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“Things like even software verification, this has
been the Holy Grail of computer science for many

decades, but now in some very key areas, for
example, driver verification we’re building tools

that can do actual proof about the software and
how it works in order to guarantee the reliability.”

Bill Gates, April 18, 2002
Keynote address at WinHec 2002
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“One of the least visible ways that Microsoft Research
contributed to Vista, but something I like to talk about, is

the work we did on what’s called the Static Driver
Verifier. People who develop device drivers for Vista can
verify the properties of their drivers before they ever even
attempt to test that. What’s great about this technology is
there is no testing involved. For the properties that it is

proving, they are either true or false.
You don’t have to ask yourself

“Did I come up with a good test case or not?”

Rick Rashid, Microsoft Research chief
father of CMU’s Mach Operating System (Mac OS X)

news.cnet.com interview, 2008
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Model Checking with Predicate Abstraction

I A heavy-weight formal analysis technique

I Recent successes in software verification,
e.g., SLAM at Microsoft

I The abstraction reduces the size of the model
by removing irrelevant detail
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Model Checking with Predicate Abstraction

I Goal: make the abstract model small enough for an
analysis with a BDD-based Model Checker

I Idea: only track predicates on data,
and remove data variables from model

I Mostly works with control-flow dominated properties
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Notation for Abstractions

Abstract Domain

Approximate representation of
sets of concrete values

S
α
−→
←−
γ

Ŝ
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Predicate Abstraction as Abstract Domain

I We are given a set of predicates over S,
denoted by Π1, . . . ,Πn.

I An abstract state is a valuation of the predicates:

Ŝ = Bn

I The abstraction function:

α(s) = 〈Π1(s), . . . ,Πn(s)〉
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Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

x = 1
y = 0

x = 1
y = 1

x = 1
y = 2

x = 2
y = 0

x = 2
y = 1

x = 0
y = 0

p1, p2

¬p1,¬p2

p1,¬p2 ¬p1, p2

Predicates:
p1 ⇐⇒ x > y
p2 ⇐⇒ y = 0

Abstract Transitions?
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Existential Abstraction1

Definition (Existential Abstraction)

A model M̂ = (Ŝ, Ŝ0, T̂ ) is an existential abstraction of
M = (S, S0, T ) with respect to α : S → Ŝ iff

I ∃s ∈ S0. α(s) = ŝ ⇒ ŝ ∈ Ŝ0 and
I ∃(s, s′) ∈ T. α(s) = ŝ ∧ α(s′) = ŝ′ ⇒ (ŝ, ŝ′) ∈ T̂ .

1Clarke, Grumberg, Long: Model Checking and Abstraction,
ACM TOPLAS, 1994
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Minimal Existential Abstractions

There are obviously many choices for an existential abstraction
for a given α.

Definition (Minimal Existential Abstraction)

A model M̂ = (Ŝ, Ŝ0, T̂ ) is the minimal existential abstraction of
M = (S, S0, T ) with respect to α : S → Ŝ iff

I ∃s ∈ S0. α(s) = ŝ ⇐⇒ ŝ ∈ Ŝ0 and
I ∃(s, s′) ∈ T. α(s) = ŝ ∧ α(s′) = ŝ′ ⇐⇒ (ŝ, ŝ′) ∈ T̂ .

This is the most precise existential abstraction.
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Existential Abstraction

We write α(π) for the abstraction of a path π = s0, s1, . . .:

α(π) = α(s0), α(s1), . . .

Lemma

Let M̂ be an existential abstraction of M . The abstraction of
every path (trace) π in M is a path (trace) in M̂ .

π ∈M ⇒ α(π) ∈ M̂

Proof by induction.
We say that M̂ overapproximates M .
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Abstracting Properties

Reminder: we are using
I a set of atomic propositions (predicates) A, and
I a state-labelling function L : S → P(A)

in order to define the meaning of propositions in our properties.
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Abstracting Properties

We define an abstract version of it as follows:

I First of all, the negations are pushed into the atomic
propositions.
E.g., we will have

x = 0 ∈ A

and
x 6= 0 ∈ A
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Abstracting Properties

I An abstract state ŝ is labelled with a ∈ A iff all of the
corresponding concrete states are labelled with a.

a ∈ L̂(ŝ) ⇐⇒ ∀s|α(s) = ŝ. a ∈ L(s)

I This also means that an abstract state may have neither
the label x = 0 nor the label x 6= 0 – this may happen if it
concretizes to concrete states with different labels!
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Conservative Abstraction

The keystone is that existential abstraction is conservative for
certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let φ be a ∀CTL* formula where all negations are pushed into
the atomic propositions, and let M̂ be an existential abstraction
of M . If φ holds on M̂ , then it also holds on M .

