BFS) order. In addition, for the

efficiency of the procedure, instead of proceeding the exploration in recursively, we
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Algorithm 1 Karp-Miller Tree Construction

1: Unexplored := Reached := Initial
2: while Unexplored is not empty do
3: pop a config c := (s, L, f : L −→ N ∪ {ω}) from the front of Unexplored
4: Preds := PredecessorsOf(c) //included all predecessors till the root
5: if c /∈ Preds then
6: for all l ∈ L do
7: execute P on (s, l) to obtain Successors
8: for all (s′, l′) ∈ Successors do
9: L′ := ( f(l) = 1 ? L \ {l} : L ) ∪ {l′}

10: f ′(x) =


f(x)− 1 if x = l
f(x) + 1 if x = l′ ∧ l′ ∈ L

1 if x = l′ ∧ l′ 6∈ L
f(x) otherwise

11: c′ := Omega (s′, L′, f ′,Preds) //introduce ω to the counters

12: if order == DepthF irst then
13: append c′ to the front of Unexplored
14: else if order == BreathF irst then
15: append c′ to the back of Unexplored
16: add c′ to Reached;

implemented the algorithms in a non-recursive fashion (algorithm 1) which eliminates

the costs from issuing (possible a large number of) function calls to the system stack.

While available, an unexplored state c is popped from the Unexplored queue (line

4). Before continues to the exploration phase, we compare c with all its predecessors

till the root of the tree to see if c has been discovered previously in the same path.

If so, we discard c and c is considered as an end of the tree (line 4, 5, for rule 4.a).

Set L reveals which local states l occur in the system state encoded by c; these local

states are paired with the s, the valuation of shared variable, and P is executed on

the result directly (line 7). Note that l includes the value of the PC, revealing which

line to start P from. The step of choosing a local state l in line 6 can be thought of

as picking a representative thread out of those in local state l to make a step.

Executing P on the thread state (s, l) results in a new thread state (s′, l′) (line 7).

In order to obtain a new state c′ to add to either the back of the Unexplored queue for

breath-first search order or the front of the Unexplored queue for depth-first search

order, we combine the steps of constructing a new system state of D and converting

that into counter notation (3.1), as follows. s′ is copied into c′ unchanged. If only 1
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thread resided in local state l before, as indicated by f(l) = 1, we remove l from L;

the new local state l′ is added to L in any case, resulting in the set L′ (line 9). The

new function f ′ is identical to f except at l and l′ (line 10). To ensure that the map

f ′ contains only pairs with non-zero counter values, a cleanup step may remove the

pair (l, f ′(l)) (not shown in 1). Finally, the configuration c′ is built by applying the

components s′, L′ and f ′ to the Omega procedure (line 11, for rule 4.b.i) and added

to the containers Reached and Unexplored appropriately (line 12 –15).

Algorithm 2 The Omega Procedure

1: procedure Omega (s, L, f,Preds)
2: for all p := (sp, Lp, fp) ∈ Preds do
3: if Covers ((s, L, f), (sp, Lp, fp)) == true then
4: for all l ∈ L do

5: f ′(l) =


ω if l /∈ Lp)
ω if l ∈ Lp ∧ f(l) > fp(l)
f(l) otherwise

6: return (s, L, f ′)

7: procedure Covers ((s, L, f), (s′, L′, f ′)) //the former covers the latter
8: if ¬(L w L′) then
9: return false

10: for all l′ ∈ L′ do
11: if f ′(l′) > f(l′) then
12: return false
13: return true

The Omega procedure (algorithm 2) which cooperates with the Covers proce-

dure (by rule 2), is for labeling the ω symbol to appropriate local state counters which

can have infinite many threads resisting in. This procedure takes a configuration in

form of (s, L, f) and a set of configurations which are the predecessors of the former as

input. This procedure compares all elements of the set Preds with the configuration

(s, L, f) and updates the mapping of function f according to the rule 4.b.i. We pop a

configuration p := (sp, Lp, fp) from Preds and compare with (s, L, f), the procedure

proceeds only if the latter covers (procedures start from in line 7) the latter (line 3).