M̂ |= φ ⇒ M |= φ

We say that an existential abstraction is conservative for ∀CTL*
properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure
of φ. The converse usually does not hold.
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Conservative Abstraction

We hope: computing M̂ and checking M̂ |= φ is easier than
checking M |= φ.
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Back to the Example

x = 1
y = 0

x = 1
y = 1

x = 1
y = 2

x = 2
y = 0

x = 2
y = 1

x = 0
y = 0

p1, p2

¬p1,¬p2

p1,¬p2 ¬p1, p2
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Let’s try a Property

x = 1
y = 0

x = 1
y = 1

x = 1
y = 2

x = 2
y = 0

x = 2
y = 1

x = 0
y = 0

p1, p2

¬p1,¬p2

p1,¬p2 ¬p1, p2

4 4

4

Property:
x > y ∨ y 6= 0 ⇐⇒ p1 ∨ ¬p2
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Another Property

x = 1
y = 0

x = 1
y = 1

x = 1
y = 2

x = 2
y = 0

x = 2
y = 1

x = 0
y = 0

p1, p2

¬p1,¬p2

p1,¬p2 ¬p1, p2

4 4

8

Property:
x > y ⇐⇒ p1

But: the counterexample is spurious
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SLAM

I Microsoft blames most Windows crashes on third party
device drivers

I The Windows device driver API is quite complicated

I Drivers are low level C code

I SLAM: Tool to automatically check device drivers for
certain errors

I SLAM is shipped with Device Driver Development Kit

I Full detail available at
http://research.microsoft.com/slam/
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SLIC

I Finite state language for defining properties
I Monitors behavior of C code
I Temporal safety properties (security automata)
I familiar C syntax

I Suitable for expressing control-dominated properties
I e.g., proper sequence of events
I can track data values
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SLIC Example

unlocked locked

acq

rel

error
rel acq

state {
enum {Locked , Unlocked}

s = Unlocked ;
}

KeAcquireSpinLock . entry {
i f ( s==Locked ) abort ;
else s = Locked ;

}

KeReleaseSpinLock . entry {
i f ( s==Unlocked ) abort ;
else s = Unlocked ;

}
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Refinement Example

do {

KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) {

request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

}

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Does this code
obey the locking

rule?
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Refinement Example
do {

KeAcquireSpinLock ();

if (∗) {

KeReleaseSpinLock ();

}

} while(∗);

KeReleaseSpinLock ();

U

L

L

L

U

U

U

E

L

L

U

U

L

L

L

U

U

U

E

Is this path
concretizable?
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Refinement Example
do {
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U

L

L

L

U

U

U

E

L

L

U

U

L

L

L

U

U

U

E

This path is
spurious!

Let’s add the predicate
nPacketsOld==nPackets

b=true;

!b

b=b?false:∗;
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The property holds!
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Counterexample-guided Abstraction Refinement

I ”CEGAR”

I An iterative method to compute a sufficiently precise
abstraction

I Initially applied in the context of hardware [Kurshan]
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CEGAR Overview

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

[no error]
OK

[feasible]

report counterexample

C program
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Counterexample-guided Abstraction Refinement

Claims:

1. This never returns a false error.
2. This never returns a false proof.

3. This is complete for finite-state models.
4. But: no termination guarantee in case of infinite-state

systems
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Computing Existential Abstractions of Programs

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

[no error]
OK

[feasible]

report counterexample

C program
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Computing Existential Abstractions of Programs

i n t main ( ) {
i n t i ;

i =0;

while ( even ( i ) )
i ++;

}

+ p1 ⇐⇒ i = 0
p2 ⇐⇒ even(i)

void main ( ) {
bool p1 , p2 ;

p1=TRUE;
p2=TRUE;

while ( p2 ) {
p1= p1 ? FALSE : * ;
p2= !p2 ;

}
}

C Program

Predicates Boolean Program
Minimal?
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Predicate Images

Reminder:

Image(X) = {s′ ∈ S | ∃s ∈ X.T (s, s′)}

We need

Îmage(X̂) = {ŝ′ ∈ Ŝ | ∃ŝ ∈ X̂. T̂ (ŝ, ŝ′)}

Îmage(X̂) is equivalent to

{ŝ, ŝ′ ∈ Ŝ2 | ∃s, s′ ∈ S2. α(s) = ŝ ∧ α(s′) = ŝ′ ∧ T (s, s′)}

This is called the predicate image of T .
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Enumeration

I Let’s take existential abstraction seriously

I Basic idea: with n predicates, there are 2n · 2n possible
abstract transitions

I Let’s just check them!
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Enumeration: Example

Predicates

p1 ⇐⇒ i = 1
p2 ⇐⇒ i = 2
p3 ⇐⇒ even(i)

Basic Block

i++;

T

i′ = i+ 1

p1 p2 p3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p′1 p′2 p′3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

?8?4

Query to Solver

i 6= 1 ∧ i 6= 2 ∧ even(i)∧
i′ = i+ 1∧

i′ 6= 1 ∧ i′ 6= 2 ∧ even(i′)

i 6= 1 ∧ i 6= 2 ∧ even(i)∧
i′ = i+ 1∧

i′ 6= 1 ∧ i′ 6= 2 ∧ even(i′)

. . . and so on . . .
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Predicate Images

8 Computing the minimal existential abstraction can be way
too slow

I Use an over-approximation instead
4 Fast(er) to compute
8 But has additional transitions

I Examples:
I Cartesian approximation (SLAM)
I FastAbs (SLAM)
I Lazy abstraction (Blast)
I Predicate partitioning (VCEGAR)

Predicate Abstraction with SATABS – http://www.cprover.org/ 36

http://www.cprover.org/


Checking the Abstract Model

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

[no error]
OK

[feasible]

report counterexample

C program
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Checking the Abstract Model

I No more integers!

I But:
I All control flow constructs, including function calls
I (more) non-determinism

4 BDD-based model checking now scales
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Finite-State Model Checkers: SMV

¬ Variables

VAR b0 argc ge 1 : boolean ; −− argc >= 1
VAR b1 argc le 2147483646 : boolean ; −− argc <= 2147483646
VAR b2 : boolean ; −− argv [ argc ] == NULL
VAR b3 nmemb ge r : boolean ; −− nmemb >= r
VAR b4 : boolean ; −− p1 == &ar ray [ 0 ]
VAR b5 i ge 8 : boolean ; −− i >= 8
VAR b6 i ge s : boolean ; −− i >= s
VAR b7 : boolean ; −− 1 + i >= 8
VAR b8 : boolean ; −− 1 + i >= s
VAR b9 s g t 0 : boolean ; −− s > 0
VAR b10 s g t 1 : boolean ; −− s > 1
. . .
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Finite-State Model Checkers: SMV

­Control Flow

−− program counter : 56 i s the ” t e rm ina t i ng ” PC
VAR PC: 0 . . 5 6 ;
ASSIGN i n i t (PC) : = 0 ; −− i n i t i a l PC

ASSIGN next (PC) : = case
PC=0: 1 ; −− other
PC=1: 2 ; −− other
. . .
PC=19: case −− goto ( w i th guard )

guard19 : 26;
1 : 20;

esac ;
. . .
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Finite-State Model Checkers: SMV

® Data

TRANS (PC=0) −> next ( b0 argc ge 1 )= b0 argc ge 1
& next ( b1 argc le 213646 )= b1 argc le 21646
& next ( b2)=b2
& ( ! b30 | b36 )
& ( ! b17 | ! b30 | b42 )
& ( ! b30 | ! b42 | b48 )
& ( ! b17 | ! b30 | ! b42 | b54 )
& ( ! b54 | b60 )

TRANS (PC=1) −> next ( b0 argc ge 1 )= b0 argc ge 1
& next ( b1 argc le 214646 )= b1 argc le 214746
& next ( b2)=b2
& next ( b3 nmemb ge r )= b3 nmemb ge r
& next ( b4)=b4
& next ( b5 i ge 8 )= b5 i ge 8
& next ( b6 i ge s )= b6 i ge s
. . .
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Finite-State Model Checkers: SMV

¯ Property

−− the s p e c i f i c a t i o n

−− f i l e main . c l i n e 20 column 12
−− f u n c t i o n c : : ve ry buggy func t ion
SPEC AG ( (PC=51) −> ! b23 )
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Finite-State Model Checkers: SMV

I If the property holds, we can terminate

I If the property fails, SMV generates a counterexample with
an assignment for all variables, including the PC
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Simulating the Counterexample

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

[no error]
OK

[feasible]

report counterexample

C program
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Lazy Abstraction

I The progress guarantee is only valid if the minimal
existential abstraction is used.