Then we compare all local state counters f(l) with f ′(l) and update the value of the

former to ω if the former is larger than the latter(lines 5). Finally new configuration

(s, L, f’) with a updated mapping function f ′ is returned.

As mentioned in section 3.1, during the state exploration phase, we keep counters

only for those local states which at least one thread resides in instead of manipulate
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counter values for all local states. To facilitate the above procedure achieving this

efficiently and making the algorithm generic, we implemented a template class Config

for the system states, which consists of a copy of the valuation of the shared variables

and a mapping from valuations of local variables to the associated counters which in

range of N ∪ {ω}. Set L and function f can be viewed as a mechanism to look up

the counter value corresponding to some local state. This mechanism is efficient in

time and memory: function f is implemented in algorithm 1 as an associative map

(std::map), which has access time logarithmic in its size. By which, the procedure

could manipulate the values of the local state counters effortlessly, and also generically

due to the high level of flexibility provided by the STL data structures. Contrast this

with a more straight-forward but naive implementation that stores the look-up table

as a vector of constant width equal to the number of conceivable local states. To build

the Karp-Miller tree and manipulate the nodes in the tree, we also implement a class

ConfigNode which links the nodes with their predecessor. Besides, to make sure the

procedure is generic so that it can be extended to support various type of template

program input easily, we abstract the behaviors of executing template program P and

resulting a set of successors (line 7 in algorithm 1) in the procedure to an abstract

class called AdditionSet. By implementing AdditionSet interfaces, and specifying the

types for local and shared states, we could accomplish the supports for new type of

input.

shared : S
locals : map<L, Counter>

template<L, S> class Config 
L for local state, S for shared state

bool covers(const Config<L, S>& other);
void omega(const Config<L, S>& other);

config : Config<L,S>
predecessor : ConfigNode<L,S>

template<L,S> class ConfigNode
L for local state, S for shared state

virtual C getInitialConfig() = 0; 
virtual list<C> getSuccessors() = 0;

template<C> class AdditionSet

Figure 3.3: Class Diagrams for Configuration, Node of Configuration and AdditionSet

In the rest of this section, we focus on describing the implementations concerning

the Karp-Miller procedure for Boolean programs.

To provide supports to the procedure for taking Boolean programs as inputs (the

template programs), we implemented a parser for the Boolean programs according
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to the syntax shown in figure 2.2 with the helps of Flex1 and Bison 2 which are

a lexical analyser generator and a parser generator respectively. After the parsing

phase, instead of building a single but big Abstract Syntax Tree (AST) for the whole

Boolean program, we store the program statements into an array data structure which

provides efficient random access and builds individual AST for each expression within

the program statements for the valuations evaulation. For example, the parser will

generate an AST as Figure 3.4 shown for the expression: (!locked) & ((!queueSize−
equ − 0) | bufferSize − le −MAX ). These designs provide multiple benefits: (i)

instead of traversing the whole AST to get access to a particular program statement,

we could execute the program statement demanded instantly according the PCs of

the statements i.e. the indices in the array data structure; (ii) With the associated

ASTs which are generated during the parsing phase, and the use of visitor pattern,

we could analyze the program expressions in a structured way which simplifies the

complicated valuation evaluation procedures.

Figure 3.4: Abstract Syntax Tree for a possible expression in Boolean Program

In order to manipulate the valuations of variables in Boolean program efficiently,

we encode the valuations of variables (both shared and local) into the configuration

directly using bit-vectors (we use std::vector<bool> in our implementation), thus,

we do not have to need any look-up mechanism to manipulate the valuation of the

variables. Using bit-vector is space efficient: the memory used by a configuration with

1Flex is available for download on http://flex.sourceforge.net/
2Bison is under GNU and available for download on http://www.gnu.org/software/bison/
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bit-vectors is bounded to the number v of variables in form of v bits + sizeof(PC).