I Thus, distinguish spurious transitions from spurious
prefixes.

I Refine spurious transitions separately to obtain minimal
existential abstraction

I SLAM: Constrain
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Lazy Abstraction

I One more observation:
each iteration only causes only minor changes in the
abstract model

I Thus, use “incremental Model Checker”, which retains the
set of reachable states between iterations (BLAST)
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Example Simulation

int main() {

int x, y;

y=1;

x=1;

if (y>x)

y−−;

else
y++;

assert(y>x);

}

Predicate:
y>x

main() {

bool b0; // y>x

b0=*;

b0=*;
if (b0)

b0=*;

else

b0=*;
assert(b0 );

}
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Example Simulation

int main() {

int x, y;

y=1;

x=1;

if (y>x)

y−−;

else
y++;

assert(y>x);

}

We now do a path test,
so convert to SSA.
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Example Simulation

int main() {

int x, y;

y1=1;

x1=1;

if (y1>x1 )

y2=y1−1;

else
y++;

assert(y2>x1 );

}

y1 = 1 ∧
x1 = 1 ∧
y1 > x1 ∧
y2 = y1 − 1 ∧

¬(y2 > x0)

This is UNSAT, so
π̂ is spurious.
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Refining the Abstraction

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

[no error]
OK

[feasible]

report counterexample

C program
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Manual Proof!
int main() {

int x, y;

y=1;

{y = 1}

x=1;

{x = 1 ∧ y = 1}

if (y>x)
y−−;

else

{x = 1 ∧ y = 1 ∧ ¬y > x}

y++;

{x = 1 ∧ y = 2 ∧ y > x}

assert(y>x);
}

This proof uses
strongest
post-conditions
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An Alternative Proof
int main() {

int x, y;

y=1;

{¬y > 1⇒ y + 1 > 1}

x=1;

{¬y > x⇒ y + 1 > x}

if (y>x)
y−−;

else

{y + 1 > x}

y++;

{y > x}

assert(y>x);
}

We are using weakest
pre-conditions here

wp(x:=E, P ) = P [x/E]

wp(S;T, Q) = wp(S, wp(T, Q))

wp(if(c) A else B, P ) =
(B ⇒ wp(A, P ))∧
(¬B ⇒ wp(B, P ))

The proof for the ”true” branch
is missing
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Refinement Algorithms

Using WP

1. Start with failed guard G
2. Compute wp(G) along the path

Using SP

1. Start at beginning
2. Compute sp(. . .) along the path

I Both methods eliminate the trace
I Advantages/disadvantages?
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Predicate Localization
Example:

int x, y;

x=10;

{x = 10}

y=x+10;

{y = 20}

y=y+10;

{y = 30}

assert(y==30);

original program

+
x = 10
y = 20
y = 30

predicates

=

bool x10, y20, y30;

x10=1;

y20,y30=x10?1:∗,∗;

y20,y30=∗,y20?1:∗;

assert(y30);

abstraction

We really only want to track specific predicates at each location!
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Predicate Localization

I Track a separate set of predicates for each location

4 Makes predicate image easier
4 Makes simulation of transitions easier
4 Makes the check of the abstract model easier
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Predicate Refinement for Paths

Recall the decision problem we build for simulating paths:

x1 = 10 ∧ y1 = x1 + 10 ∧ y2 = y1 + 10 ∧ y2 6= 30

⇒ x1 = 10 ⇒ y1 = 20 ⇒ y2 = 30 ⇒ false

A1︷ ︸︸ ︷ A2︷ ︸︸ ︷ A3︷ ︸︸ ︷ A4︷ ︸︸ ︷
︸ ︷︷ ︸
A′1

︸ ︷︷ ︸
A′2

︸ ︷︷ ︸
A′3

︸ ︷︷ ︸
A′4
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Predicate Refinement for Paths

For a path with n steps:

A1 A2 A3 . . . An

true ⇒A′1 ⇒A′2 ⇒A′3 ⇒A′n−1 ⇒false

I Given A1, . . . , An with
∧

iAi = false
I A′0 = true and A′n = false
I (A′i−1 ∧Ai)⇒ A′i for i ∈ {1, . . . , n}
I Finally, Vars(A′i) ⊆ (Vars(A1 . . . Ai) ∩Vars(Ai+1 . . . An))
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Predicate Refinement for Paths