Contrast this with a more straight-forward but naive implementation that build and

stores the look-up table as a vector of constant width equal to the number ls of

conceivable local states which has been blowup highly (as section 3.1 described), thus

we need memory in a constant size of ls bytes for indexing (we here assume the use

of std::vector<T> where T is not bool) plus memory used for storing the valuations

plus sizeof(PC) .

3.3 Optimizations on the Karp-Miller Tree Con-

struction

The classic algorithm by Karp-Miller [36] described in section 2.3 caps the number

of nodes in the tree to finite and accelerates the termination of the procedure by the

use of rules that manipulate the symbol ω. But this procedure is impractical (either

with DFS or BFS order) in most cases, even with the optimized implementation

described in earlier sections, due to the intractably high worst-case complexity for this

procedure, particularly for the Boolean programs which have thousands of transitions

in general and we here note that the procedure using Karp-Miller’s algorithm timed

out (1 hour) on most of the cases that in our benchmark Boolean programs (we will

describe these benchmarks in section 3.4). So in the rest of this section, we are going

to introduce a set of algorithmic optimizations that make this procedure efficient

enough in practice.

3.3.1 Depth-first Search and Breath-first Search.

The arguments between depth-first and breach-first algorithm have become a classic

story, since neither would be dominant to the other for all cases. For example, breath-

first search can provide the shortest path to the nodes with a particular label in the

tree during the exploration phase, while depth-first search enjoys low level of memory

usage. However, differ to other exploration algorithms which only require the top

level of the tree to continue the exploration, we have to remember all nodes that have

been discovered ever for the procedure introducing the ω symbol to the counter vector

in Karp-Miller’s algorithm.
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From our empirical results, as Figure 3.2 shows, we know that the average number

of ”occupied” local states is 21, i.e. every nodes in the tree can have 21 child nodes

in average if each has one successor in average. We note that we can have no but also

many successors from the thread execution of a program statement in the realistic

application, since our Boolean program syntax supports assume, dynamic thread

creation, nondeterministic jumps and etc. So we can summarize that the number

of nodes grows exponentially on the depth of the tree, in form of 21depth in average,

the generated tree would be extremely fat. For example, suppose we have a Boolean

program which is typical in our benchmark collection ( i.e. in the tree that is generated

for this Boolean program by Karp-Miller’s algorithm, each node has 21 child nodes);

and suppose we have to explore the tree at least in depth 8 to terminate; then we

need to explore 218 = 37, 822, 859, 361 nodes, even a lot of them are redundant in

terms of having the same labels, there is still a large number of nodes to be explored

if we explore the tree depth by depth i.e. in a Breath-first fashion. Moreover, in

realistic Boolean programs, we generally have to explore much more than 8 depths

( executing more than 8 program statements) to terminate the procedure. So, the

optimizations we introduce below focuses on the Depth-first searching fashion which

does not have to remember the high number of nodes during the exploration phase,

making the procedure impractical in terms of memory usage.

3.3.2 Accelerate Termination

3.3.2.1 Determining the end

The main performance bottleneck of the Karp-Miller procedure, comes from the re-

dundant explorations on the nodes that with labels providing the same information

on coverability: some label would be discovered multiple times in nodes from different

paths. To eliminate redundant exploration, we extend the criteria for determining

terminal of the tree from existence of discovered node along the same path that has

the same label with the new node, to the existence of discovered node anywhere in

the tree that has label covers (note, the relation covers is true true for two identical

labels in both sides) the label of the new node. Formally, we replace rule 4.a of the

classic algorithm with the followings:
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4.a SupposeR is the set of configurations that have been discovered so far (i.e. there

are paths from d to these configurations), C is a subset of R and C includes only

the necessary configurations that represent the same coverability as R does, i.e.

for all r ∈ R, there exists c ∈ C s.t. c covers r; and for all c ∈ C, there exists no

such c′ ∈ C that c covers c′. Then the current node in the tree η is considered

as an end if there exists c ∈ C s.t. c covers l(η).

That means, when a new node η is found, our algorithm first checks whether some

previously discovered node anywhere in the tree covers η; if so, η is discarded.