Special case n = 2:

I A ∧B = false
I A⇒ A′

I A′ ∧B = false
I Vars(A′) ⊆ (Vars(A) ∩Vars(B))

W. Craig’s Interpolation theorem (1957):
such an A′ exists for any first-order,
inconsistent A and B.
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Predicate Refinement with Craig Interpolants

4 For propositional logic, a propositional Craig Interpolant
can be extracted from a resolution proof (→ SAT!) in linear
time

4 Interpolating solvers available for linear arithmetic over the
reals and integer difference logic with uninterpreted
functions

8 Not possible for every fragment of FOL:

x = 2y and x = 2z + 1 with x, y, z ∈ Z

The interpolant is “x is even”
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Craig Interpolation for Linear Inequalities

0 ≤ x 0 ≤ y
0 ≤ c1x+ c2y

with 0 ≤ c1, c2

I “Cutting-planes”

I Naturally arise in Fourier-Motzkin or Simplex
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Example

A = (0 ≤ x− y) ∧ (0 ≤ y−z−1) B = (0 ≤ z−x)

0 ≤ y−z−1 0 ≤ z−x

0 ≤ y−x−1

0 ≤ x−y

0 ≤ −1

0 ≤ y−z−1 0 ≤ 0

0 ≤ y−z−1

0 ≤ x−y

0 ≤ x−z−1
⇐⇒ z−x ≤ −1

Just sum the inequalities from A , and you get an interpolant!
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Approximating Loop Invariants: SP

i n t x , y ;

x=y =0;

while ( x !=10) {
x++;
y++;

}

asser t ( y ==10);

The SP refinement results in

sp(x=y=0, true) = x = 0 ∧ y = 0

sp(x++; y++, . . .) = x = 1 ∧ y = 1
sp(x++; y++, . . .) = x = 2 ∧ y = 2
sp(x++; y++, . . .) = x = 3 ∧ y = 3
. . .

8 10 iterations required to prove the property.
8 It won’t work if we replace 10 by n.
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Approximating Loop Invariants: WP

i n t x , y ;

x=y =0;

while ( x !=10) {
x++;
y++;

}

asser t ( y ==10);

The WP refinement results in

wp(x==10, y 6= 10) = y 6= 10 ∧ x = 10

wp(x++; y++, . . .) = y 6= 9 ∧ x = 9
wp(x++; y++, . . .) = y 6= 8 ∧ x = 8
wp(x++; y++, . . .) = y 6= 7 ∧ x = 7
. . .

8 Also requires 10 iterations.
8 It won’t work if we replace 10 by n.
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Approximating Loop Invariants: WP
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What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

x1 = 0
y1 = 0

x1 6= 10
x2 = x1+1
y2 = y1+1

1st It.

x2 6= 10
x3 = x2+1
y3 = y2+1

2nd It.

x3 6= 10
x4 = x3+1
y4 = y3+1

3rd It.

x4 = 10
y4 6= 10

Assertion

x1 = 0
y1 = 0

x2 = 1
y2 = 1

x3 = 2
y3 = 2

x4 = 3
y4 = 3

8This proof will produce the same predicates as SP.
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Split Provers

Idea:

P1 P2 P3 . . . Pn

I Each prover Pi only knows Ai, but they exchange facts
I We require that each prover only exchanges facts with

common symbols
I Plus, we restrict the facts exchanged to some language L
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Back to the Example

Restriction to language L = “no new constants”:

x1 = 0
y1 = 0

x1 6= 10
x2 = x1+1
y2 = y1+1

1st It.

x2 6= 10
x3 = x2+1
y3 = y2+1

2nd It.

x3 6= 10
x4 = x3+1
y4 = y3+1

3rd It.

x4 = 10
y4 6= 10

Assertion

x1 = 0
y1 = 0

x2 = 1
y2 = 1

x3 = 2
y3 = 2
8

x3 = y3 x4 = y4
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Invariants from Restricted Proofs

4 The language restriction forces the solver to generalize!

I Algorithm:

I If the proof fails, increase L!
I If we fail to get a sufficiently strong

invariant, increase n.

4 This does work if we replace 10 by n!

? Which L1,L2, . . . is complete for which programs?
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