Conversely, the algorithm checks whether η covers some previously discovered

node θ that is yet to be expanded; if so, θ can be discarded from the Unexplored list.

The reason is a monotonicity 3 argument: adding threads to a global state, such as

represented by θ, can at most increase the set of global states reachable from it. We

can think of η subsuming θ. In both directions, we only need to compare θ against

maximal candidates.

To make the search for redundant nodes efficient, our implementation keeps a

separate copy of those discovered nodes that are maximal with respect to the covers

relation as partial order (i.e. the set C mentioned in the new 4.a rule). New labels

are compared against these maximal nodes only. In particular, this subset of the

discovered nodes forms an anti-chain in the covers partial order.

Note that — in contrast with an approach by Finkel [23] — we discard unexplored

nodes instead of entire subtrees. Our algorithm therefore does not suffer from the

problems that make Finkel’s method incomplete (see also [26]).

3.3.2.2 Exploring Strategy

After applying the optimization described previously, the procedure of determining

the end of a particular path in the tree is not independent from other discovered

paths anymore. This fact creates chance for us to construct strategies making the

exploration procedure terminates earlier.

3Monotonicity in VASS means: for all configurations c1, c2, c3 ∈ S×Nm, there exists c4 ∈ S×Nm

reachable from c3 s.t. c4 covers c2, if c3 covers c1.

25



By observing the generated tree for the VASSs, we found a lot of configurations

(i.e. labels) that covers some configurations that have long subsequent paths, which

means we could omit the exploration of the later if we could explore the former first.

So the strategy we use here is: we explore the successors that remain in the same

state first, by which the exploration will enjoys a higher probability to reach a the

configurations that have the most ability to cover other configurations (which has the

same state) which can be reached by other paths.

This strategy can be accomplished simply by implementing the interface getSuc-

cessors in the abstract class AdditionSet as: while an new configuration is available,

we push it to the back of the resulting list (would be expanded first) if it has the same

shared state with source configuration, otherwise, push it to the front of the resulting

list (would be expanded last).

We note that, this optimization only can help in a depth-first implementation since

the breath-first one expands some node’s successors “at the same time”, it makes no

difference by specifying priority on the order of expanding.

3.3.3 Accelerate the ω procedure

The ω procedure is one of the performance bottleneck in the classic algorithm, the

reason are that (i) we have to go backward along the path to determine if any co-

ordinate of the vector should be replaced by the ω symbol and (ii) the paths in the

generated Karp-Miller Tree often consist a lot of comparable configurations.

By observing the generated Karp-Miller Tree for the VASSs, we found that many

of the paths in the tree alternate nodes with configurations (i.e. the labels) that are

comparable (i.e. either can covers the other) and they go very deep generally. That

means, in the original ω procedure, we also have to visit the redundant nodes in

terms of labeling with configurations that have the same effects for introducing the

ω symbol to the counter vector in the new node.

By the transitive property which holds in the covers relation: c1, c2, c3 ∈ S ×Nm,

c3 covers c1, if c3 covers c2 and c2 covers c1, here we manipulate a tracing acceleration

set to make this procedure much more efficient.
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Along the exploration, we manipulate a set AS that includes all configurations in

the current path that do not covers any other configuration. i.e. suppose ps is the

set that includes all configurations in the current path, then for all c ∈ AS, there

exists no c1 ∈ AS or c2 ∈ (ps − AS) s.t. c covers c1 or c covers c2. Then we will

compare the new configuration with the configurations in AS instead of the labels

of all nodes along the path to determinate if some coordinates of the counter vector

should be updated with ω.

We note that, this optimization is practical in depth-first algorithm only since it

trades space efficiency for time efficiency but the breath-first version of Karp-Miller

procedure is inefficient in terms of space usage.

To implement this accelerating technique, we keeps a separate copy of those dis-

covered nodes that are minimum with respect to the covers relation as partial order

(i.e. the set AS mentioned above). New labels are compared against these minimum

nodes only, for determining the introduction of ω symbol. In particular, this subset

of the discovered nodes forms an anti-chain in the covers partial order. We note that,

in depth-first algorithm, the search will backtrack, returning to the most recent node

it hasn’t finished exploring if it hits a node is an end. Thus, keeping only the set

of minimum configuration does not work, we have to develop some mechanism that

can manipulate these discovered configuration properly. A list nesting with lists of

configurations would be one instance:

We keep a list of inner lists that ensures all configurations on the front of the

inner lists are incomparable to each other, and for each inner list, the configurations

are sort with respect to the partial order covers and the minimum configuration is

put on the front of the list. While an new configuration is available, we compare it

with all front of the inner lists, if there exists one which is comparable with it, it

will be put into that list with respect to the partial order covers, and create a new

inner list for the new configuration otherwise. When the searching procedure returns

to the most recent discovered node that has not been expanded yet, we remove the

configuration that the searching procedure returns from according to the iterator of

the configuration (even in absence of the exact position of the inner list) directly,

this works because the deletion of element in a list would not violate the structure

of the list data since they are linked by pointer (STL’s list implementation supports

this functionality). Once the node in one of the list is deleted, the clean-up operation
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would be needed, e.g. the list become empty, but we do not have to do it immediately,

instead, we postpone this operation to the phase of inserting new configuration to

these lists, and only if these lists are accessed by the procedure.

We end this section with an introduction of the optimized algorithm (algorithm

3) implemented in depth-first fashion.

Algorithm 3 Optimized Karp-Miller Tree Construction in DFS

1: Unexplored := Initial
2: Reached := ∅
3: while Unexplored is not empty do
4: pop a config c := (s, L, f : L −→ N ∪ {ω}) from the front of Unexplored
5: if there exists no such r ∈ Reached that r covers c then
6: for all l ∈ L do
7: execute P on (s, l) to obtain Successors
8: for all (s′, l′) ∈ Successors do
9: L′ := ( f(l) = 1 ? L \ {l} : L ) ∪ {l′}

10: f ′(x) =


f(x)− 1 if x = l
f(x) + 1 if x = l′ ∧ l′ ∈ L

1 if x = l′ ∧ l′ 6∈ L
f(x) otherwise

11: c′ := Omega (s′, L′, f ′,AS) //introduce ω to the counters
12: append c′ to the front of Unexplored

13: for all list ∈ AS do
14: if c covers list.front then
15: Comparable = true;
16: list.insert(c) and Break //sorted w.r.t partial order covers
17: if Comparable == false then
18: add c′ to new-list;
19: add new-list to AS

20: for all r ∈ Reached do
21: if c covers r then
22: remove r from Reached
23: else if c covers r then
24: Discarded = true
25: discard c and Break
26: if Discarded == false then
27: add c′ to Reached;
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3.4 Performance

We have implemented our optimized algorithm (algorithm 3 ) in a tool called Star

(“Scalable Thread-state reachability AnalyzeR”), in an explicit-state fashion. We

have evaluated the implementation’s performance on a diverse set of Boolean pro-

grams. We applied our tool to a large number of examples from two sources: Boolean

programs generated by SatAbs that abstract part of Linux kernel components, and

Boolean programs abstracting Windows device drivers generated at Microsoft Re-

search using Slam.

Before discuss our experiments, we describe in detail how we obtained concur-

rent benchmarks from the Boolean program source. This step differs for the Slam-

generated programs and those generated with SatAbs. For Slam, we simply in-

stantiate a sequential Boolean program once per thread; each thread executes the

program’s main procedure. Variables with global scope become shared variables of

the concurrent programs, while variables with local scope become thread-local vari-

ables.

In contrast, the concurrent benchmarks produced by SatAbs were generated us-

ing DDverify [48], a harness for Linux device drivers. The resulting concurrency

model supports synchronization primitives, such as semaphores and spinlocks, and

memory-mapped IO-registers for communication with the underlying hardware. Par-

allel execution is handled as follows. An environment thread models the operating

system threads and parallelism is caused by hardware events, e.g., interrupts. Inter-

rupt service routines are themselves uninterruptable, that is, this concurrency model

does not cover nested interrupts. The interaction between the driver and a client

application is simulated in an infinite loop that nondeterministically calls the driver’s

functions. This loop is executed by multiple threads, since it accesses to a driver can

be shared among multiple clients.

Our Boolean programs have between 17 and 3884 lines of code. The threads

communicate using shared variables; the number of shared variables ranges from 1 to

more than a thousand, resulting in a huge number of shared states. The experiments

were performed on a 2.53 GHz, 4 GB Intel machine, running Linux.

Our experiments are based on a collection of 131 Boolean programs; the programs
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Figure 3.5: Performance of our optimized algorithm on Boolean programs

are listed in Figure 3.5 for increasing running time. We note that our exploration

engines cannot cope effectively with the data nondeterminism, represented by the

special value ?, that Boolean programs exhibit [15]. To make these experiments

meaningful, especially for large programs, we determinized the Boolean programs,

replaced ? with 0 or 1 randomly, before feeding them into the tool.

In 20 cases, our Karp-Miller engine timed out; these cases are not shown in the

Figure 3.5. The running times for the remaining 111 cases range from under 1 s to

about 30 min. The number of shared variables in these cases ranges between 0 and 37.

The programs without shared variables stem from very coarse Boolean abstractions;

there are only 10 such examples (9 %).
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Chapter 4

Thread-State Reachability Cutoffs

In the previous chapter, we have seen that the Karp-Miller procedure can effectively

be used to decide, for a given Boolean program, the reachability of some thread

state. We achieved much better performance than one could perhaps hope for, given

the high worst-case complexity of the procedure. In this chapter, we present the

contributions about trading completeness for efficiency: we present a method that

(i) is more efficient than the Karp-Miller procedure, (ii) is not guaranteed to find all

reachable thread states, but (iii) likely does find all reachable thread states for many

programs. The method can therefore be seen as an efficient, incomplete but often

exhaustive reachability analysis.

4.1 Existence of Cutoffs

We begin by observing that the set of reachable thread states is finite. When con-

sidering the same Boolean program for increasing numbers of created threads, this

set can therefore grow only a finite number of times. This implies that, for every

Boolean program P, there is a number n such that any thread state reachable given

some (arbitrarily large) number of threads can in fact be reached given n threads.

Remark. One can in fact show a slightly stronger result. Let Rd
n denote the set of

thread states reachable up to exploration depth d in an n-thread system. For every

program P, there is a number N such that for all n ≥ N and for all d, Rd
n = Rd

N .
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We call the smallest such number the uniform cutoff of P and denote it by N0.

It can be shown that n0 ≤ N0, and that n0 < N0 for many examples. Given at

least N0 threads, the set of thread states reachable at any given exploration depth

d is independent of the thread count. In other words, given two numbers n1, n2 ≥
N0, the two structures derived from replicating P n1 or n2 times respectively, are

bounded-reach equivalent. This means that the structures satisfy the same formulas

expressible in bounded-reachability logic [32]. This logic is similar to CTL, but allows

only non-nested reachability and bounded-reachability modalities, EFP and EF≤i P ,

respectively. (End of Remark.)

We call the smallest such number the reachability cutoff of P and denote it by n0.

If the reachability cutoff of a Boolean program is known, the thread-state reacha-

bility problem can be solved by analyzing the program for the fixed cutoff-number of

threads, without the Karp-Miller procedure. We show in the rest of this section why

that might be useful, and why the observations made above can have a significant

impact in practice even if the cutoff is not known.

4.2 Reachability Cutoffs in Practice

Figure 4.1: The Cutoffs in realistic Boolean programs

The cutoff of a concurrent program can be arbitrarily large. As an example,
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given some number c, consider a program that first increments a shared variable s of

range {0, . . . , c} and, in the next instruction, throws an exception if s equals c. This

program has a reachability (and uniform) cutoff of exactly c.

Such behavior is, however, not typical. Figure 4.1 shows the distribution of the

reachability cutoffs on our set of Boolean program benchmarks. The cutoff was com-

puted using our tool Star: we first determine the exact set of reachable thread states,

and then, incrementally, how many threads are necessary to reach these thread states.

The latter can be done with any concurrent Boolean program reachability engine re-

quiring a bound on the number of threads; we used the model checker Boom for this

purpose [5]. We observe that the cutoff is below 4 in all but very few examples.

4.3 Reachability Cutoffs and the Karp-Miller Con-

struction

In this section we demonstrate empirically that running a bounded-thread reachability

analysis engine such as Boom with the cutoff number of threads tends to be much

cheaper than running the full Karp-Miller algorithm. Figures 4.2 compare, for our set

of Boolean program benchmarks, the runtime performance of Boom with the cutoff

number of threads to the runtime performance of Star on the same instance.

We see from the figures that the cutoff-based solution is always faster. The dif-

ferences in the running times vary, they reach up to 25min. Note that the figures do

not contain cases for which Karp-Miller timed out, since for those we cannot compute

the exact cutoff. The memory consumption of the two procedures relates as follows:

our implementation of the Karp-Miller procedure uses, on average, 3–5 times as much

memory as used by the bounded one, and orders of magnitude more in some cases.

The reasons behind these result can be various: recall that for a concurrent system

with a fixed number of threads, the number of non-zero counters in a system state

is bounded by the number of threads. With dynamic thread creation, there is no

such formal bound and we empirically observed an average of 21 and 94 at most,

as Figure 3.2 shows. Although it remains to be a tiny fraction of the number of all

local states, it is many times of the reachability cutoff n0 in the realistic concurrent

Boolean program, thus, the number of nodes in the Karp-Miller Tree grows much fast
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Figure 4.2: Comparing Karp-Miller and Cutoffs

than the nodes generated by the bounded-thread procedure. Moreover, most of the

nodes generated by the former are redundant in term of leading to the same set of

successors since we only need n0 number of thread to discover all reachable thread

states but the Karp-Miller procedure explores the program as expensive as using 21 in

average threads to explore the same program. The additional cost of the Karp-Miller

procedure, compared to one that explores states for a bounded number of threads,

also comes from the need to check labels of new nodes for coverage against labels of

previously discovered nodes although with the improvement we did in chapter 3.

The consequences of our findings are two-fold. First, if the cutoff can be pre-

computed or at least tightly estimated, computing the reachable thread states until

the cutoff bound is likely very efficient and gives the same precise result as the Karp-

Miller procedure. Second, if the cutoff is not known, one can still capture a large

fraction of the reachable thread states by analyzing the program for a fixed and small

number of threads, say one that terminates before a reasonable time-out. The result

is an efficient and highly effective bug-finding strategy.

Folklore tells us that often few threads suffice to exhibit all relevant concurrent
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behavior that may lead to a bug. To quote from an early work by Clarke, Grumberg

and Browne [12]: “It is easy to contrive an example in which some pathological be-

havior only occurs when, say, 100 processes are connected together. . . . Nevertheless,

one has the feeling that in many cases this kind of intuitive reasoning (i.e., inferring

correctness for all from correctness for a few) does lead to correct results.” Our work

confirms that this “gut-feeling” achieves a high level of precision for selections of

(Boolean) programs with a common designation, such as those abstracted from OS

kernel components.

35



Chapter 5

Conclusion

5.1 Related Work

There is a vast amount of literature on tackling reachability analysis for concurrent

software, with or without recursion, the entire coverage of it is far beyond the scope

of this dissertation. We focus on work related to vector addition systems or the use

of cutoffs. We remark in passing that many of the results for vector addition systems

can be equivalently applied to, or have been discovered in the context of, Petri nets.

Vector Addition Systems: Many data structures and algorithms have been pro-

posed for the efficient analysis and coverability checking of VASS [25, 23, 19]. Most of

these algorithms, however, do not address the problem of introducing an intractable

number of vector elements by the translation from (Boolean) programs. Thus, in

BDD-based implementations, the encoding typically contains one variable per poten-

tial vector element.

Pastor and Cortadella provide a better technique that identifies, using linear

programming, sets of elements such that only one element will be non-zero at any

time [40]. This improvement is based on a-priori estimates on the set of reachable

configurations. In contrast, our solution is dynamic in nature; the vector dimension

varies from state to state, allowing for a much more aggressive compression. Recent

work by Raskin et al. has attempted to address the dimensionality problem using

an abstraction refinement loop [24], where abstract models of the Petri net under
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investigation are of lower dimension than the original. When spurious results occur,

the abstraction is refined, leading to increased dimensions. In contrast to our solu-

tion, this obviously suffers from the necessity to go through several iterations before

finding a dimension that is “precise enough”.

General techniques to reduce the time and memory requirements of Petri net anal-

ysis are based on different choices of data structures such as multi-valued decision

diagrams [10] and Data Decision Diagrams [17], or based on algorithmic improve-

ments such as symmetry reduction [46], deleting configurations that will not be seen

again [9], or partial-order techniques [22].

Cutoffs: There is much of the work on verifying concurrent programs using cutoffs

restricts communication [12, 21, 8, &c.]. For example, fixed cutoffs are known for

ring networks communicating only by token passing [11]. Recently, multi-threaded

programs communicating solely using locks were investigated by Kahlon, Gupta and

Ivančić [35]. Such programs provably permit very small cutoffs, depending on the

property to be checked. These results do not hold with general shared-variable con-

currency, as we consider it.

Bingham presents a cutoff-like technique for coverability [6]. The algorithm applies

to parameterized finite-state systems. Beginning from an initial number of threads

n, standard finite-state BDD techniques are used to compute the set of global states

that are predecessors of the set of covering vectors. The analysis is repeated with

increasing values of n until some necessary and sufficient convergence criterion is met.

Unfortunately, Bingham does not discuss the experimental values of n at which his

algorithm terminates. His technique seems to outperform standard Petri net covering

techniques only in some cases.

Tools: There are many tools available for the analysis of VASS [30]. The PEP tool

is a popular coverability checker [29] that takes as input a variety of languages such

as B(PN)2 and SDL. A more recent tool implements the Expand, Enlarge and Check

algorithms due to Geeraerts et al. [25]. Furthermore, VASS analysis has been applied

to Java programs [18] and Boolean programs [2]. These tools compile their input

into an explicit-state representation of the underlying program, which may result in
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very high-dimensional VASSs. They are therefore susceptible to the local state-space

explosion problem.

Other. Similarly in spirit to our cutoff work, Qadeer and Rehof propose an algo-

rithm that focuses on finding bugs, rather than proving correctness. Their algorithm

limits the number of context switches between threads, thus omitting some interleav-

ings [42, &c.]. The authors argue for the high coverage of their method in practice.

In contrast to our work, the reason for introducing the context bound is to make the

problem decidable, as they permit recursion. Due to the undecidability of the prob-

lem with an unbounded number of context-switches, the authors cannot automatically

verify for a large number of samples that a certain context bound indeed catches all

bugs.

5.2 Conclusion

In this dissertation, we have investigated the thread-state reachability problem for

concurrent systems that originate from replicating a given finite-state program with

unbounded number of threads. This problem is algorithmically decidable by a reduc-

tion to the coverability problem of VASS. We have presented a new application of the

idea of this reduction — the construction of what has become known as the Karp-

Miller tree — directly to Boolean programs. Our experimental results demonstrate

the effectiveness of our implementation, which is much more efficient than one could

perhaps hope for, given the high worst-case complexity in the procedure.

In order to explore a potentially yet more efficient solution to this problem, we

also investigated the reachability cutoff of concurrent Boolean programs. We have

demonstrated empirically that this cutoff tends to be very small in practice. In fact,

it is often so small that running a fixed-thread model checker with the cutoff number

of threads is more, sometimes much more, efficient than building the Karp-Miller tree.

Even without knowing the exact cutoff, our findings therefore suggest a frequently

exhaustive reachability method.

In future work we will investigate methods to statically predict, or tightly overap-

proximate, the cutoff for certain classes of programs. Alternatively, one may attempt
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to dynamically recognize that it has been reached.
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